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Abstract  
This paper develops a new mathematical model of a system with a novel approach, 

which consists of two independent repairable subsystems. The model is analyzed under “Head-

of-Line” repair policy considering two types of repair between two successive transitions at a 

stage contrast to the normal practice of assuming single type of transition in all states. 

Supplementary variable technique, Laplace transformation and Gumbel-Hougaard family copula 

techniques are applied to obtain the availability and cost analysis of the system. At last some 

numerical examples have been taken to illustrate the model. 

 

Key Words: Cost benefit analysis; Maintenance; Reliability; Head-of-Line Repair; Complex 

Engineering Systems. 

 

1. Introduction 
The need of the hour demands such systems which are ever available and 

reliable. An organization wants to achieve the maximum customer satisfaction in order 

to sustain the competition. The management is highly concerned with the reliable 

operation of production systems. Reliability engineering has its own complexity due to 

due to involvement of rigorous statistics but at the same time it has a wide practical 

approach. According to a mature scientific theory, a probabilistic method which deals 

with uncertainty as it is random in nature but is of an ordered kind can be used to 

determine reliability.  It can also be said that the reliability of a system is determined by 

the constituent subsystems and reliability of such systems is in turn determined by the 

associated components and their possible failure modes. This research is a step towards 

explaining the reliability application on a repairable system with three types of failure 

under ‘head-of-line’ repair policy and Gumbel-Hougaard family copula. 

 

So in earlier research [1, 3, 5, 7, 18],  different techniques have been applied to 

evaluate the reliability of distribution system, including distributed generation such as 

an analytical technique using the load duration curve, distributed processing technique, 

Characteristic function based approach for computing the probability distributers of 

reliability indices, probabilistic method for assessing the reliability and quantity of 

power supply to a customer, composite load point model, practical reliability 

assessment algorithm, validation method and impact of substation on distribution 
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reliability respectively. Choi et al. [9] presents a new and practical approach in 

selecting a reasonable expansion plan prior to checking system stability and dynamics. 

The special protection system has been used to increase the transfer capability of the 

network. McCalley and Fu [16] elucidate the importance of developing a systematic 

and comprehensive reliability framework for the special protection system. Vanderperre 

[26] studied the system reliability when all distributions are general. Raghavendra et al. 

[19] introduced: distributed program reliability, distributed system reliability and Luo et 

al. [15] proposed two fault-tolerant techniques with fixed priority-based scheduling 

algorithms, for distributed systems. The heuristic approaches for computer 

communication networks and telecommunication networks developed by [10, 14] and 

High Performance Computing systems (HPC) by Gottumukkala [12]. 

 

Furthermore, a large number of researchers in the field of reliability have 

studied the repairable systems. Most of them [2, 4, 8, 11, 20, 22, 25] have concentrated 

their attention on system parameters like mean time to failure, reliability, availability 

and cost analysis with different types of failure and one type of repair. The authors [21, 

24] have discussed various reliability measures of the system under ‘preemptive-resume 

repair’ and ‘preemptive-repeat repair’ discipline [6] with the help of copula discussed 

[17]. But they did not consider one of the important aspects of repair policies that the 

system can be analyzed with ‘head of line repair’ discipline. Although Kishore et al. 

[13] analyzed the system under ‘head of line’ repair policy, but they did not apply the 

concept of the copula. 

 

2. Brief Introduction of Gumbel-Hougaard Family Copula 
The family of copulas has been studied extensively by a number of authors 

including Nelsen [18]. The Gumbel-Hougaard family copula is as: 
1

1 2 1 2
( , ) exp( (( lo g ) ( log ) ) ), 1C u u u uθ θ θ

θ θ= − − + − ≤ ≤ ∞  

For θ = 1 the Gumbel-Hougaard copula models independence, for θ→∞ it converges to 

comonotonicity. 

 

3. Mathematical Model Details 

A. Nomenclature 

A
λ  Failure rate of both i.i.d. units for subsystem A. 

,
Pj C
λ λ  

Failure rates of subsystem B for partial and catastrophic failure 

respectively where 

1

n

Pj Pj

j

λ λ
=

=∑  unless otherwise mentioned. 

