A COMPARATIVE STATISTICAL ANALYSIS OF RICE CULTIVARS DATA

Mugemangango Cyprien¹ and Vinod Kumar²

 ¹Basic Sciences Department, Faculty of Agricultural Engineering and Environmental Sciences, High Institute of Agricultural and Animal Husbandry (ISAE) - BUSOGO, Musanze, Northern Province, Republic of Rwanda
 ² Department of Maths, Stats and Comp. Sc., G.B. Pant University of Agriculture and Technology, Pantnagar, India E Mail: ¹mucypro2@yahoo.fr; ²vinod_kumarbcb@yahoo.com

(Received January, 2012)

Abstract

In this paper, rice cultivars data have been analysed by three different statistical techniques viz. Split-plot analysis in RBD, two-factor factorial analysis in RBD and analysis of two-way classified data with several observations per cell. The powers of the tests under different methods of analysis have been calculated. The method of two-way classified data with several observations per cell is found better followed by two-factor factorial technique in RBD and split plot analysis for analyzing the given data.

Key words: Rice Cultivars Data, Nitrogen Response Trials, Split-plot, Sub-plot, Grain Yield, Panicle Number, Panicle Weight, 1000 Grain Weight, Days of 50% Flowering and Seed to Seed Days.

1. Introduction

Research and projects on rice have been carried out for many years in order to increase the yield productivity by choosing the suited variety for cultivation as well as for consumption. In carrying out such research, many statistical methods have been used for taking the right decision. Experimentation is the backbone of research in agricultural systems. Whenever we want to ascertain the validity of any assertion, we need to generate data and then on the basis of data generated we draw valid conclusions. Thus, any experimentation has two major components, viz. designing the experiment (or the way of generating the data) and the analysis of data generated to draw meaningful and valid conclusions.

The design should be cost effective keeping in view the scarce and expensive resources. The design should be such that it provides precise estimates of the comparisons of interest to the experimenter. The design should be able to absorb various shocks like loss of data, presence of outliers, interchange and/or exchange of treatments, model inadequacy etc., besides providing as small an experimental error as possible or in other words as small a C.V. value as possible.

Split plot designs are particularly useful when there are one (or more) classification factors that are included in the experiment to see if they modify the action

of the other factor or indicate how the other factors work. They are included primarily to examine their possible interaction with the other factors. Lower precision is accepted for comparisons of the classification factors, in order that the precision of the other factors and their interactions can be increased. In the terminology associated with split plot experiments, the classification factors are called the whole plot factors, and they are arranged to be at the same level for all subplots within any one whole plot. Cox (1958) recommended that split-plot experiment should only be used if there is a suitable classification factor for which the main effects are not of major interest, when it is convenient to arrange the experiment with a particular factor constant within each whole plot or if the number of treatment combinations exceeds the number that can be accommodated in a block of reasonably homogeneous subplots.

Factorial experiments are experiments that investigate the effects of two or more factors or input parameters on the output response of a process. Factorial experiment design, or simply factorial design, is a systematic method for formulating the steps needed to successfully implement a factorial experiment. It can be used in CRD, RBD or LSD.

The analysis of variance is closely related to experimental designs; it is one of the most important methods for the analysis of data in experimental sciences. If data from experiment are classified with one factor namely treatment then one way analysis of variance is used and if data are in two-way classification, then two-way analysis of variance is performed.

A number of studies are carried out on rice cultivars data which include Hasegawa et al. (1991), Noureldin (2000), Patra and Biswas (2009), Rajarathinam (2010), Zhao et al. (2010) and Cyprien and Kumar (2011).

2. Materials and Methods

The present study was carried out to have a comparative statistical analysis of rice cultivars data obtained as the outcome of two nitrogen response trials on selected advanced varietal trial-2 Basmati Type (AVT-2BT) and Irrigated Medium (AVT-IM) rice cultures under high and low input management, carried out at experimental area of the Department of Agronomy, College of Agriculture situated at Crop Research Centre (CRC) of G.B Pant University of Agriculture & Technology, Pantnagar during Kharif season 2010. The experiment was conducted in split plot design and the data generated by Nitrogen response trials on AVT-2(BT) and AVT-2(IM) were recorded. We have information on three nitrogen levels, a number of varieties with respect to grain yield (kg/plot), panicle no./sq.m., panicle weight (g), 1000 grain weight (g), days of 50% flowering and seed to seed days. The data are shown in the Appendix.

3. Statistical techniques used for data analysis

3.1 Split-Plot Design in RBD

The mathematical model for split plot design in randomized block design is $Y_{ijk}=\mu+r_i+m_j+C_{ij}+s_k+ms_{jk}+e_{ijk}$, i=1,2,...,r; j=1,2,...,r; k=1,2,...,s (1)

In which \mathcal{C}_{ij} 's are normally and independently distributed with mean zero and variance σ_w^2 and the e_{ijk} 's are normally and independently distributed with mean zero and variance σ_s^2 . In that case, we have $\sigma^2 = \sigma_s^2 + s \sigma_w^2$. Here, Y_{ijk} is the observation of ith replication, jth main plot and kth sub-plot, μ is the overall mean, r_i is the ith replication effect, m_j is the jth main treatment effect, C_{ij} is the main plot error (a), s_k is the kth sub-plot treatment effect, $(ms)_{jk}$ is the interaction effect and e_{ijk} is the error component for sub-plot and interaction [error(b)] and r, m and s are the number of replications, levels of main-plot treatments (A) and sub-plot treatments (B) respectively. Table 1 shows the ANOVA Table for the abovesaid model.

Source of variation	d.f.	SS	MS	F-ratio
Replication	r-1	SS _R	$MS_R = \frac{SS_R}{r-1}$	
А	m-1	SS _A	$MS_A = \frac{SS_A}{m-1}$	$F_A = \frac{MS_A}{MS_{Ea}}$
Error(a)	(r-1)(m-1)	SS_{Ea}	$MS_{Ea} = \frac{SS_{Aa}}{(r-1)(m-1)}$	
В	s-1	SS _B	$MS_B = \frac{SS_B}{s-1}$	$F_B = \frac{MS_B}{MS_{Eb}}$
A×B	(m-1)(s-1)	SS _{AB}	$MS_{AB} = \frac{SS_{AB}}{(a-1)(s-1)}$	$F_{AB} = \frac{MS_{AB}}{MS_{Eb}}$
Error(b)	m(r-1)(s-1)	SS _{Eb}	$MS_{Eb} = \frac{SS_{Eb}}{m(r-1)(s-1)}$	
Total	rms-1	SS _{Tot}		

Table 1	: ANOVA	Table for	Split-plot	Design in	n RBD

Here, Total Sum of Squares =
$$SS_{Tot} = \sum_{i,j,k} y_{ijk}^2 - \frac{Y^2}{rms}$$

