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Abstract 
In this paper some improved exponential ratio-type estimators have been proposed for 

estimating the finite populations mean using auxiliary information on two auxiliary variables in 

double sampling. The properties of the proposed estimators have been  analyzed for independent 

and dependent samples case under simple random sampling without replacement (SRSWOR). An 

empirical study is carried out to demonstrate the performance of proposed estimators over Noor-

ul-Amin and Hanif (2012), Singh et al. (2008), Singh and Vishvakarma (2007), and Classical 

Ratio Estimator. 

 

Key Words: Auxiliary Variable, Two Phase Sampling, Mean Square Error (MSE), Bias, 

Efficiency. 

 

1. Introduction 
In survey sampling, the use of auxiliary information has always been resulted 

in extensive gain in performance over the estimators which do not take such 

information. The auxiliary information has been effectively used in double sampling to 

estimate a population characteristic where the auxiliary information X is already 

available or can be easily observed and highly correlated with study variable Y. Ratio, 

product, and regression estimators are good examples in this context. Watson (1937) 

used regression method of estimation to estimate the average area of the leaves on the 

plant. Cochran (1940) used ratio method of estimation for positively correlated study 

variable Y and auxiliary variable X. On the other hand if this correlation is negative, 

Robson (1957) and Murthy (1964) suggested product method of estimation. Bhal and 

Tuteja (1991) suggested exponential product type and exponential ratio type estimators 

to estimate unknown mean of the study variable Y, when variable of interest Y and 

auxiliary variable X is negatively or positively correlated. Keeping these facets in 

consideration several authors including  Sukhatme (1962), Cochran (1963), Mohanty 

(1967), Srivastava (1971), Khare and Srivastava (1981), Hidiroglou (2001), Singh and 

Espejo (2003), Samiuddin and Hanif (2007),  Singh and Vishwakarma (2007), Singh et 

al. (2007), Misra et al. (2008), Hanif et al. (2009), Singh et al. (2009), Hanif et al. 

(2010), Singh et al. (2010), Singh and Kumar (2011), Singh and Smarandache(2011), 

Noor-ul-Amin and Hanif (2012), Singh et al. (2012) and Tailor et al. (2012) have 

suggested improved estimators for estimating unknown population mean of study 

variable Y. 
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Let in a finite population U={U1,U2,U3,…,UN) of size N, 
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‘z’ respectively for the sample obtained at second phase of size ‘ 2n ’. We make 

following assumptions:  

• If second phase sample is not independent from the first phase sample. 
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• If the second phase sample is independent of the first phase sample, then the only 

difference is in covariance terms, i.e.           

0)(
12
=zz eeE ,  E(

2ye
1xe ) = 0 ,  E(

2ze
1xe ) = 0.     (1.2) 

2. Some available exponential-type estimators in literature 

In this section some available estimators for the population mean are 

reproduced. 

The variance of the usual unbiased estimator y  under SRSWOR scheme is: 

yCYyVar 22

2)( θ=        (2.1) 

Bahl and Tuteja (1991) suggested exponential ratio-type estimator for single phase 

sampling as: 
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The mean square error of 1t is 
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The two phase version of classical ratio estimator, when the information on population 

mean of  auxiliary variable is known is: 

2

22
x

X
yt =         (2.4) 

The mean square error of the estimator t2 is 
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Singh and Vishwakarma (2007) suggested exponential ratio-type estimator in double 

sampling as: 
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The MSE  of the estimator  3t is 
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Estimator 3t is the modified form of 1t . Singh and Vishwakarma in (2007) has proved 

that the performance of 3t  is better than 1t . 

Singh and Vishwakarma (2007) have also suggested exponential product-type estimator 

for double sampling as: 
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The MSE  of the estimator  t4 is given by: 
























+−+≈ xy

y

x

y

x
y

C

C

C

C
StMSE ρθθθ 4)(

4
)( 122

2

4    (2.9) 

Singh et al. (2008) suggested an exponential ratio-type estimator in double sampling as: 
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The minimum MSE  of the estimator t5 is given by: 
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Singh et al. (2008) also suggested an exponential product-type estimator in double 

sampling as: 

rseddrsddod yqyqyqt 2126 ++=                                   (2.12) 
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The minimum MSE  of the estimator t6 is given by: 
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Note that the minimum MSE of the estimator t6 is equivalent to the minimum MSE of 

the estimator t5. 