( ), ( )i ir S rφ
 

i = A, r = x 

i = P, r = y 

i = C, r = z 

Transition repair rate and probability density, elapsed repair time x, 

whereas repair of partial and catastrophic failure in subsystem B is 

completed in elapsed repair times y and z respectively where 

1

n

Pj Pj

j

φ φ
=

=∑  unless otherwise mentioned. 

( )
i
P t  

The probability that the system is in 
i
S  a state at instant ‘ t ’ for i

=0 to 7. 

( )P s  Laplace transformation of ( )P t . 
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u1, u2 
Marginal distribution of random variables, where

1

xu e= and 

2 ( )Au xφ= . 

Ep(t) Expected profit during the interval (0, t]. 

K1, K2 Revenue per unit time and service cost per unit time respectively. 

 

Letting u1 = e
x
 and u2 = ( )

A
xφ , the expression for joint probability (failed state 

S4 to good state S0) according to Gumbel-Hougaard family is given as:
1/exp[ {log ( )} ]Ax xθ θ θφ+ . 

 

B. Model Description and Assumptions 
So, in contrast to the earlier research of Ram and Singh [23, 25], here authors 

have extended their research with ‘head of line’ repair policy. In this study the system 

considered consists of two independent repairable subsystems A and B in series (1-out-

of-2:F) i.e. if any one of A or B fails, the complete system fails. Subsystem A has two 

identical units arranged in parallel redundancy (1-out-of-2:G), subsystem B has n unit 

in series (1-out-of-n:F) with two types of failure, viz., partial and catastrophic. The 

system is analyzed under head-of line repair policy i.e. the policy is first come first 

served. The present study has considered a model in which authors tried to address the 

problem where two different repair facilities are available between adjacent states S4 

and S0 (where S0 is the initial state when both the units are in good working condition 

and S4 is the state when both the units have failed completely hence the whole system 

has failed completely). Here, the authors have considered a parallel redundant system 

with two independent and identically distributed units and three states: good, degraded 

and failed. The units can suffer from two types of failure: partial and catastrophic which 

brings a unit to degraded and failed state respectively. The catastrophic failure can 

occur in a degraded state too. The repair of partial failure is opportunistic, i.e. it would 

be repaired along with the catastrophic failure. The failure and repair times for the 

system follow exponential and general distribution respectively in general. However the 

repair from state S4 to S0 has two types namely exponential and general.  The system is 

studied by using the supplementary variable technique, Laplace transformation and 

Gumbel-Hougaard family of copula to obtain various reliability measures such as 

transition state probabilities, steady state probability, mean time to failure availability 

and cost analysis. At last some particular cases of the system are taken to highlight the 

different possibilities.  

 

The following assumptions are associated with the model: 

(i). Initially the system is in good state. 

(ii). Subsystem A (1-out-of-2:G) and B (1-out-of-n: ) are in series. 

(iii). Each unit of subsystem A has same constant failure rate and two states i.e. good, 

failed. 

(iv). Partial failure brings subsystem B to degraded state and hence the whole system. 

Catastrophic failure can occur in this state too. 

(v). Catastrophic failure breaks down subsystem B completely and hence the whole 

system. 

(vi). Subsystem B has three states: good, degraded and failed. 
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(vii). All repairs follow the general time distribution except from S

failures follow an exponential time distribution.

(viii). The system has only one repair facility except from S

(ix). After repairing system is as good as new. Repair never damages anything.

(x). Failed A-units are repaired only when the system is in complete failed state.

(xi). The repair of partial failure is undertaken along with the repair of catastrophic 

failure. 

(xii). Subsystem A is undertaken under ‘head

subsystem B is continued and repair of the subsystem A is entertained only when 

the repair of subsystem B is completed.

(xiii). The transition from the completely failed state S

two different distributions. 

(xiv). Joint probability distribution of repair rate from completely failed state S

initial state S0 follows Gumbel- Hougaard family of Copula.

 

Figure 1 represents the state transition diagram of t

 

Fig. 1: State Transition Diagram

 

C. Formulation and Solution of Mathematical Model
By the probability of the considerations and continuity arguments we can 

obtain the following set of difference

mathematical model: 
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All repairs follow the general time distribution except from S4 to S0 whereas all 

failures follow an exponential time distribution. 

The system has only one repair facility except from S4 to S0 where it has got two.  