Replicate Sum of Squares = $SS_R = \sum_i \frac{Y^2_{i..}}{ms} - \frac{Y^2_{...}}{rms}$
Main Plot Treatment Sum of Squares = $SS_A = \sum_j \frac{Y^2_{.j.}}{rs} - \frac{Y^2_{...}}{rms}$
Error (*a*) Sum of Squares = $SS_{Ea} = \sum_{i,j} \frac{Y^2_{ij.}}{s} - \sum_i \frac{Y^2_{...}}{ms} - \sum_j \frac{Y^2_{...}}{rs} + \frac{Y^2_{...}}{rms}$
Sub plot Treatment Sum of Squares = $SS_B = \sum_k \frac{Y^2_{...}}{rms} - \frac{Y^2_{...}}{rms}$

Main plot x sub plot Treatment Sum of Squares =

$$SS_{AB} = \sum_{j,k} \frac{Y^{2}_{.jk}}{r} - \sum_{j} \frac{Y^{2}_{.j.}}{rs} - \sum_{k} \frac{Y^{2}_{..k}}{rm} + \frac{Y^{2}_{..k}}{rms}$$

Error (b) Sum of Squares = $SS_{Eb} = SS_{Tot} - (SS_{R} + SS_{A} + SS_{Ea} + SS_{B} + SS_{AB})$
 $Y_{...} = \sum_{i,l,k} y_{ijk}, \qquad Y_{i...} = \sum_{i,k} y_{ijk}, \quad Y_{.j.} = \sum_{i,k} y_{ijk} \text{ and } Y_{..k} = \sum_{i,l} y_{ijk}$

If F-ratio for the A, B or A×B is larger than the corresponding F-values obtained from the statistical tables at a level of significance α , then the corresponding effect (main or interaction) is significant otherwise it is insignificant. Further, since in split-plot analysis, sub-plot treatments are tested with a higher degree of precision than the main-plot treatments, hence, a pair-wise comparison of sub-plot treatments may be made by using Duncan's Multiple Range Tests (DMRT). DMRT method is as follows; We calculate following quantities $D_p=d_p\times SE_M$, p=2,3,...,s;

where standard error of mean $SE_M = \sqrt{\frac{MS_{Eb}}{r}}$ and d_2 , d_3 ,...., d_s are table values of Duncan test corresponding to error degree of freedom.

Having obtained D_p values, we arrange treatment means in increasing order of magnitude. Let it be as given bellow;

 $\overline{y_1}, \overline{y_2}, \overline{y_3}, \dots, \overline{y_s}$ where $\overline{y_1}$ denotes the smallest mean and $\overline{y_s}$ the highest mean. Calculate $\overline{y_s} - \overline{y_1}$ and compare it with D_s.

If $(\overline{y_s} - \overline{y_1}) > D_s$, means are said to be heterogeneous (not equal to each other). Therefore divide the treatment means into two groups, first containing $\overline{y_1}$, $\overline{y_2}$, $\overline{y_3}$,, $\overline{y_{s-1}}$, and second containing, $\overline{y_2}$, $\overline{y_3}$, $\overline{y_s}$ Compare difference between highest and smallest with D_{s-1} in both the groups. If the difference is less than D_{s-1} , the groups of treatment means is said to be homogeneous. If the difference is more than D_{s-1} , divide the group into 2, both containing (s-2) treatments means. In each group, difference between highest and lowest will be compared with D_{s-2} . Continue in this manner till all treatments are covered or when all sub groups are found to be homogeneous. Present the result by using either the line notation or alphabet notation to indicate which treatments are at par and which are significantly different. The SAS program for calculations is given below:

SAS Program

proc ANOVA; class Replication A B; model Response = Replication A Replication*A B A*B; test h=A e=Replication*A; means treatment/DUNCAN; run;

We can also find the coefficient of variation (C.V.) for the main-plot and subplot treatments (or interaction) by using

C.V. (Main-plot) =
$$\frac{\sqrt{MS_{Ea}}}{over \ all \ mean} X \ 100$$

C.V. (Sub-plot or interaction) = . = $\frac{\sqrt{MS_{Eb}}}{over \ all \ mean} X \ 100$ (2)

3.2 Two-factor factorial experiment analysis in RBD

The mathematical model for an experiment having two factors A and B with a and b levels respectively and conducted in RBD is given by

$$Y_{ijk=\mu} + \gamma_i + a_j + b_k + (ab)_{jk} + e_{ijk}$$

i=1,2,...,r; j=1,2,...,a; k=1,2,...,b (3)

In which e_{ijk} 's are normally and independently distributed with mean zero and variance σ^2 . Here, Y_{ijk} is the observation of ith replication, jth main plot and kth sub-plot, μ is the overall mean, γ_i is the ith replication effect, α_j is the jth level of factor A effect, b_k is the kth level of factor B effect, $(\alpha b)_{jk}$ is the interaction effect and e_{ijk} is the error component and r, a and b are the number of replications, levels of factor A and factor B respectively. Table 2 shows the ANOVA Table for the abovesaid model.

Source of variation	d.f.	SS	MS	F-ratio
Replication	r-1	SS _R	$MS_R = \frac{SS_R}{r-1}$	$F_R = \frac{MS_R}{MS_E}$
А	a-1	SS _A	$MS_A = \frac{SS_A}{a-1}$	$F_A = \frac{MS_A}{MS_E}$
В	b-1	SS _B	$MS_B = \frac{SS_B}{b-1}$	$F_B = \frac{MS_B}{MS_E}$
A×B	(a-1)(b-1)	SS _{AB}	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_{AB} = \frac{MS_{AB}}{MS_E}$
Error	ab(r-1)	SS_E	$MS_E = \frac{SS_E}{ab(r-1)}$	
Total	rab-1	SS _{Tot}		

 Table 2 : ANOVA Table for Two-factor Factorial Experiment in RBD

 Here;

Total Sum of Squares = $SS_{Tot} = \sum_{i,j,k} y_{ijk}^2 - \frac{Y^2}{rab}$ Replicate Sum of Squares = $SS_R = \sum_{i,j} \frac{Y_{i..}^2}{ab} - \frac{Y^2}{rab}$ Sum of Squares due to factor A = $SS_A = \sum_j \frac{Y_{.j.}^2}{rb} - \frac{Y^2}{rab}$ Sum of Squares due to factor B = $SS_B = \sum_k \frac{Y_{.k}^2}{ra} - \frac{Y^2}{rab}$

Sum of Squares due to factor AxB = $SS_{AB} = \sum_{j,k} \frac{Y_{.jk}^2}{r} - \sum_j \frac{Y_{.j.}^2}{rb} - \sum_k \frac{Y_{..k}^2}{ra} + \frac{Y^2}{rab}$ Sum of Squares due to Error = $SS_E = SS_{Tot} - SS_R - SS_A - SS_B - SS_{AB}$

If F-ratio for the A, B or $A \times B$ is larger than the corresponding F-values obtained from the statistical tables at a level of significance α , then the corresponding effect (main or interaction) is significant otherwise it is insignificant. It should be noted here that in split-plot analysis, sub-plot treatments are tested with a higher degree of precision than the main-plot treatments, whereas all effects (main or interaction) are tested with equal precisions in a factorial experiment.

