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Abstract
Ranked Set Sampling (RSS) is one method to potentially increase precision and reduce

cost by using simple judgment or qualitative information. For symmetric distributions, an optimal
allocation model was suggested by Kaur et al. (1995) (for simplicity in notation we call it by KPT
model). This allocation model measures either only mid or extreme rank orders. This results in an
estimator, which is not sufficient and hence unreliable in most of the situations, although it is
more precise then Neyman’s allocation.

In this paper, we have proposed a Linear allocation model for two classes of symmetric
distributions. These two classes of symmetric distribution are mound shaped and U-shaped,
depending upon the plots of the variances of the order statistics against the rank order. The
proposed allocation model is opposite to the Neyman allocation model and has an advantage over
KPT model in the sense that measurements are made upon each rank orders.

Keywords: Ranked Set Sampling, Relative Precision, Neyman’s allocation, KPT Model,
Ordered Statistics.

1. Introduction
Researchers, mainly those engaged in field and laboratory work, want

optimum precision against low cost. Kaur et al. (1994) first gave the optimum
allocation model for unequal RSS when the underlying distribution is skewed. In a
similar way, Kaur et al. (1995) also proposed an optimal allocation model for
symmetric distributions. Their allocation outperforms both equal allocations and
Neyman allocations in terms of the precision of the estimator of population mean. They
also examined the effect of population kutosis upon the precision of the estimator for
their model. However, in the case of symmetric distributions, the gains due to the
Neyman’s allocation are marginal.

For symmetric distributions, the performance of the Neyman allocation
remains very close to that of equal allocation. Yanagawa and Chen (1980) suggested a
minimum variance liner unbiased median-mean estimator of population mean for a
family of symmetric distribution. Shirahata (1982) examined more general procedures
that are unbiased for symmetric distributions. For symmetric distributions, an optimal
allocation model was suggested by Kaur et al. (1995) (for simplicity in notation we call
it by KPT model). This allocation model measures either only mid or extreme rank
orders. This results in an estimator, which is not sufficient and hence unreliable in most
of the situations, although it is more precise then Neyman’s allocation. Kaur et al.
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(1997) derived unequal allocation models for ranked set sampling with skew

distributions. Yu et al. (1999) studied some unbiased estimate of 2  in the parametric
case of a normal population. Tiwari and  Kvam (2001) proposed unbiased estimator for

2  for location-scale families of symmetric distribution. MacEachern (2002)
developed an unbiased estimator of the variance of a population based on RSS.

The general RSS scheme proposed by Wang et al. (2004) takes more than one
units in a ranked set with select pre-specified ranks for the full measurement. Perron
and Sinha (2004) showed that for more than one cycle, it is possible to construct a class

of quadratic unbiased estimates of 2  in both balanced and unbalanced cases. Ahmed
(2004) suggested some bootstrap techniques for estimation of variance under RSS.
Sengupta and Mukhuti (2006) proposed some unbiased estimators of the variance of
exponential distribution. Jemain and Al-omari (2006) suggested multistage median
ranked set sampling (MMRSS) method for estimating the population mean. Frey (2007)
demonstrated a new imperfect ranking model for ranked set sampling. Some variations
of ranked set sampling studied by Jamain et al. (2008). Ozturk (2008) have proposed a
inference in the presence of ranking error in ranked set sampling. Baklizi (2009)
described empirical likelihood intervals for the population mean and quantiles based on
balanced RSS. Liu et al. (2009) studied the problem of empirical likelihood for
balanced ranked set sampled data. Estimation of population variance using ranked set
sampling with auxiliary variable was studied by Hadhrami (2010).

In this paper, we have proposed a Linear allocation model for two classes of
symmetric distributions. These two classes of symmetric distribution are mound shaped
and U-shaped, depending upon the plots of the variances of the order statistics against
the rank order. The details of these two classes of symmetric distributions are discussed
in Section 3. The proposed Linear allocation model for both the classes of symmetric
distributions overcomes the drawback of Neyman and KPT model. The proposed
allocation model is opposite to the Neyman allocation model and has an advantage over
KPT model in the sense that measurements are made upon each rank orders.

In Section 2, we discuss in brief the expressions of RP of estimates of
population mean for KPT model with respect to simple random sampling for mound
shaped and U-shaped symmetric distributions. In Section 4, we discuss some examples
from the two classes of symmetric distributions to demonstrate the utility of the
proposed procedure.