After repairing system is as good as new. Repair never damages anything. 

units are repaired only when the system is in complete failed state. 

The repair of partial failure is undertaken along with the repair of catastrophic 

Subsystem A is undertaken under ‘head-of-line repair’ policy i.e. the repair of 

subsystem B is continued and repair of the subsystem A is entertained only when 

the repair of subsystem B is completed. 

The transition from the completely failed state S4 to the initial state S0 follows 

Joint probability distribution of repair rate from completely failed state S4 to the 

Hougaard family of Copula. 

Figure 1 represents the state transition diagram of the system. 

 
Fig. 1: State Transition Diagram 

C. Formulation and Solution of Mathematical Model 
By the probability of the considerations and continuity arguments we can 

obtain the following set of difference-differential equations governing the present 
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1/

0 2 4

0 0

2 ( ) ( , ) ( ) ( , )exp[ {log ( )} ]A Pj C Pj AP t P y t y dy P x t x x dx
t

θ θ θλ λ λ φ φ
∞ ∞∂ 

+ + + = + + ∂ 
∫ ∫  

                                         
6 7

0 0

( , ) ( ) ( , ) ( )C CP z t z dz P z t z dzφ φ
∞ ∞

+ +∫ ∫                                     (1) 

1 0 3

0

( ) 2 ( ) ( , ) ( )A Pj C A PjP t P t P y t y dy
t

λ λ λ λ φ
∞∂ 

+ + + = + ∂  ∫                                                 (2) 

2
2 ( ) ( , ) 0

A C Pj
y P y t

t y
λ λ φ

 ∂ ∂
+ + + + = ∂ ∂ 

                                                                      (3) 

3 2
( ) ( , ) 2 ( , )

A C Pj A
y P y t P y t

t y
λ λ φ λ

 ∂ ∂
+ + + + = ∂ ∂ 

                                                         

(4) 

1/

4exp[ {log ( )} ] ( , ) 0Ax x P x t
t x

θ θ θφ
∂ ∂ 
+ + + = ∂ ∂ 

                                                          (5) 

5 3
( ) ( , ) ( , )

Pj A
y P y t P y t

t y
φ λ

 ∂ ∂
+ + = ∂ ∂ 

                                                                          (6) 

6( ) ( , ) 0C z P z t
t z

φ
∂ ∂ 
+ + = ∂ ∂ 

                                                                                         (7) 

7( ) ( , ) 0C z P z t
t z

φ
∂ ∂ 
+ + = ∂ ∂ 

                                                                                         (8) 

Boundary conditions 

2 0(0, ) ( )PjP t P tλ=                                                                                                            (9) 

3 1(0, ) ( )PjP t P tλ=                                                                                                          (10) 

4 1 5

0

(0, ) ( ) ( , ) ( )A PjP t P t P y t y dyλ φ
∞

= + ∫                                                                            (11) 

5
(0, ) 0P t =                                                                                                                     (12) 

6 0 2
(0, ) ( ) ( )

C C
P t P t P tλ λ= +                                                                                           (13) 

7 1 3
(0, ) ( ) ( )

C C
P t P t P tλ λ= +                                                                                            (14) 

Initial condition 

0
(0) 1P =  and other state probabilities are zero at t = 0                                               (15) 

Taking Laplace transformation of equations (1-14) and using equation (15), we obtain 

1/

0 2 4

0 0

2 ( ) 1 ( , ) ( ) ( , )exp[ {log ( )} ]A Pj C Pj As P s P y s y dy P x s x x dxθ θ θλ λ λ φ φ
∞ ∞

 + + + = + + +  ∫ ∫  

                                      
6 7

0 0

( , ) ( ) ( , ) ( )C CP z s z dz P z s z dzφ φ
∞ ∞

+ +∫ ∫                                     (16) 

1 0 3

0

( ) 2 ( ) ( , ) ( )A Pj C A Pjs P s P s P y s y dyλ λ λ λ φ
∞

 + + + = +  ∫                                              (17) 

2
2 ( ) ( , ) 0

A C Pj
s y P y s

y
λ λ φ

 ∂
+ + + + = ∂ 

                                                                     (18) 
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3 2
( ) ( , ) 2 ( , )