SAS Program

proc anova data; class Replication A B; model Response = Replication A|B; run;

We can also find the coefficient of variation (C.V.) for the factors A or B or AxB by using

$$C.V. = \frac{\sqrt{MS_E}}{over \ all \ mean} x100 \tag{4}$$

3.3 Analysis of two-way classified data with m observations per cell

The mathematical model is given by

$$Y_{ijk} = \mu + a_j + b_k + (ab)_{jk} + e_{ijk}$$

i=1, 2, 3...m; j=1, 2, 3...a and k=1, 2, 3...b (5)

Where Y_{ijk} is the ith observation corresponding to jth level of factor A and kth level of factor B, μ is the general mean effect, α_{j} is the effect of jth level of factor A, b_{k} is the effect of kth level of factor B, $(ab)_{jk}$ is the interaction effect and e_{ijk} is the error effect due to chance such that e_{ijk} are independently normally distributed with means 0 and variance σ^2_{e} . ANOVA Table for this model is given in Table 3.

Source of variation	d.f.	Sum of Squares (SS)	Mean Square (MS)	F
Factor A	a-1	SS _A	$MS_A = \frac{SS_A}{a-1}$	$F_A = \frac{MS_A}{MS_E}$
Factor B	b-1	SS _B	$MS_B = \frac{SS_B}{b-1}$	$F_B = \frac{MS_B}{MS_E}$

Interaction A×B	(a-1)(b-1)	SS _{AB}	$=\frac{SS_{AB}}{(a-1)(b-1)}$	$F_{AB} = \frac{MS_{AB}}{MS_E}$
Error	ab(m-1)	SS _E	$MS_E = \frac{SS_E}{ab(m-1)}$	
Total	abm-1	SS _{Tot}		

Here; Total Sum of Squares = $SS_{Tot} = \sum_{i,j,k} y_{ijk}^2 - \frac{Y^2}{mab}$ Sum of Squares due to factor $A = SS_A = \sum_j \frac{Y_{.j.}^2}{mb} - \frac{Y^2}{mab}$ Sum of Squares due to factor $B = SS_B = \sum_k \frac{Y_{..k}^2}{ma} - \frac{Y^2}{mab}$ Sum of Squares due to factor $AxB = SS_{AB} = \sum_{j,k} \frac{Y_{..jk}^2}{m} - \sum_j \frac{Y_{..k}^2}{mb} - \sum_k \frac{Y_{..k}^2}{ma} + \frac{Y^2}{mab}$ Sum of Squares due to Error = $SS_E = SS_{Tot} - SS_A - SS_B - SS_{AB}$

If F-ratio for the A, B or $A \times B$ is larger than the corresponding F-values obtained from the statistical tables at a level of significance α , then the corresponding effect (main or interaction) is significant otherwise it is insignificant. In this case, all effects (main or interaction) are tested with equal precisions.

SAS program

proc anova ; class Replication A B; model Response = A|B; run;

In this case too, we can find the coefficient of variation (C.V.) for the factors A or B or $A \times B$ by using

$$C.V. = \frac{\sqrt{MS_E}}{over all mean} x100$$
(6)

3.4 Power of the test

The frequency function of F' has not been extensively tabulated, but P.C Tang has compiled tables that can be used to evaluate $\int_{0}^{F_{a}} f(F') dF'$ for certain values of

 $\alpha.$ These tables are not given explicitly in terms of ${\it F}$ ' , but in terms of ${\it E}$ 2 ,

Where
$$E^2 = \frac{pF}{(q + pF')}$$
; p and q being the degrees of freedom for F'

The tables calculated by P.C Tang allow us to obtain $\beta(\lambda)$ for various values of p, q, λ (λ being non-centrality parameter of F' and for α =0.05 and 0.01.

Tang evaluated the integral

$$P(II) = 1 - \beta(\phi) = \int_{0}^{E_{a}^{2}} g(E^{2}, p, q, \phi) dE^{2}$$
(7)

Instead of using the non centrality parameter λ , Tang used the parameter ϕ , where

$$\phi = \sqrt{\frac{2\,\lambda}{p+1}}$$

The procedure for computing the power $\beta(\lambda)$ for a given λ is as follows (p and q will be given):

- 1. Choose the probability of type I error; that is, set α =0.05 and α =0.01.
- 2. Find E_{α}^2 from the Tang tables.
- 3. Compute $\phi = \sqrt{\frac{2\lambda}{p+1}}$.
- 4. Find p(II) for the appropriate values of p, q and ϕ .
- 5. Then $\beta(\lambda) = 1$ -P(II)

3.5 Analysis of Data 3.5.1 Split plot ANOVA

The two sets of data were analyzed by split-plot ANOVA technique by considering the nitrogen levels as main-plot treatments and varieties as sub-plot treatments and the significance of Nitrogen levels, Varieties and their interaction was tested by using SAS software. Proc ANOVA of SAS was used to display the results. Table 4 shows the results of ANOVA of split plot design for grain yield (kg/plot) in AVT-2 (BT) trial.

Class Level Information for AVT-2(BT) trial

Class: Replication, N (nitrogen levels) and V (varieties) Levels: 3 (for replication), 3 (three nitrogen levels) and 5 (number of varieties) Number of observations read: 45 Number of observations used: 45 Dependent variable: Grain yield

Source of variation	d.f.	Sum of Squares	Mean square	F Value	Pr > F
Model	20	1.19294667	0.05964733	11.30	< 0.0001
Error	24	0.12665333	0.00527722		
Corrected Total	44	1.31960000			

R-Square	Coeff . Var.	Root MSE	Yield Mean
0.904021	6.985047	0.072644	1.040000

Source of variation	d.f.	ANOVA SS	Mean square	F Value	Pr > F
Replication	2	0.04521333	0.02260667	4.28	0.0257
Ν	2	0.08764000	0.04382000	8.30	0.0018
Replication*N	4	0.06906667	0.01726667	3.27	0.0282
V	4	0.93104444	0.23276111	44.11	< 0.0001
N*V	8	0.05998222	0.00749778	1.42	0.2384

Tests of hypotheses	using the	ANOVA MS	for replication	a*N as an Er	ror Term

Source of variation	d.f.	ANOVA SS	Mean square	F Value	Pr >F
Ν	2	0.08764000	0.04382000	2.54	0.1943

Table 4: ANOVA of split plot design for AVT-2 (BT) trial

By comparing the probabilities [Pr>F] obtained for each effect with α =0.01 or α =0.05, the ANOVA model is found to be highly significant and the proportion of variability in the grain yield explained by the model is 0.904 (90.4%). The nitrogen effect is not significant [(Pr>F) =0.1943]. Varieties effect is found to be highly significant, whereas, the interaction effect between nitrogen levels and varieties is found to be insignificant. Duncan Multiple Range Test (DMRT) was performed for comparison of varietal means and the results are given in Table 5.