2. Comparison of KPT Model with Simple Random Sampling
When underlying distribution is symmetric rather than skewed, the resulting

optimal allocation strategy is precisely the opposite of the Neyman strategy. Kaur et al.
(1995) derived the expressions of asymptotic RP for both the classes of symmetric
distributions. In mound shaped symmetric distributions, they ignored the rank orders
with large variances and measured only the rank orders having the smallest variances.
This becomes the optimal allocation for finding the optimal variance of the best linear
unbiased estimator of population mean  . Their optimal variance of the estimator for

large n is
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After comparing the asymptotic variance in (2.1) with the variance of sample mean
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While in the case of U-shaped symmetric distributions Kaur et al. (1995) derived the
asymptotic variance of the best linear unbiased estimator of population mean  , and is
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The asymptotic RP compared with SRS is
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3. The Linear Allocation Models for Symmetric Distributions
For symmetric distributions, an optimal allocation model (denoted by KPT

model) was suggested by Kaur et al. (1995). However, as discussed in Section 2, for
finding the estimates of the population mean, the estimates suggested by Kaur  et al.
(1995) are not reliable. Making use of the fact that in symmetric distributions the
optimal allocation strategy is precisely the opposite of the Neyman strategy, we propose
a simple and systematic approach, which measures more heavily those rank orders
having the smallest variances and the number of measurements on each rank order is
also an integer. The proposed approach can be easily implemented upon the practical
situations and it performs better than SRS, RSS with equal allocation, Neyman
allocation, and quite close to KPT model.

On the basis of graph plots of the variances of the order statistics against the
rank orders, the symmetric distributions can be classified into two classes, namely- a)

mound shaped class, i.e. the distributions for which  
2
:ki   is increasing in i for

Mi1  and  
2
:ki  is decreasing in i for kiM  , where ,

2
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

k
M  is the
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unique middle rank order when k is odd, and b) U-shaped class, i.e. for which  
2
:ki  is

decreasing in i for Mi1  and  
2
:ki  is increasing in i for kiM  .

For symmetric distributions, we have
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In this proposed allocation model the largest order statistic allocated minimum
time and subsequent order statistics are allocated in linearly increasing pattern where
the linear terms may be assumed as per the requirement. Thus in our proposed model,
we have two cases:

(a) For mound shaped symmetric distribution:
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Where a and b can take any integer values, positive or negative. The values of a and b
depend on the set size k, satisfying the conditions ka   and .1 ba

In this case the number of units for measurement will be
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and,

(b) For U-shaped symmetric distribution
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In this case the number of selected unit n for measurements is

   

     

























 







 







 





















 



oddiskifbMabab
ka

b
ka

b
ka

eveniskifbabab
ka

b
ka

b
ak

n

,)2(...
2

3

2

1

2

1
2

,)()2(...
2

4

2

2

2
2
















 












 


oddiskifbMab

k
a

k
aa

eveniskifb
k

a
k

aa

,
2

1

2

1
...22

,
22

...22



 Journal of Reliability and Statistical Studies, June 2012, Vol. 5 (1)48

 

 















 










 




oddiskifbMab

kkk
a

eveniskifb
kkk

a

,
2

1

2

12121
2

,
22

122
2

or
















 





oddiskifkb

k
a

eveniskifkba
kk

n

,
2

1

,
4

)2(

2 (3.6)

In what follows we shall make use of the following Theorem 3.1 of  Kaur et al.
(1995) for finding the minimum variance of the proposed linear unbiased estimator of
population mean.

Theorem 3.1: Let nXXX ,...,, 21  are n independent random variables with a

common mean   and with variances 22
2

2
1 ,...,, n . The linear

combination nn XCXCXC  ...2211 , with 1...21  nCCC , that has the

smallest variance and is obtained by taking iC  inversely proportional to 2
i . The

resulting minimum variance is
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We shall now discuss in detail the properties of the estimates with derivations for both
the classes of symmetric distributions.

3.1 Mound Shaped Symmetric Distribution
Denoting the measured units by jkiY ):( , i=1, 2, …,k,  j=1, 2, …, im  ( im  is

given in (3.3)), an unbiased estimator of the population mean   based on thi and

 thik 1 order statistics is given by
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3.2 U-Shaped Symmetric Distribution
For U-shaped symmetric distribution with allocation model (3.5), an unbiased

estimator of the population mean   based on thi and  thik 1 order statistics is

given by
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4. Examples
In this Section we compare the numerical values of eqlRP , NeyRP ,

)(KPTRPMound / )(KPTRPU  and )(LinearRPMound / )(LinearRPU  for some

symmetric distributions to demonstrate the utility of the proposed procedure. Under
mound shaped distributions, we have considered the uniform distribution and under U-
shaped distribution, normal and standard special distributions are considered. The three
distributions uniform, normal and standard special, considered have zero mean and unit

variance. For the values of variances of order statistics 2
):( ki we refer to Hastings et al.