A C Pj A
s y P y s P y s

y
λ λ φ λ

 ∂
+ + + + = ∂ 

                                                        (19) 

1/

4exp[ {log ( )} ] ( , ) 0As x x P x s
x

θ θ θφ
∂ 

+ + + = ∂ 
                                                          (20) 

5 3
( ) ( , ) ( , )

Pj A
s y P y s P y s

y
φ λ

 ∂
+ + = ∂ 

                                                                          (21) 

6( ) ( , ) 0Cs z P z s
z

φ
∂ 

+ + = ∂ 
                                                                                         (22) 

7
( ) ( , ) 0

C
s z P z s

z
φ

∂ + + = ∂ 
                                                                                (23) 

2 0(0, ) ( )PP s P sλ=                                                                                                          (24) 

3 1(0, ) ( )PjP s P sλ=                                                                                                         (25) 

4 1 5

0

(0, ) ( ) ( , ) ( )A PjP s P s P y s y dyλ φ
∞

= + ∫                                                                           (26) 

5 (0, ) 0P s =                                                                                                                    (27) 

6 0 2(0, ) ( ) ( )C CP s P s P sλ λ= +                                                                                          (28) 

7 1 3(0, ) ( ) ( )C CP s P s P sλ λ= +                                                                                          (29) 

Solving (16-23) with the help of (24-29), one can get 

0

( )
( )

( )

D s
P s

T s
=                                                                                                                 (30) 

1

( )
( )

( )

C s
P s

T s
=                                                                                                                 (31) 

2 0( ) ( 2 ) ( )Pj Pj A CP s s P sλ δ λ λ= + +                                                                       (32) 

3( ) 2 [ ( ) ( 2 )]Pj Pj A C Pj A CP s s sλ δ λ λ δ λ λ= + + − + +  

                 0 1( ) ( ) ( )Pj Pj A CP s s P sλ δ λ λ× + + +                                                        (33) 

4 0 1( ) ( )[ ( ) ( ) { ( )} ( )]A AP s s E s P s F s P sδ λ= + +                                                    (34) 

5 0

( ) ( ) ( 2 ) ( )
( ) 2 ( )

2

Pj Pj A C Pj A C Pj

A Pj

A C A C

s r s s s
P s P s

δ λ λ δ λ λ δ
λ λ

λ λ λ λ

− + + + + − 
= + + + 

 

             
1( ) ( ) ( )

A Pj

Pj Pj A C

A C

s s P s
λ λ

δ δ λ λ
λ λ

 + − + + +
                                        (35) 

6 0( ) ( )[1 ( 2 )] ( )C C Pj Pj A CP s s s P sλ δ λ δ λ λ= + + +                                               (36) 

7 0( ) ( )[2 { ( ) ( 2 )} ( )C C Pj Pj A C Pj A CP s s s s P sλ δ λ δ λ λ δ λ λ= + + − + +  

                1{1 ( )} ( )]Pj Pj A Cs P sλ δ λ λ+ + + +                                                          (37) 

where 
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( ) ( )
A Pj C Pj Pj A C

D s s S sλ λ λ λ λ λ= + + + − + + , 

( ) 2 2 [ ( ) ( 2 )]
A Pj Pj A C Pj A C

C s S s S sλ λ λ λ λ λ= + + + − + + , 

 ( ) 2 ( 2 ) ( ) ( )

( )[1 ( 2 ) 2 ( )],

A Pj C Pj Pj A C A

C C Pj Pj A C Pj Pj A C

A s s S s S s E s

S s s s

λ λ λ λ λ λ

λ λ δ λ λ λ δ λ λ

= + + + − + + −

− − + + + + +

( ) ( )[ ( )] ( )[1 ( )]A A C C Pj Pj A CB s S s F s S s sλ λ λ δ λ λ= + + + + + , 

( ) ( ) ( ) ( ) ( )T s A s D S B s C s= − , 

( ) ( ) ( 2 ) ( )
( ) 2

2

Pj Pj A C Pj A C Pj

A Pj

A C A C

S s S s S s S s
E s

λ λ λ λ
λ λ

λ λ λ λ

 − + + + + −
= + 

+ +  
,

( ) ( )
( )

