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Abstract
This paper sums up the applications of Statistical model such as ARIMA family time

series models in Canadian lynx data time series analysis and introduces the method of data
mining combined with Statistical knowledge to analysis Canadian lynx data series.
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1. Introduction
The Time Series Data Mining (TSDM) framework is a fundamental contribution to the
fields of time series analysis and data mining in the recent past.  Methods based on the
TSDM framework are able to successfully characterize and predict complex, non
periodic, irregular, and chaotic time series.  The TSDM methods over come limitations
namely including stationary and linearity requirements of traditional time series
analysis techniques by adapting data mining concepts for analyzing time series.

A time series {Xt , t= 1,2.,,,,,N} is “a sequence of observed data, usually
ordered in time”    where t is a time index, and N is the number of observations.
Researchers study systems as they evolve through time, hoping to discover their
underlying principles and develop models useful for predicting or controlling them.

Traditional time series analysis methods such as the Box-Jenkins or
Autoregressive Integrated Moving Average (ARIMA) method can be used to model
such time series.  However, the ARIMA method is limited by the requirement of
stationarity of the time series, normality and independence of the residuals.    Residuals
are the errors between the observed time series and the model generated by the ARIMA
method.  The residuals must be uncorrelated and normally distributed.

For real-world time series such as stock market prices, the conditions of time
series stationarity and residual normality and independence are not met.  A severe
drawback of the ARIMA approach is its inability to identify complex characteristics.
This limitation occurs because of the goal of characterizing all time series observations,
the necessity of time series stationarity and the requirement of residual normality and
independence.

The TSDM framework innovate data mining concepts for analyzing time
series data.  This allows the TSDM methods to predict non stationary, non periodic,
irregular time series. The TSDM methods are applicable to time series that appear
stochastic, but occasionally (though not necessarily periodically) contain distinct, but
possibly hidden, patterns that are characteristic of the desired events.
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The following is the organization of the paper. Section two provides review of
time series models associated with Canadian lynx data.  Section three provides
identifying the pattern in the Canadian lynx data through FRAR time series model.
Section four provides a comparative study and summary of the paper is presented in
Section five.

2. Review of Time Series Model
This section reviews some parametric models that have been fitted to the

Canadian lynx data, which consists of the annual record of numbers of Canadian lynx
trapped in the Mackenzie River district of North-West Canada for the period 1821-
1934, both years inclusive, giving therefore a total of 114 observations.

These data originally appeared in a paper by Elton and Nicholson (1942),
which gave a detailed discussion of fluctuations of the size of the lynx population in
various regions of Canada over a period of some 200 years. It contains a large amount
of Statistical information relating to trapping records but this was treated purely
descriptively; See Moran (1953), Hannan (1960), Kashyap (1973) and Bulmer (1974).

Moran (1953) was the first to analysis the lynx data. Because the cycle in the
raw data {Xt} is very asymmetrical with a sharp and large peak and a relatively smooth
and small through, he used a common log-transformation of the data and estimated the
AR (2) model.

Xt = 1.0549 + 1.4101 Xt-1 – 0.7734 Xt-2 + et

With et ~ WN (0, 0.04591); hereafter WN (0, 2 ) stands for a white noise process with

mean 0 and variance 2 .

Moran noting that one-step-ahead predictors for the data were not particularly
good, however, he suggested that the process would be better represented by “some
kind of non-linear model” Since, a fitted AR (2) model does not provide a very good
match to the sample auto-covariance function, the auto-covariance function of the
model damping much more rapidly than that computed from the data.

In the early days of time series analysis, owing to the limitation of computing
facilities, most of the model fitted was restricted to those of very low orders. However,
with the advantage of high-speed computers, there is no longer any ground for this
restriction and our re-examination of the lynx data clearly re-affirms the necessity for
models of the type Full Range Autoregressive models in some cases.

An extensive account of the Statistical and historical aspects of the modeling
of the lynx data is contained in Campbell and Walker (1977), where the data are
reproduced.

Akaike’s information criterion (AIC) and the idea of subset model selection
were used first by Tong (1977) to identify and estimate several AR models for the lynx
data, obtained

Xt = 1.13 Xt-1- 0.51 Xt-2 + 0.23 Xt-3- 0.29 Xt-4 + 0.14 Xt-5

- 0.14 Xt-6 + 0.08 Xt-7 - 0.04 Xt-8 + 0.13 Xt-9

+ 0.19 Xt-10- 0.31 Xt-11+ te
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Where Xt= (Yt - 2.9036) for t= 1, 2, 3, …, 114 with et ~ WN (0, 0.04)

Later, using the random coefficient auto regressive model, Nicholls-Quinn
(NQ), obtained the model

Xt = (1.4132 +B1(t)) Xt-1 + (-0.7942 +B2 (t)) Xt-1+ et

Where E    



  )(B(t)B)(B(t)B 2121 tt and 2 are estimated as












0492.00406.0

0406.00701.0
 and 0.0391 respectively.