Noor-ul-Amin and Hanif (2012) suggested ratio-cum-product type exponential 

estimator for double sampling as: 
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Case-I (when 2
nd

 phase sample is dependent of 1
st
 phase sample) 

The minimum MSE  of the estimator  t7 is given by: 
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Case-II (when 2
nd

 phase sample is independent of 1
st
 phase sample) 

In this case the minimum MSE  of the estimator  t7 is given by: 
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Noor-ul-Amin and Hanif (2012) suggested chain ratio type exponential estimator for 

double sampling as: 
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Case-I (when 2
nd

 phase sample is dependent of 1
st
 phase sample) 

The minimum MSE  of the estimator  t8  is given by: 
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Case-II (when 2
nd

 phase sample is independent of 1
st
 phase sample) 
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3. Proposed estimators 

In this section some new exponential estimators using two auxiliary variables 

have been proposed.  The MSE for the suggested estimators has been derived under the 

following two situations: 

(i) When the second phase sample of size ‘ 2n ’ is dependent on the first phase sample 

of size ‘ 1n ’, i.e. the second phase sample is a sub-sample of the first phase sample. 
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(ii) When the second phase sample of size ‘ 2n
’ is independent from the first phase 

sample of size ‘ 1n
’. 

 

3.1 Exponential Estimator-I 

We propose  estimator-I  denoted by 9t as: 
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122 2
)1(9 xzy e

X

Y
e

Z

Y
eYt αα −+−+≈      (3.2) 

Expanding the right hand side and neglecting the terms of e’s with power two or 

greater, we get 

122 2
)1(9 xzy e

X

Y
e

Z

Y
eYt αα −+−≈−     (3.3) 

Squaring both sides and taking the expectations, we get  

MSE (t9) ≈
2

2

9 122 2
)1()( 








−+−=− xzy e

X

Y
e

Z

Y
eEYtE αα   (3.4) 

On simplification we get the MSE of t9 as: 
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To obtain the optimum value of α, we partially differentiate the expression (3.5) with 

respect to α and put it equal to zero, we get  
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Now, putting the optimum value of α in expression (3.5) we get the min.MSE(t9) as: 

[ ]2
yzzy

2

z

22

y

2

29ˆ9 CCˆ2CˆCY)t(MESE.min)t(MSE ρα−α+θ≈=
α=α






 −+
−

−+ xzzxxyyxx CCCCCY ραρ
α

αθ ˆ)
4

ˆ1
()ˆ1(                                        22

1  



  124                                 Journal of Reliability and Statistical Studies, December 2012, Vol. 5 (2) 

order to derive the bias of 9t , we use expression (3.2) upto 2
nd

 order approximation 
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Taking  expectations and on simplification, the bias of 9t is given by: 
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3.1.1 Case-II (when sample at 2
nd

 phase is independent of the sample at 1
st
 phase) 

Using the notations given in (1.1) and (1.2), 9t may be written as 
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Expanding the right hand side and neglecting the terms with power two or greater, we 
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Expanding the right hand side, taking expectations and on simplification, we get the 
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To obtain the optimum value of α, we partially differentiate the expression (3.13) with 

respect to α and put it equal to zero, we get  
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In order to derive the bias of 9t , we use expression  (3.2) upto 2
nd

 order of 

approximation and we get 
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Taking expectations and on simplification, the bias of 9t is given by 
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3.2 Family of Deduced Class of Estimators of t9 
A number of estimators can be deduced as a family of deduced estimators of t9 on 

setting different values of α.  
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3.2.1.1 Case-I (when sample at 2
nd

 phase is dependent of the sample at 1
st
 phase) 
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3.2.1.2 Case-II (when sample at 2
nd

 phase is independent of the sample at 1
st
 

phase) 
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Remark 3.2.2 

On setting the values of α = yzρ in (3.1) we get another estimator t11 as follows 
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3.2.2.1 Case-I (when sample at 2
nd

 phase is dependent of the sample at 1
st
 phase) 
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3.2.2.2 Case-II (when sample at 2
nd

 phase is independent of the sample at 1
st
 

phase) 
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Remark 3.2.3 

On setting the values of α = zxρ in (3.1) we  deduce an estimator t12 as follows 
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3.2.3.1 Case-I (when sample at 2
nd

 phase is dependent of the sample at 1
st
 phase) 
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3.2.3.2 Case-II (when sample at 2
nd

 phase is independent of the sample at 1
st
 

phase) 
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Two more estimators are deduced as follows: 
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3.5 Exponential Estimator-V 
We propose another improved estimator-V as: 
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3.5.1 Case-I (when sample at 2
nd

 phase is dependent of the sample at 1
st
 phase) 