Pj Pj A C

A Pj

A C

S s S s
F s

λ λ
λ λ

λ λ

 − + +
=  

+  
, [1 ( )]

( ) i
i

S s
s

s
δ

−
=  

The Laplace transformations of the probabilities that the system is in up (i.e. 

either good or degraded state) and failed state at any time are as follows: 

up 0 1 2 3( )  ( ) ( ) ( ) ( )P s P s P s P s P s= + + +   

            [1 ( 2 ) 2 { ( )Pj Pj A C Pj Pj A Cs sλ δ λ λ λ δ λ λ= + + + + + +  

                 
0 1

 ( 2 )}] ( ) [1 ( )] ( )
Pj A C Pj Pj A C
s P s s P sδ λ λ λ δ λ λ− + + + + + +                            (38) 

ailed 4 5 6 7

0

( ) ( ) ( ) ( ) ( ) 

( ) ( )

            ( ) ( ) 2
( 2 ) ( )

2

( ) {1 ( 2 ) 2 ( )} ( )

( ){ (

f

Pj Pj A C

A C

A A Pj

Pj A C Pj

A C

C C P Pj A C Pj Pj A C

A A

P s P s P s P s P s

s s

s E s
s s

s s s P s

s F s

δ δ λ λ

λ λ
δ λ λ

δ λ λ δ

λ λ

δ λ λ δ λ λ λ δ λ λ

δ λ

= + + +

 − + + 
  + = +   + + −  + +  

+ − + + + + + 

+
+ 1

( ) ( )
)}

( )

( ) {1 ( )}

Pj Pj A C

A Pj

A C

C C Pj Pj A C

s s

P s

s s

δ δ λ λ
λ λ

λ λ

δ λ λ δ λ λ

 − + + 
+  

+  
 + + + + 

 

                                                                                                                                      (39) 

  

4. Particular Cases 

A. When a catastrophic failure does not occur in subsystem B 
The result can be derived by putting λC=0 in equation (30) through equation 

(37), Laplace transformation of various state probabilities is as follows: 

1
0

1

( )
( )

( )

D s
P s

T s
=                                                                                                            (40) 

1
1

1

( )
( )

( )

C s
P s

T s
=                                                                                                             (41) 
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2 0( ) ( 2 ) ( )Pj Pj AP s s P sλ δ λ= +                                                                                (42) 

3 0 1( ) 2 [ ( ) ( 2 )] ( ) ( ) ( )Pj Pj A Pj A Pj Pj AP s s s P s s P sλ δ λ δ λ λ δ λ= + − + + +                                 (43) 

4 1 0 1 1( ) ( )[ ( ) ( ) { ( )} ( )]A AP s s E s P s F s P sδ λ= + +                                                  (44) 

5 0( ) [ ( ) 2 ( ) ( 2 )] ( )Pj Pj Pj A Pj AP s s s s P sλ δ δ λ δ λ= − + + +  

                  1[ ( ) ( )] ( )Pj Pj Pj As r s P sλ δ λ+ − +                                                           (45) 

6 ( ) 0P s =                                                                                                                    (46) 

7 ( ) 0P s =                                                                                                                     (47) 

where 

1( ) ( )A Pj Pj Pj AD s s S sλ λ λ λ= + + − + , 

1( ) 2 2 [ ( ) ( 2 )]A Pj Pj A Pj AC s S s S sλ λ λ λ= + + − + , 

1 1( ) 2 ( 2 ) ( ) ( )A Pj Pj Pj A AA s s S s S s E sλ λ λ λ= + + − + − , 

1 1( ) ( )[ ( )]A AB s S s F sλ= + , 

1 1 1 1 1( ) ( ) ( ) ( ) ( )T s A s D S B s C s= − , 

1( ) [ ( ) 2 ( ) ( 2 )]Pj Pj Pj A Pj AE s S s S s S sλ λ λ= − + + + , 

1( ) [ ( ) ( )]Pj Pj Pj AF s S s S sλ λ= − + , 

 

B. When repair follows an exponential distribution 

Setting
1/

1/

exp[ {log ( )} ]
( )

exp[ {log ( )} ]

A

A

A

x x
S s

s x x

θ θ θ

θ θ θ

φ
φ

+
=

+ +
, ( )