3. The Full Range Autoregressive Model
This section provides a brief review of FRAR models that are needed here. We

define a family of models by a discrete-time Stochastic process  tX ,

,...2,1,0 t , called the Full Range Auto Regressive (FRAR) model, by the

difference equation



  
1r trtrt eXaX

where     r
r rrka  /cossin ,  ...3,,2,1r , k ,  ,   and   are

parameters, 1e , 2e , 3e , … are independent and identically distributed normal random

variables with mean zero and variance 2 . The initial assumptions about the
parameters are as follows:

It is assumed that tX  will influence ntX   for all positive n and the influence

of tX  on ntX   will decrease, at least for large n, and become insignificant as n

becomes very large, because more important for the recent observations and less

important for an older observations. Hence na  must tend to zero as n goes to infinity.

This is achieved by assuming that 1 . The feasibility of tX  having various

magnitudes of influence on ntX  , when n is small, is made possible by allowing k to

take any real value. Because of the periodicity of the circular functions sine and cosine,

the domain of   and   are restricted to the interval  2,0 .

Thus, the initial assumptions are 1 , Rk  , and  ,   2,0 . i.e.,

  *,,, Sk   , where    2,0,,1,,,,*  RkkS .

Further restrictions on the range of the parameters are placed by examining the
identifiability of the model and is finally deduced that the region of identifiability of the

model is given by     2/,0,,0,1,,,,   RkkS . For more

information on these topics, we recommend Venkatesan and Gallo (2012).
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FRAR is fitted for the Canadian lynx data for the first one hundred
observations obtained the model

tX = 


100

1r
r(3.6420)

r)(0.5259Cosr)(2.5611sin(10.12643)
xt-1 + te

where  and  values are in degree and standard deviation of et estimated as

̂ = 0.0680.

It should be pointed out that the main purpose of time series models is to
predict the future. So, the suitability of the new solution to the lynx data analysis should
be examined only by the ability of the solution to correctly predict the future. This
aspect is studied through the Bayesian approach. Venkatesan and Gallo (2012) have
obtained the Bayesian predictive distribution of the FRAR models.

Bayesian predictive distribution of the (r+l)th observation, using the first
r observations, is obtained. The mean of this distribution is taken to be the (r+l)th

predicted value of the Lynx data. Since the direct evaluation of the mean of the one-step
ahead predictive distribution involves four dimensional numerical integration, instead
of the marginal predictive distribution of XN+1, the conditional predictive distribution of
XN+1, given by Venkatesan and Gallo(2012) got by fixing the parameters K,  ,  and

 at their estimates, is used and the mean is calculated. The posterior mean of the

predictive distribution is computed numerically after fixing the parameters at their
respective estimated value. This prediction is done for the cases
r = 11, 12, …, 114 and are given in the Table I. Table I contains both the true values and
the one-step ahead predicted values for the transformed data

4. Comparative Study
Nicholls and Quinnon (1982) have used the above data to compare the quality

of the predicted values obtained by several methods, viz., (1) Moran-1 (2) Tong  (3)
NQ-1 (4) Moran-2 and (5) NQ-2 as presented above.

Moran-1 refers to the linear predictor obtained from the second order
autoregressive model, Tong refers to the linear predictor from autoregressive model of
order eleventh, NQ-1 denotes the linear predictor obtained from the second order
random coefficient model while Moran-2 and NQ-2 denotes the non-linear predictors
for the lynx data. The models and other details can found in the Nicholls and Quinn
(1982).

Nicholls and Quinn (1982) have used these methods to predict the last 14
values of the Canadian lynx data and calculated the error sum of squares. To compare
the efficiency of prediction of the new FRAR model with those of the others stated
above is given in Table II. The error sum of squares for the last 14 predicted values is
0.0637 under the FRAR model whereas they are 0.2531, 0.2541, 0.2561, 0.2070 and
0.1887 respectively under the other methods. So, at least in the above context the
superiority of the FRAR model is established beyond doubt.
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5. Conclusion
FRAR model provides the best fit for the lynx data and therefore, the FRAR

model certainly provides a viable alternative to the existing time series methodology,
from the predictive power of the model and from the point of view of pure data
analysis, completely avoiding the problem of order determination in the case of
Canadian Lynx time series data.