Expressing (3.33) in terms of e’s, we have 
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of 15t as: 









+−−++=

244
)(

22
22

215
xzzx

xyyxyzzy
xz

y

CC
CCCC

CC
CYtMSE

ρ
ρρθ  (3.37) 

In order to derive the bias of 15t , we again (3.35) upto 2
nd

 order approximation and we 
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Taking expectations, and on simplification, the bias of 15t is given by 
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  (3.40) 

3.5.2 Case-II (when sample at 2
nd

 phase is independent of the sample at 1
st
 phase) 

Using the notations given in (1.1) and (1.2), 15t may be written as 

222 22
15 xzy e

X

Y
e

Z

Y
eYt −−+≈      (3.41) 

Expanding the right hand side and neglecting the terms of e’s with power two or 

greater, we get 
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Squaring both sides and taking the expectations, we get  

MSE ( 15t ) ≈
2
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Expanding the right hand side, applying expectation and on simplification we get MSE 

of 15t  
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MSE( 15t ) is similar for both samples (dependent and independent). 

In order to derive the bias of 15t , from (3. 41), we get 
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Or 
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Taking expectations and on simplification, the bias of 15t is written as: 
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4. Empirical study 

In order to examine the performance of proposed estimators, we have taken the 

populations of three different districts of Punjab, from the population census report 

(1998). The comparison of proposed estimators with respect to usual unbiased estimator

y , classical ratio estimator, Noor-ul-Amin and Hanif (2012), Singh et al. (2008), and 

Singh and Vishvakarma (2007) estimators have been made. The description of 

populations is given below: 

 

Population I (Lodhran): 

1θ = 0.006, 2θ = 0.041, Y = 300.517, X  = 2373.697, Z =149.09, 
xC =1.076, yC

=1.097, 
zC =1.331, xyρ =0.814, yzρ =0.891, 

xzρ =0.861 

 

Population II (Multan): 

1θ = 0.009, 2θ = 0.033, Y = 646.215, X  = 4533.981, Z =325.035, 
xC =1.342, yC

=1.509, 
zC =1.335, xyρ =0.623, yzρ =0.907, 

xzρ =0.682 

 

Population III (Muzaffargarh): 

1θ = 0.004, 2θ = 0.028, Y = 279, X  = 2411, Z =145, 
xC =0.968, yC =1.5, 

zC

=1.62, xyρ =0.641, yzρ =0.839, 
xzρ =0.673 

 
  Case-I  

(Dependent Sample) 

 Case-II 

(Independent Sample) 

 

Population # 

 

Population # 

 

Estimator 

 

1 

 

2 

 

3 

 

1 

 

2 

 

3 

Proposed Estimator : 

9t  
473.41 563.83 334.84 306.13 563.75 527.73 

Proposed Estimator: 

10t    
406.28 433.27 335.10 305.60 447.82 443.89 

Proposed Estimator: 

11t  
371.06 548.89 313.91 285.05 550.58 406.28 

Proposed Estimator: 

12t  
384.85 464.32 333.88 304.13 475.96 420.95 

Proposed Estimator: 

15t  
414.24 327.63 322.10 292.67 327.63 455.90 
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Classical Ratio 

Estimator 1t  
273.79 146.46 169.74 273.79 146.46 169.74 

Singh  & 

Vishwakarma(2007) 

3t  

31.45 134.98 136.11 128.82 143.35 230.58 

Singh et al. (2008) 5t  35.43 139.33 154.36 * * * 

Noor-ul-Amin and 

Hanif (2012) 7t  
31.69 190.43 234.77 226.96 223.62 341.61 

Noor-ul-Amin and 

Hanif (2012) 8t  
47.33 270.82 266.84 226.96 223.62 341.61 

* Data not applicable 

             Table 4.1: Percent relative efficiencies of estimators with respect to y  
 

5. Conclusion 
Table 4.1 clearly indicates that the class of suggested estimators is more efficient than 

classical ratio estimator, Singh and Vishwakarma (2007), Singh et al. (2008) and Noor-

ul-Amin and Hanif (2012) estimators. It is also observed that among the class of 

suggested estimators, t9 performs more efficiently in both of the cases. It is further 

observed that in Case-II the performance of the suggested estimators is better than in 

Case-I except for population-I. It is also concluded that deduced estimators t10, t11 and  

t12 could be preferred over suggested estimator t9 when the estimation of α is not 

possible in practice. 
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