Alpha (α)	0.05
Error degrees of freedom	24
Error mean square	0.005277

Number of Means	2	3	4	5
Critical Range	.07068	.07423	.07652	.07813

Duncan Grouping	Mean	Ν	Variety S. No.
А	1.20444	9	3
А	1.17000	9	5
В	1.03778	9	1
В	0.98556	9	2
С	0.80222	9	4

Means with the same letter are not significantly different.

Table 5: Duncan's Multiple Range Test for grain yield means in AVT-2(BT) trial

NOTE: This test controls the Type I comparison-wise error rate, not the experimentwise error rate.

The Table 5 reveals that the grain yield means of all varietal pairs except 3 & 5 (Pusa Basmati1 and Pant S Dhan- 17) and 1 & 2 (IET 20827 and IET 20847) are significantly different. The highest mean yield is observed for variety 1 (Pusa Basmati1) and lowest for variety 4 (Taroari Basmati). Table 6 reveals the results of ANOVA of split plot design for AVT-2 (IM) trial.

Class Level Information for AVT-2 (IM) trial

Class: Replication, N (nitrogen levels) and V (varieties) Levels:3 (number replications), 3 (three nitrogen levels) and 12 (number of varieties) Number of observations read: 108 Number of observations used: 108 Dependent variable: Grain yield

Source of variation	d.f.	Sum of Squares	Mean square	F Value	Pr > F
Model	41	3.14164907	0.07662559	3.98	< 0.0001
Error	66	1.27129444	0.01926204		
Corrected Total	107	4.41294352			

R-Square	Coeff. Var.	Root MSE	Yield Mean	
0.711917	8.932171	0.138788	1.553796	

Source of variation	d.f.	ANOVA SS	Mean Square	F Value	Pr >F
Replication	2	0.27036852	0.13518426	7.02	0.0017
N	2	1.30856296	0.65428148	33.97	< 0.0001
Replication*N	4	0.23273704	0.05818426	3.02	0.0238
V	11	1.00154352	0.09104941	4.73	< 0.0001
N*V	22	0.32843704	0.01492896	0.78	0.7432

Tests of hypotheses	using the	ANOVA MS	for Replication	on*N as an	Error Term

Source of variation	d.f.	ANOVA SS	Mean square	F Value	Pr > F
N	2	1 30856296	0 65428148	11 24	0.0228

Table 6: ANOVA of split plot design for AVT-2 (IM) trial

Table 6 reveals that the model is highly significant and proportion of variability in grain yield explained by the model is 0.712 (71.2%). The nitrogen effect is significant at 5% level of significance [(Pr>F)=0.0228], varieties are highly significant, whereas, the interaction effect between nitrogen levels and varieties is insignificant. Duncan Multiple Range Test (DMRT) was performed for comparison of varietal means and the results are given in Table 7.

Alpha (α)	0.05
Error degrees of freedom	66
Error mean square	0.019262

Number of Means	Critical Range	Number of Means	Critical Range
2	0.1306	8	0.1514
3	0.1374	9	0.1528
4	0.1419	10	0.1540
5	0.1452	11	0.1551
6	0.1477	12	0.1560
7	0.1497		

Duncan Grouping		Mean	Ν	Variety S. No.		
		А		1.77000	9	12
В		А		1.68889	9	6
В		С		1.59889	9	1
В		С	D	1.57556	9	10
В		С	D	1.57333	9	4

В	Е	С	D	1.55222	9	3
В	Е	С	D	1.54889	9	8
	Е	С	D	1.52000	9	9
	Е	С	D	1.48111	9	5
	Е	С	D	1.47556	9	7
	Е		D	1.44556	9	2
	Е			1.41556	9	11

Means with the same letter are not significantly different.

Table 7: Duncan's Multiple Range Test for grain yield means in AVT-2 (IM) trial

Table 7 reveals that means of varieties 12 & 6 (Local-PD-18 and IET20735), varieties 6, 1, 10, 4, 3 & 8 (IET20735, IET20926, KRH-2, IET20937, IET20934 and IET20734), varieties 3, 8, 9, 5, 7, 2 & 11 (IET20934, IET20734, Jaya, IET20944, IET20744, IET20930 and Narendra359), varieties 1, 10, 4, 3, 8, 9, 5 & 7 (IET20926, KRH-2, IET20937, IET20934, IET20734, Jaya, IET20944 and IET20744) and varieties 10, 4, 3, 8, 9, 5 & 7 (KRH-2, IET20937, IET20937, IET20937, IET20934, IET20934, IET20734, Jaya, IET20944 and IET20744) are not significantly different, when considered together. All other comparisons are significantly different. The largest mean yield is observed for variety 12 (Local-PD-18), whereas lowest mean yield for variety 11 (Narendra359).

3.5.2 Two-factor factorial experiment ANOVA

The ANOVA for two-factor factorial RBD was performed for testing the significance of nitrogen levels, varieties and their interaction. Proc ANOVA of SAS was used to calculate and to display the results. The Table 8 shows the results of ANOVA of 3×5 factorial experiment in Randomized Block Design (RBD) with 3 replications for AVT-2 (BT) trial.

Class Level Information for AVT-2 (BT) trial

Class: Replication, N (nitrogen levels) and V (varieties) Levels: 3 (for replication), 3 (three nitrogen levels N1=50kg, N2=100kg and N3=150kg) and 5 (number of varieties which are: IET 20827, IET 20847, Pusa Basmati 1, Taroari Basmati, and Pant S Dhan-17) Number of observations read: 45

Number of observations used: 45

Source of	d.f.	Sum of	Mean square	F Value	Pr > F
variation		Squares			
Model	16	1.12388000	0.07024250	10.05	< 0.0001
Error	28	0.19572000	0.00699000		
Corrected	44	1.31960000			
Total					

R-Square	Coeff. Var.	Root MSE	Yield Mean
0.851682	8.039060	0.083606	1.040000

Source of	d.f.	ANOVA SS	Mean square	F Value	Pr > F
variation					
Replication	2	0.04521333	0.02260667	3.23	0.0545
Ν	2	0.08764000	0.04382000	6.27	0.0056
V	4	0.93104444	0.23276111	33.30	< 0.0001
N*V	8	0.05998222	0.00749778	1.07	0.4097

Table 8: ANOVA of two factor factorial in RBD for AVT-2 (BT) trial

The results exhibit that the model is highly significant and the proportion of variability in grain yield explained by the model is 0.851 (85.1%). Nitrogen levels as well as varieties are found to have highly significant effects on grain yield. However, no significant effect of interaction between nitrogen levels and varieties is found. Similar results were obtained by split-plot analysis, although the proportion of variability in grain yield explained by the former model is a bit higher. The Table 9 shows the results of ANOVA of 3×12 factorial experiment in RBD with 3 replications for AVT-2 (IM) trial.