Pj

Pj

Pj

S s
s

φ

φ
=

+
, ( ) C

C

C

S s
s

φ
φ

=
+

 

in equation (30) through equation (37), the Laplace transformations of various state 

probabilities are as follows: 

2
0

2

( )
( )

( )

D s
P s

T s
=                                                                                                               (48) 

2
1

2

( )
( )

( )

C s
P s

T s
=                                                                                                                (49) 

2 0( ) ( )
2

Pj

A C Pj

P s P s
s

λ

λ λ φ

 
=  

+ + +  
                                                                               (50) 

3 0 1

2
( ) ( ) ( )

( )( 2 )

Pj A Pj

A C Pj A C Pj A C Pj

P s P s P s
s s s

λ λ λ

λ λ φ λ λ φ λ λ φ

   
= +   

+ + + + + + + + +      
                                             (51) 

4 2 0 2 11/

1
( ) [ ( ) ( ) { ( )} ( )]

exp[ {log ( )} ]
A

A

P s E s P s F s P s
s x x

θ θ θ λ
φ

= + +
+ +

                                           (52) 

5 0 1

2
( ) ( ) ( )

( )( ) 2

A Pj A

Pj A C Pj A C Pj

P s P s P s
s s s

λ λ λ
φ λ λ φ λ λ φ

 
= + 

+ + + + + + +  

                                                (53) 
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6 0( ) 1 ( )
2

PjC

C A C Pj

P s P s
s s

λλ
φ λ λ φ

  
= + 

+ + + +  
                                                                

(54) 

7 0

2
( ) ( )

( )( 2 )

Pj AC

C A C Pj A C Pj

P s P s
s s s

λ λλ
φ λ λ φ λ λ φ

  
=  

+ + + + + + +  
 

                   
11 ( )

Pj

A C Pj

P s
s

λ

λ λ φ

  
+ +  

+ + +    
                                                                 (55) 

Where 

2 ( ) ( ) 1
( )

Pj

A C

A C Pj

D s s
s

λ
λ λ

λ λ φ

 
= + + + 

+ + +  
, 

2 ( ) 2 1
( )( 2 )

Pj Pj

A

A C Pj A C Pj

C s
s s

λ φ
λ

λ λ φ λ λ φ

 
= + 
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5. Numerical computations 
Assuming that when repair follows an exponential time distribution, we have 
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A. Availability Analysis 
(a) Let the failure rates of subsystems A and B for partial and catastrophic failure be 

λA=λPj =λC =0.01, 1, 1, 1A Pj Cx θ φ φ φ= = = = =  in equation (38) and taking the 

inverse Laplace transform, one can get 
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(-2.718123048t) (-1.045862357t) 

up

(-1.017069307t)

(-1.017069307t)

P (t) =-0.00002847737880 e  + 0.004704285734 e

           + 0.005197005350 e  cos (0.006154998102t)

           + 0.03306981389 e  sin (0.006154

(-0.04007598092t)

998102t)

           + 0.0018764303 e  + 0.9882507561

(56) 

(b) Setting parameters as: λA =0.1, λPj =0.2, λC =0.3, mean time to repair and

1, 1, 1A Pj Cx θ φ φ φ= = = = =  in (38) and taking inverse Laplace transform, we have 

(-2.695379582t) (-1.830698558t) 

up

(-1.390327662t)

(-1.390327662t)

P (t) =-0.01066101081e  + 0.07164780178 e

              + 0.1693005420 e  cos (0.06257156474t) 

              + 0.7083715935e  sin (0.062571564

(-0.6114665356t)

74t) 

              + 0.01064757580 e  +0.7590650916

        (57) 

(c) Again taking failure rates of subsystems A and B for partial and catastrophic as λA 

=λPj =λC =0.5, 1, 1, 1A Pj Cx θ φ φ φ= = = = =  in (38) and determining inverse 

Laplace transform, one may get 
(-3.175102361t)

up

(-3.175102361t)

(-1.843043060t)

P (t) =0.1246243285e  cos (0.7549458585t)

               + 0.1703914724 e  sin (0.7549458585t)

               + 0.14511904888 e  cos (0.6150146839t)

           (-1.843043060t)

(-1.681909159t)

    + 0.4044051920 e  sin (0.6150146839t)

               + 0.1273527830 e +0.6029038397

                 (58) 

 

In equation (56), (57) and (58), setting t =0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 units of 

time, one may obtain Table 1. Table 1 demonstrates how the availability of the system 

changes with respect to time. 