(1947) and Sarhan and Greenberg (1962). These values for set size k =2, 3, …,10, in
the case of  uniform, normal and standard special distributions.

The relative precisions eqlRP , NeyRP , )(KPTRPMound / )(KPTRPU  and

)(LinearRPMound / )(LinearRPU  are computed for the uniform, normal and

standard special distributions for set size k =2, 3, …,10 in Tables 4.1, 4.2 and 4.3
respectively. From these tables it is seen that for k=2 all methods of allocation for
symmetric distribution are equivalent, that is,

)(/)()(/)( LinearRPLinearRPKPTRPKPTRPRPRP UMoundUMoundNeyeql 

The proposed model is better than equal and Neyman allocation models for set
size k greater than 2. Moreover, the proposed allocation model is quite close to the KPT
model. To clear the variations between the different RP’s, we have plotted the bar
diagrams for all the distributions for set size k=2, 3, …,10. These graphs are shown in
the Figures 4.1 to 4.3.

From these results, it is clear that the Linear allocation model may be
considered a good allocation model for selecting the sample when the underlying
population is symmetric.
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K
eqlRP NeyRP )(KPTRPMound )(LinearRPMound

2 1.499987 1.499987 1.499987 1.499987

3 1.999995 2.009614 2.222225 2.160491

4 2.499985 2.525496 3.124949 2.951308

5 3.000024 3.045789 4.200001 3.60662

6 3.500028 3.569228 5.444481 4.58896

7 3.999990 4.095032 6.857190 5.229903

8 4.499978 4.622724 8.437264 6.34659

9 5.000020 5.151980 10.185170 6.986506

10 5.500000 5.682400 12.099980 8.20913

Table 4.1: Relative precisions eqlRP , NeyRP , )(KPTRPMound and

)(LinearRPMound for Uniform (0, 1) for k = 2(1)10.

K
eqlRP NeyRP )(KPTRPU )(LinearRPU

2 1.466942 1.466942 1.466942 1.466942

3 1.913747 1.918730 2.228804 2.081675

4 2.346948 2.361036 2.774269 2.650807

5 2.770176 2.796752 3.486341 3.253601

6 3.185669 3.227568 4.061532 3.82106

7 3.594922 3.654567 4.751793 4.407152

8 3.998987 4.078489 5.342274 4.971227

9 4.398550 4.499770 6.021760 5.550253

10 4.794490 4.919100 6.623100 6.113327

Table 4.2: Relative precisions eqlRP , NeyRP , )(KPTRPU  and )(LinearRPU for

Normal (0, 1) for k = 2(1)10.
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K
eqlRP NeyRP )(KPTRPU )(LinearRPU

2 1.400843 1.400843 1.400843 1.400843

3 1.752002 1.793318 2.926355 2.43732

4 2.072350 2.176563 3.616811 3.25601

5 2.371180 2.552366 4.959630 4.186925

6 2.653780 2.922187 5.765164 5.000188

7 2.923583 3.287129 7.018352 5.881072

8 3.182948 3.648068 7.883330 6.691833

9 3.433420 4.005460 9.087210 7.554441

10 3.684160 4.376560 10.279440 8.727263

Table 4.3 Relative precisions eqlRP , NeyRP , )(KPTRPU and )(LinearRPU  for

Standard Special for k =2(1)10.

Uniform (0,1)

0

2
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14

1 2 3 4 5 6 7 8 9

Set Size  K
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Figure 4.1 Bar diagrams for the RP’s eqlRP , NeyRP , )(KPTRPMound  and

)(LinearRPMound  of Uniform (0, 1)  for k = 2(1)10.
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Figure 4.2 Bar diagrams for the RP’s eqlRP , NeyRP , )(KPTRPU  and

)(LinearRPU  of Normal (0, 1)  for k = 2(1)10.
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Figure 4.3 Bar diagrams for the RP’s eqlRP , NeyRP , )(KPTRPU  and

)(LinearRPU  of  Standard Special for k = 2(1)10.
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