Class Level Information for AVT-2(IM) trial

Class: Replication, N (nitrogen levels) and V (varieties) Levels: 3 (for replication), 3 (three nitrogen levels N_1 =60kg, N_2 =120kg and N_3 =180kg) and 12 (number of different varieties used in AVT-2(IM)) Number of observations read: 108 Number of observations used: 108

Source of	d.f.	Sum of	Mean square	F Value	Pr > F
variation		Squares			
Model	37	2.90891204	0.07861924	3.66	< 0.0001
Error	70	1.50403148	0.02148616		
Corrected	107	4.41294352			
Total					

R-Square	Coeff. Var.	Root MSE	Yield Mean
0.659177	9.433772	0.146582	1.553796

Source of variation	d.f	ANOVA SS	Mean square	F Value	Pr > F			
Replication	2	0.27036852	0.13518426	6.29	0.0031			
Ν	2	1.30856296	0.65428148	30.45	< 0.0001			
V	11	1.00154352	0.09104941	4.24	< 0.0001			
N*V	22	0.32843704	0.01492896	0.69	0.8296			
Tabla	Table 0. ANOVA of two factor factorial in DDD for AVT 2 (IM)							

 Table 9: ANOVA of two factor factorial in RBD for AVT-2 (IM)

It is concluded from Table 9 that the model used as well as nitrogen effect, varieties are highly significant, however, the interaction between nitrogen levels and varieties is insignificant. The proportion of variability in grain yield explained by the model is 0.659 (65.9%).

3.5.3 ANOVA for two-way classified data with several observations per cell

The ANOVA was performed by considering the number of replications as the number of observations in each cell (m=3) for testing the significance of nitrogen levels, varieties and their interaction. Proc ANOVA of SAS was used to analyze and to display the results. The results are displayed in Tables 10 and 11 respectively for the two trails.

Source of variation	d.f.	Sum of Squares	Mean square	F Value	Pr > F
Model	14	1.07866667	0.07704762	9.59	< 0.0001
Error	30	0.24093333	0.00803111		
Corrected Total	44	1.31960000			

R-Square	Coeff. Var.	Root MSE	Yield Mean
0.817419	7.616968	0.089616	1.040000

Source of variation	d.f.	ANOVA SS	Mean square	F Value	Pr > F
Ν	2	0.08764000	0.04382000	5.46	0.0095
V	4	0.93104444	0.23276111	28.98	< 0.0001
N*V	8	0.05998222	0.00749778	0.93	0.5039

Table 10: ANOVA for two-way classified data with several (m) observations per Cell for AVT-2 (BT) trial

For this trial, the model is found to be highly significant. Nitrogen levels as well varieties are found to have significant effects on grain yield whereas interaction between nitrogen levels and varieties is found to be insignificant. The proportion of variability in grain yield explained by the model is 0.817 (81.7%).

Source of variation	d.f.	Sum of Squares	Mean square	F Value	Pr > F
Model	35	2.63854352	0.07538696	3.06	< 0.0001
Error	72	1.77440000	0.02464444		
Corrected Total	107	4.41294352			

R-Square	Coeff. Var.	Root MSE	Yield Mean
0.597910	10.10335	0.156985	1.553796

Source of variation	d.f.	ANOVA SS	Mean square	F Value	Pr >F
Ν	2	1.30856296	0.65428148	26.55	< 0.0001
V	11	1.00154352	0.09104941	3.69	0.0003
N*V	22	0.32843704	0.01492896	0.61	0.9064

 Table 11: ANOVA for two-way classified data with several (m) observations per

 Cell for AVT-2 (IM) trial

156

For this trial, the model is found to be highly significant. Nitrogen levels as well varieties are found to have significant effects on grain yield whereas interaction between nitrogen levels and varieties is found to be insignificant. The proportion of variability in grain yield explained by the model is 0.598 (59.8%).

3.6 Comparison of the three methods

For comparison of the three methods, we have calculated the powers of the tests under these methods at various values of the non-centrality parameters under the alternative hypotheses. Considering the probability of type I error α =0.05, the value of E_{α}^{2} are obtained from Tang tables corresponding to the degrees of freedom n₁ for numerator and n₂ for denominator of F statistic. The values of ϕ and P (II) (probability of second type error) and the power of the test β (λ) have been computed and are given in Table 12, 13 and 14 respectively under the three methods.

Effect	р	q	E_{α}^{2}	Λ	$\phi = \sqrt{\frac{2\lambda}{p+1}}$	P (II)	β (λ)
N	2	4	.776	1.5	1	0.824	0.176
				3.375	1.5	0.661	0.339
				6	2	0.460	0.540
				9.375	2.5	0.272	0.728
				13.5	3	0.135	0.865
V	4	24	.316	2.5	1	0.670	0.330
				5.625	1.5	0.322	0.678
				10	2	0.080	0.920
				15.625	2.5	0.009	0.991
N*V	8	24	.440	4.5	1	0.600	0.400
				10.125	1.5	0.201	0.799
				18	2	0.024	0.976
				28.125	2.5	0.001	0.999

Table 12: Power of the test under split plot analysis

Effect	р	q	E_{α}^{2}	Λ	$\phi = \sqrt{\frac{2\lambda}{p+1}}$	P (II)	β (λ)
N	2	28	0.193	1.5	1	0.708	0.292
				3.375	1.5	0.411	0.589
				6	2	0.155	0.845
				9.375	2.5	0.035	0.965
				13.5	3	0.005	0.995
V	4	28	0.279	2.5	1	0.661	0.339
				5.625	1.5	0.309	0.691
				10	2	0.072	0.928
				15.625	2.5	0.008	0.992
N*V	8	28	0.396	4.5	1	0.584	0.416
				10.125	1.5	0.182	0.818
				18	2	0.019	0.981
				28.125	2.5		_

Table 13: Power of the test under two-factor factorial analysis in RBD

Effect	р	q	E_{α}^{2}	Λ	$\phi = \sqrt{\frac{2\lambda}{p+1}}$	P (II)	β (λ)
N	2	30	0.181	1.5	1	0.706	0.294
				3.375	1.5	0.408	0.592
				6	2	0.153	0.847
				9.375	2.5	0.034	0.966
				13.5	3	0.004	0.996
V	4	30	0.264	2.5	1	0.658	0.342
				5.625	1.5	0.303	0.697
				10	2	0.069	0.931
				15.625	2.5	0.049	0.951
N*V	8	30	0.377	4.5	1	0.578	0.422
				10.125	1.5	0.175	0.825
				18	2	0.017	0.983
				28.125	2.5		

Table 14: Power of the test under 2-way classified data with m observations per cell

4. Conclusion

It can be observed from the above mentioned tables that the method of twoway classified data with several (m) observations per cell is better followed by twofactor factorial technique in RBD and split plot analysis for analyzing the given data. The results equally hold for nitrogen levels, varieties as well as for their interaction. The highest powers (0.996, 0.951, and 0.983) are found corresponding to values (13.5, 15.625 and 18) of non-centrality parameters respectively for nitrogen levels, varieties and their interaction.