 

Time (t) 
Availability Pup(t) 

Case (a) Case (b) Case (c) 

0 1.00000 1.00000 1.00000 

1 0.99365 0.82870 0.69097 

2 0.99129 0.77988 0.61839 

3 0.99039 0.76566 0.60511 

4 0.99002 0.76133 0.60314 

5 0.98985 0.75993 0.60292 

6 0.98974 0.75943 0.60290 

7 0.98967 0.75923 0.60290 

8 0.98961 0.75915 0.60290 

9 0.98956 0.75911 0.60290 

10 0.98950 0.75908 0.60290 

 
Table 1: Availability as function of time 
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 Fig. 2: Availability as function of time 

 

B. Cost Analysis 
Let the service facility be always available, then expected profit during the 

interval (0, t] is 

1 2

0

( ) ( )

t

p UPE t K P t dt K t= −∫                                                               (59) 

Using (56) in (59) for the above mentioned parameters, one can obtain (60) for the 

values of the various parameters as taken for availability analysis, we have 
(-2 .718123048  t)

1

(-1 .045862357  t) 

(-1.017069307 t)

(-1 .0

( ) K  [-0 .00001047685417 e  

               - 0 .00449799699e

               -0 .005306360389 e  cos (0 .006154998102t)

               -0 .03248269614 e

pE t =

17069307  t)

(-0 .04007598092  t)

2

 sin  (0 .006154998102t)

               -0 .04682101838 e  + 0 .9882507561t

               +0 .05661569890] - K t

 (60)

 

 

Taking K1 =1; K2 = 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 and using (60), the computed 

values of Ep (t) are given in Table 2. 
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Time 
Ep(t) 

K2= 0.05 K2= 0.10 K2= 0.20 K2= 0.30 K2= 0.40 K2= 0.50 

0 0 0 0 0 0 0 

1 0.946312 0.896312 0.796312 0.696312 0.596312 0.496312 

2 1.888600 1.788600 1.588600 1.388600 1.188600 0.988600 

3 2.829375 2.679375 2.379375 2.079375 1.779375 1.479375 

4 3.769558 3.569558 3.169558 2.769558 2.369558 1.969558 

5 4.709486 4.459486 3.959486 3.459486 2.959486 2.459486 

6 5.649282 5.349282 4.749282 4.149282 3.549282 2.949282 

7 6.588994 6.238994 5.538994 4.838994 4.138994 3.438994 

8 7.528639 7.128639 6.328639 5.528639 4.728639 3.928639 

9 8.468227 8.018227 7.118227 6.218227 5.318227 4.418227 

 
Table 2: Expected profit as function of time 
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Fig. 3: Expected profit as function of time 

 

6. Conclusions 
Table 1 provideS information how availability of the complex engineering 

repairable system changes with respect to the time when failure rates are fixed at 

different values. When failure rates are fixed at lower values at 0.01 the availability of 

the system decreases with respect to time but stabilize at value 0.989 in the long run. 

When failure rates are putting at the values λA=0.10, λPj=0.20, λC=0.30, the availability 

of the system decreases smoothly during initial stage but later on become stable at 
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0.759 in the long run. In a similar approach, when failure rates are fixed at 0.5, the 

availability of the system decreases sharply during initial stage but later on stabilizing 

at 0.602 in the long run. Tables 1 and corresponding Figures 2 divulge that when the 

failure rate increases availability of the system decreases.  

 

When revenue cost per unit time K1 fixed at 1, service cost K2 varies and 

failure rates are kept at lower and somewhat higher values one can obtain Table 2 for 

repairable system which are depicted in Figures 3. One can conclude by observing this 

graph that as service cost increases, expected profit decreases. For lower failure rates 

expected profit is higher in comparison to higher failure rates. Hence the present study 

clearly proves the importance of head-of line repair policy in comparison of [17-18] 

which seem to be possible in many engineering systems when it is analyzed with the 

help of the copula. The further research area is widely open, where one may think of the 

application of other members of copula family, MTTF and sensitivity analysis.   
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