S.No Y Ŷ S.No Y Ŷ S.No Y Ŷ
1 2.430 - 41 2.373 2.283 81 2.880 2.963
2 2.506 - 42 2.389 2.360 82 3.115 3.143
3 2.767 - 43 2.742 2.726 83 3.540 3.633
4 2.940 - 44 3.210 3.292 84 3.845 3.881
5 3.169 - 45 3.520 3.569 85 3.800 3.713
6 3.450 - 46 3.828 3.856 86 3.579 3.494
7 3.594 - 47 3.628 3.542 87 3.264 3.249
8 3.774 - 48 2.837 2.656 88 2.538 2.306
9 3.695 - 49 2.406 2.252 89 2.582 2.547
10 3.411 - 50 2.675 2.614 90 2.907 2.917
11 2.718 2.582 51 2.554 2.481 91 3.142 3.204
12 1.991 1.767 52 2.894 2.973 92 3.433 3.473
13 2.265 2.181 53 3.202 3.248 93 3.580 3.562
14 2.446 2.413 54 3.224 3.229 94 3.490 3.408
15 2.612 2.650 55 3.352 3.344 95 3.475 3.406
16 3.359 3.482 56 3.154 3.062 96 3.579 3.539
17 3.429 3.468 57 2.878 2.765 97 2.829 2.663
18 3.533 3.596 58 2.476 2.023 98 1.909 1.587
19 3.261 3.182 59 2.303 2.255 99 1.903 1.833
20 2.612 2.444 60 2.360 2.315 100 2.033 2.069
21 2.179 1.999 61 2.671 2.672 101 2.360 2.439
22 1.653 1.461 62 2.867 2.934 102 2.601 2.621
23 1.832 1.801 63 3.310 3.466 103 3.054 3.108
24 2.328 2.385 64 3.449 3.479 104 3.386 3.409
25 2.737 2.839 65 3.646 3.684 105 3.553 3.528
26 3.014 3.069 66 3.400 3.296 106 3.468 3.454
27 3.328 3.380 67 2.590 2.399 107 3.187 3.150
28 3.404 3.405 68 1.863 1.806 108 2.723 2.518
29 2.981 2.849 69 1.591 1.454 109 2.686 2.646
30 2.557 2.379 70 1.690 1.677 110 2.821 2.864
31 2.576 2.500 71 1.771 1.766 111 3.000 3.053
32 2.352 2.260 72 2.274 2.398 112 3.201 3.231
33 2.556 2.569 73 2.576 2.642 113 3.424 3.464
34 2.864 2.895 74 3.111 3.241 114 3.531 3.512
35 3.214 3.296 75 3.605 3.683
36 3.435 3.481 76 3.543 3.499
37 3.458 3.449 77 2.769 2.589
38 3.326 3.263 78 2.021 1.877
39 2.835 2.668 79 2.185 2.105

Y -  Lynx data
(Transformed)

Ŷ - One-step-ahead
Predicted value

40 2.476 2.325 80 2.588 2.671

Table I : One-Step-ahead predicted values of the transformed Lynx data
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S.No Year Lynx data Moran-I Tong NQ-1 Moran-2 NQ-2 FRAR

1 1921 2.3598 2.4448 2.4559 2.4596 2.3835 2.3842 2.4390

2 1922 2.6010 2.7971 2.8088 2.8173 2.6271 2.6323 2.6210

3 1923 3.0538 2.8850 2.8991 2.8989 3.1193 3.0955 3.1080

4 1924 3.3860 3.3285 3.2306 3.3474 3.3883 3.3971 3.4090

5 1925 3.5532 3.4471 3.3879 3.4571 3.4955 3.4999 3.5280

6 1926 3.4676 3.4289 3.3321 3.4296 3.4787 3.4781 3.4540

7 1927 3.1867 3.1859 3.0060 3.1759 3.2683 3.2555 3.1500

8 1928 2.7235 2.8628 2.6875 2.8468 2.6405 2.6587 2.5180

9 1929 2.6857 2.4348 2.4286 2.4153 2.3747 2.3650 2.6460

10 1930 2.8209 2.7296 2.7643 2.7299 2.5977 2.6292 2.8640

11 1931 3.0000 2.9440 2.9838 2.9508 3.1277 3.0927 3.0530

12 1932 3.2014 3.0897 3.2169 3.0966 3.1981 3.1762 3.2310

13 1933 3.4244 3.2331 3.3656 3.2390 3.3065 3.2956 3.4640

14 1934 3.5309 3.3896 3.5035 3.3942 3.443 3.4413 3.5120

Error sum of squares 0.2531 0.2541 0.2561 0.2070 0.1887 0.0637

Table II: One-Step a head predictors of the transformed lynx data with other models
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