References

- 1. Clewer, A.G. and Scarisbrick, D.H. (2001). Practical Statistics and Experimental Design for Plant Crop Science, John Wiley & Sons, New York.
- 2. Cyprien, M. and Kumar, V. (2011). Correlation and path coefficient analysis of rice cultivars data, Journal of Reliability and Statistical Studies, 4(2), p. 119-131.
- 3. Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agricultural Research, John Wiley & Sons, New York.
- 4. Graybill, Franklin A. (1961). An Introduction to Linear Statistical Models, Volume I, McGraw-Hill Book Company, Inc., New York.
- 5. Hasegawa, T., Horie, T. and Yandell. B.S. (1991). Improvement of yielding ability in japonica rice cultivars and its impact on regional yield increase in Kinki District, Japan Agricultural-Systems, 35(2), p. 173-187.
- Noureldin, N.A., Abdelhalim, A.A., Elbially, M.E. and Mohamed, S.G.A. (2000). Comparative study of some decision making procedures used in field crop experiments, Annals of Agricultural Science Cairo, 3 (Special), p. 869-881.
- 7. Patra, P.S. and Biswas S. (2009). Yield and yield attributes of rice cultivars as affected by transplanting dates under Terai Region of West Bengal, Environment and Ecology, 27(4B), p. 2035-2039.
- 8. Rajarathinam, P., Martin, G.J., Jeyasrinivas, R. and Balaji, T. (2010). Effect of integrated nitrogen management on productivity, soil fertility and profitability

of wet seeded rice-rice-greengram cropping system, Research on Crops, 11(3), p. 594-597.

9. Zhao, L., Kobayasi, K., Hasegawa, T., Wang, C., Yoshimoto, M., Wan, J. and Matsui, T. (2010). Traits responsible for variation in pollination and seed set among six rice cultivars grown in a miniature paddy field with free air at a hot, humid spot in China, Agriculture, Ecosystems and Environment, 139(1/2), p. 110-115.

Appendix

Nitro		Grain	ı yield ((kg/plot)	Panic	le No. /	sq.m.	Panicle weight (g)		
-gen	Varieties	R ₁	R ₂	R ₃	R ₁	R ₂	R ₃	R ₁	R ₂	R ₃
levels	(Sub-Plot)									
Main										
N ₁	IET 20827	0.99	0.88	0.97	188	194	184	1.6	1.6	1.54
	IET 20847	0.85	0.91	1.05	194	186	200	1.53	1.09	1.83
	Pusa Basmati 1	1.05	1.13	1.25	195	200	210	1.34	1.55	1.74
	Taroari Basmati	0.70	0.75	0.90	191	196	202	1.35	1.92	1.19
	Pant S Dhan- 17	1.05	1.08	1.12	200	210	205	1.62	1.46	1.43
N_2	IET 20827	1.02	0.97	1.15	195	205	180	1.74	2.04	1.78
	IET 20847	1.20	0.88	0.99	183	189	210	1.79	1.64	1.88
	Pusa Basmati 1	1.26	1.17	1.33	195	210	205	2.06	2.29	1.66
	Taroari Basmati	0.93	0.85	0.88	193	205	207	1.87	1.34	1.43
	Pant S Dhan- 17	2.25	1.07	1.26	195	219	212	1.89	2.19	1.92
N ₃	IET 20827	1.11	1.25	1.00	185	204	190	1.52	1.77	1.55
	IET 20847	1.10	0.91	0.98	180	203	190	2.1	1.19	1.81
	Pusa Basmati 1	1.24	1.16	1.25	243	203	205	1.7	2.02	1.6
	Taroari Basmati	0.73	0.73	0.75	192	204	216	1.34	1.13	1.12
	Pant S Dhan- 17	1.18	1.25	1.27	203	211	222	1.74	1.82	2
Nitro-		1000_	orgin 1	vt (g)	Days	to	50%	Seed	to	Seed
Nitro- gen	Varieties	1000-	grain	wt (g)	Days flowe	to ring	50%	Seed (days)	to)	Seed
Nitro- gen levels	Varieties (Sub-Plot)	1000- R.	grain v	wt (g)	Days flowe	to ring Ra	50%	Seed (days)	to) Ra	Seed Ra
Nitro- gen levels Main	Varieties (Sub-Plot)	1000- R ₁	grain v R ₂	wt (g) R ₃	Days flowe R ₁	to ring R ₂	50% R ₃	Seed (days) R ₁	to R ₂	Seed R ₃
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827	1000- R ₁ 18.3	grain R ₂ 18.5	wt (g) R ₃ 18.4	Days flowe R ₁ 100	to ring R ₂ 104	50% R ₃ 105	Seed (days) R ₁ 135	to R ₂ 137	Seed R ₃ 135
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847	1000- R ₁ 18.3 18.7	grain R ₂ 18.5 19.5	wt (g) R ₃ 18.4 19.0	Days flowe R ₁ 100 107	to ring R ₂ 104 109	50% R ₃ 105 108	Seed (days) R ₁ 135 139	to R ₂ 137 141	Seed R ₃ 135 138
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1	1000- R ₁ 18.3 18.7 20.4	grain R ₂ 18.5 19.5 19.2	R ₃ 18.4 19.0 19.8	Days flowe R ₁ 100 107 104	to ring R ₂ 104 109 106	50% R ₃ 105 108 107	Seed (days) R ₁ 135 139 135	to R ₂ 137 141 141	Seed R ₃ 135 138 138
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati	R ₁ R ₁ 18.3 18.7 20.4 22.7	grain R ₂ 18.5 19.5 19.2 22.8	R ₃ 18.4 19.0 19.8 22.1	Days flowe R ₁ 100 107 104 108	to ring R ₂ 104 109 106 112	50% R ₃ 105 108 107 108	Seed (days) R ₁ 135 139 135 138	to R ₂ 137 141 141 142	Seed R ₃ 135 138 138 140
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17	1000- R ₁ 18.3 18.7 20.4 22.7 21.4	grain R ₂ 18.5 19.5 19.2 22.8 20.6	R ₃ 18.4 19.0 19.8 22.1 20.7	Days flowe R ₁ 100 107 104 108 103	to ring R ₂ 104 109 106 112 99	50% R ₃ 105 108 107 108 100	Seed (days) R ₁ 135 139 135 138 135	to R ₂ 137 141 141 142 130	Seed R₃ 135 138 138 140 134
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827	1000- R ₁ 18.3 18.7 20.4 22.7 21.4 18.4	grain R ₂ 18.5 19.5 19.2 22.8 20.6 18.2	R ₃ 18.4 19.0 19.8 22.1 20.7 18.8	Days flowe R ₁ 100 107 104 108 103 105	to ring R ₂ 104 109 106 112 99 110	50% R ₃ 105 108 107 108 100 108	Seed (days) R ₁ 135 139 135 138 135 135	to R ₂ 137 141 141 142 130 140	R3 135 138 138 140 134 139
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847	1000- R ₁ 18.3 18.7 20.4 22.7 21.4 18.4 18.8	grain R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6	R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3	Days flowe R ₁ 100 107 104 108 103 105 112	to ring R ₂ 104 109 106 112 99 110 108	50% R ₃ 105 108 107 108 100 108 110	Seed (days) R ₁ 135 139 135 138 135 135 143	to R ₂ 137 141 141 142 130 140 140	R ₃ 135 138 138 140 134 139 142
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847 Pusa Basmati 1	1000- R ₁ 18.3 18.7 20.4 22.7 21.4 18.4 18.8 19.2	grain R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6 20.5	R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3 19.1	Days flowe R ₁ 100 107 104 108 103 105 112 108	to ring R ₂ 104 109 106 112 99 110 108 109	50% R ₃ 105 108 107 108 100 108 110 108	Seed (days) R ₁ 135 139 135 138 135 135 143 136	to R ₂ 137 141 141 142 130 140 140 139	R ₃ 135 138 138 140 134 139 142 141
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati	1000- R ₁ 18.3 18.7 20.4 22.7 21.4 18.4 18.8 19.2 21.8	grain R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6 20.5 23.1	R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3 19.1 22.1	Days flowe R ₁ 100 107 104 108 103 105 112 108 110	to ring R ₂ 104 109 106 112 99 110 108 109 109	50% R ₃ 105 108 107 108 100 108 110 108 108	Seed (days) R ₁ 135 139 135 138 135 135 143 136 140	to R ₂ 137 141 141 142 130 140 140 139 141	R3 135 138 138 140 134 139 142 141 140
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17	1000- R ₁ 18.3 18.7 20.4 22.7 21.4 18.4 18.8 19.2 21.8 19.7	grain R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6 20.5 23.1 20.3	R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3 19.1 22.1 20.5	Days flowe R1 100 107 104 108 103 105 112 108 110 100	to ring R ₂ 104 109 106 112 99 110 108 109 109 100	50% R ₃ 105 108 107 108 100 108 110 108 108 101	Seed (days) R ₁ 135 139 135 138 135 135 143 136 140 132	to R ₂ 137 141 141 142 130 140 140 139 141 130	R3 135 138 138 140 134 139 142 141 140 132
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827	1000- R ₁ 18.3 18.7 20.4 22.7 21.4 18.4 18.8 19.2 21.8 19.7 18.0	grain R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6 20.5 23.1 20.3 18.5	R ₃ R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3 19.1 22.1 20.5 18.4	Days flowe R1 100 107 104 108 103 105 112 108 110 100 108	to ring R ₂ 104 109 106 112 99 110 108 109 109 100 110	50% R ₃ 105 108 107 108 100 108 110 108 108 101 100	Seed (days) R1 135 139 135 138 135 138 135 143 136 140 132 139	to R ₂ 137 141 141 142 130 140 140 139 141 130 140	R3 135 138 138 140 134 139 142 141 140 132 138
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847	1000- R1 18.3 18.7 20.4 22.7 21.4 18.4 18.8 19.2 21.8 19.7 18.0 19.1	grain v R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6 20.5 23.1 20.3 18.5 19.4	R ₃ R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3 19.1 22.1 20.5 18.4 19.4	Days flowe R1 100 107 104 108 103 105 112 108 110 100 108 110 100 108	to ring R ₂ 104 109 106 112 99 110 108 109 109 100 110 110	50% R ₃ 105 108 107 108 100 108 110 108 108 101 100 109	Seed (days) R1 135 139 135 138 135 138 135 138 135 138 135 136 140 132 139 142	to R ₂ 137 141 141 142 130 140 140 140 141 130 140 140	R3 135 138 138 138 140 134 139 142 141 140 132 138
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20847 Pusa Basmati 1	1000- R1 18.3 18.7 20.4 22.7 21.4 18.4 18.8 19.2 21.8 19.7 18.0 19.1 20.0	grain v R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6 20.5 23.1 20.3 18.5 19.4 19.9	R ₃ R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3 19.1 22.1 20.5 18.4 19.4 19.4 19.3	Days flowe R ₁ 100 107 104 108 103 105 112 108 110 100 108 109 108	to ring R ₂ 104 109 106 112 99 110 108 109 109 100 110 110 110 106	50% R ₃ 105 108 107 108 100 108 110 108 108 101 100 109 109	Seed (days) R1 135 139 135 138 135 138 135 138 135 138 135 143 136 140 132 139 142 138	to R ₂ 137 141 141 142 130 140 140 140 140 140 140 140 136	R ₃ 135 138 138 138 140 134 139 142 141 140 132 138 139 142 141 140 132 138 139 139
Nitro- gen levels Main N ₁	Varieties (Sub-Plot) IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20847 Pusa Basmati 1 Taroari Basmati Pant S Dhan- 17 IET 20827 IET 20827 IET 20847 Pusa Basmati 1 Taroari Basmati 1 Taroari Basmati 1	1000- R1 18.3 18.7 20.4 22.7 21.4 18.4 18.8 19.2 21.8 19.7 18.0 19.1 20.0 21.9	grain v R ₂ 18.5 19.5 19.2 22.8 20.6 18.2 19.6 20.5 23.1 20.3 18.5 19.4 19.9 21.7	R ₃ R ₃ 18.4 19.0 19.8 22.1 20.7 18.8 19.3 19.1 22.1 20.5 18.4 19.4 19.3 21.8	Days flowe R ₁ 100 107 104 108 103 105 112 108 110 100 108 109 108 110	to ring R ₂ 104 109 106 112 99 110 108 109 109 100 110 110 110 106 111	50% R ₃ 105 108 107 108 100 108 110 108 101 100 109 109 112	Seed (days) R1 135 139 135 138 135 138 135 136 140 132 139 142 138 140	to R ₂ 137 141 141 142 130 140 140 139 141 130 140 140 140 136 142	R ₃ 135 138 138 138 140 134 139 142 141 140 132 138 139 141 140 132 138 139 144

Table 15: Data obtained on selected A	AVT-2 (BT) rice culture
---------------------------------------	---------	----	----------------

Nitrogen	Varieties	Grain	yield(kg	g/plot)	Panic	le		Panicle weight(g)			
levels	(Sub-plot)				(No./s	(No./sq.m)					
(Main)		R ₁	R ₂	R ₃	R ₁	R ₂	R ₃	R ₁	R ₂	R ₃	
N ₁	IET20926	1.37	1.40	1.45	148	153	162	2.96	2.76	2.80	
	IET20930	1.28	1.25	1.52	158	151	162	2.44	2.35	2.90	
	IET20934	1.38	1.68	1.25	180	170	158	2.69	2.35	2.09	
	IET20937	1.55	1.60	1.45	180	178	168	2.41	2.28	2.65	
	IET20944	2.48	1.38	1.25	185	191	177	2.37	2.046	2.26	
	IET20735	1.30	1.60	1.45	192	202	169	2.34	2.48	2.28	
	IET20744	1.20	1.15	1.50	154	154	142	3.12	2.68	2.46	
	IET20734	1.40	1.50	1.25	153	153	166	2.90	2.75	2.60	
	Jaya	1.25	1.38	1.35	1.73	158	159	2.08	2.67	2.46	
	KRH-2	1.35	1.25	1.55	153	168	182	2.52	2.49	2.57	
	Narendra359	1.05	1.48	1.35	158	158	180	2.37	2.47	2.28	
	Local-PD-18	1.78	1.60	1.60	171	203	186	2.81	2.55	2.52	
N ₂	IET20926	1.88	1.70	1.48	173	190	195	2.44	3.06	2.56	
	IET20930	1.68	1.40	1.45	172	184	190	2.22	2.31	2.72	
	IET20934	1.78	1.65	1.50	200	210	205	2.17	2.30	3.59	
	IET20937	1.88	1.60	1.65	179	164	180	3.15	2.54	2.74	
	IET20944	1.63	1.75	1.35	205	189	188	2.65	2.14	2.41	
	IET20735	1.85	2.00	1.75	181	190	200	2.35	3.04	3.36	
	IET20744	1.45	1.65	1.75	188	164	155	2.94	2.63	2.65	
	IET20734	1.85	1.68	1.75	190	183	179	2.95	2.23	2.36	
	Jaya	1.58	1.45	1.65	180	178	175	2.78	2.70	2.91	
	KRH-2	1.85	1.70	1.63	195	208	214	2.56	2.59	2.43	
	Narendra359	1.38	1.65	1.45	175	182	191	2.68	2.20	2.65	
	Local-PD-18	1.70	2.10	1.90	206	214	202	2.91	3.07	2.60	
N ₃	IET20926	1.68	1.83	1.60	198	191	202	2.63	2.46	2.87	
	IET20930	1.25	1.80	1.38	180	172	190	2.36	2.30	2.63	
	IET20934	1.45	1.78	1.50	208	188	195	2.25	2.33	2.56	
	IET20937	1.28	1.55	1.60	192	170	180	2.22	2.23	2.68	
	IET20944	1.51	1.68	1.30	200	205	195	2.04	2.44	2.63	
	IET20735	1.80	1.95	1.50	188	195	199	2.61	3.21	2.74	
	IET20744	1.53	1.65	1.40	183	178	179	2.83	2.37	2.29	
	IET20734	1.45	1.68	1.38	198	190	195	2.36	2.11	2.56	
	Jaya	1.68	1.78	1.56	192	198	200	2.19	2.45	2.75	
	KRH-2	1.75	1.60	1.50	198	202	210	2.32	2.56	2.38	
	Narendra359	1.60	1.53	1.25	182	185	194	2.19	2.25	2.55	
	Local-PD-18	1.75	1.85	1.65	211	210	208	2.33	2.34	2.25	

Nitrogen	Variatios	1000 ₋ σ	Days	to	50%	Seed	to	Seed		
levels	(Subplot)	1000- gi	an wi (ş	5)	flowe	ring		(days)		
(Main)	(Subplot)	R ₁	R ₂	R ₃	R ₁	R ₂	R ₃	R ₁	R ₂	R ₃
N ₁	IET20926	22.80	22.80	23.05	126	124	126	158	159	156
	IET20930	17.85	17.75	18.05	110	109	112	142	144	142
	IET20934	22.92	23.20	23.36	104	105	107	135	136	138
	IET20937	16.85	17.21	16.95	108	108	107	140	142	140
	IET20944	17.40	17.65	17.30	107	106	107	138	140	141
	IET20735	23.45	23.25	23.65	108	108	109	142	141	143
	IET20744	24.78	25.00	24.83	103	102	104	135	137	135
	IET20734	22.30	22.50	23.00	104	104	106	136	134	136
	Jaya	27.30	27.45	27.80	104	104	105	136	134	135
	KRH-2	22.55	22.38	22.65	104	106	105	134	136	137
	Narendra359	26.65	26.90	26.35	105	106	106	137	136	136
	Local-PD18	26.65	26.85	27.01	104	104	103	134	134	133
N_2	IET20926	22.90	22.90	23.10	124	125	126	156	156	159
	IET20930	17.95	18.05	17.65	109	111	112	141	142	143
	IET20934	23.35	23.15	23.55	105	105	106	137	136	135
	IET20937	17.05	17.15	16.83	108	109	106	140	142	143
	IET20944	17.64	17.35	17.52	109	107	108	139	140	140
	IET20735	23.65	23.38	23.98	109	109	108	143	144	144
	IET20744	25.05	24.95	24.82	103	103	105	135	133	135
	IET20734	22.65	22.72	22.92	106	107	107	139	138	138
	Jaya	27.25	27.55	27.80	104	104	105	136	135	136
	KRH-2	12.50	22.45	23.01	104	105	105	135	137	137
	Narendra359	26.76	26.85	26.68	107	106	106	139	137	137
	Local-PD18	26.95	27.12	27.26	104	105	103	134	135	135
N ₃	IET20926	22.95	22.80	23.05	124	124	126	156	156	158
	IET20930	17.89	18.50	18.00	112	112	110	143	140	142
	IET20934	23.55	23.29	23.38	106	107	105	139	138	138
	IET20937	16.85	16.88	17.05	107	106	106	139	139	140
	IET20944	17.70	17.55	17.60	107	106	107	138	139	138
	IET20735	23.65	23.35	23.65	109	108	109	142	141	143
	IET20744	25.25	24.65	24.95	104	104	103	137	136	136
	IET20734	22.80	22.65	22.58	109	107	108	141	139	140
	Jaya	27.45	27.60	27.78	105	104	105	136	138	107
	KRH-2	22.38	22.90	22.40	107	105	105	138	137	139
	Narendra359	26.45	27.01	26.68	108	107	107	139	138	139
	Local-PD-18	27.22	26.95	27.65	105	105	104	135	135	134

Table 16: Data obtained on selected AVT-2 (IM) rice culture