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Abstract
In this paper we consider a generalization of the log- logistic distribution called Type-II

exponentiated log- logistic distribution suggested by Kotz and Nadarajah (2000). The operating
characteristic for a sampling plan is determined for the case that a lot of products are submitted
for inspection with lifetimes specified by a Type-II exponentiated log- logistic distribution
(TELLD). The results are illustrated by a numerical example.
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1. Introduction
Gupta et. al. (1998) introduced the exponentiated exponential distribution as a

generalization of the standard exponential distribution. Kotz and Nadarajah (2000)
introduced a new method of adding a new parameter to an existing distribution. In this
paper we introduce a new parameter to the standard log- logistic distribution [in lines of
the exponentiated frechet distribution suggested by Nadarajah and Kotz (2003)] and it
is called as Type-II exponentiated log- logistic distribution.

We know that the cumulative distribution function (cdf) of the log- logistic
distribution is
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We define a new distribution by the cdf as follows:
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We called (2) as the Type II exponentiated log- logistic distribution. The

corresponding probability density function (pdf) is given by
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When  =1, the pdf of (3) reduces to the log- logistic distribution. However,
extended exponential distribution in reliability test plans, based on life tests, has not
paid much attention. Acceptance sampling plans in statistical quality control concern
with accepting or rejecting a submitted lot of a large size of products on the basis of the
quality of products inspected in a sample taken from the lot.  If the quality of the
product inspected is the lifetime of the product that is put for testing, after the
completion of sampling inspection, then we have a sample of life times of the sampled
products.  If a decision to accept or reject the lot subject to the risks associated with the
two types of errors (rejecting a good lot/ accepting a bad lot) is possible, such a
procedure may be termed as ‘Acceptance sampling based on life tests’ or ‘Reliability
test plans’.  Such a procedure obviously requires the specification of the probability
model governing the life of the products.

In this paper, we develop Reliability test plans to decide the acceptance /
rejection of a submitted lot of products, whose life time is governed by a Type II
exponentiated log- logistic distribution, derive its operating characteristic function and
give the corresponding decision rule. Similar plans were developed by Epstein (1954),
Sobel and Tischendrof (1959), Goode and Kao (1961), Gupta and Groll (1961), Gupta
(1962), Fertig and Mann (1980), Kantam and Rosaiah (1998), Kantam et al. (2001),
Baklizi (2003), Wu and Tsai (2005), Rosaiah and Kantam (2005), Rosaiah et  al.
(2006), Tsai and Wu (2006), Balakrishnan et. al. (2007), Srinivasa Rao et.al. (2008)
and Srinivasa Rao et.al. (2009a & 2009d). The proposed sampling plans, along with the
operating characteristics, are given in Section 2. The description of tables is given in
Section 3. The results are explained by an example in Section 4.

2. Reliability Test Plan
We assume that the lifetime of a product follows a Type II exponentiated log-

logistic distribution with scale parameter σ, defined by (3). A common practice in life
testing is to terminate the life test by a pre–determined time‘t’ and note the number of
failures (assuming that a failure is well defined). One of the objectives of these
experiments is to set a lower confidence limit on the average life.  It is then to establish

a specified average life with a given probability of at least p .  The decision to accept

the specified average life occurs if and only if the number of observed failures at the
end of the fixed time ‘t’ does not exceed a given number ‘c’– called the acceptance
number. The test may get terminated before the time ‘t’ is reached when the number of
failures exceeds ‘c’ in which case the decision is to reject the lot. For such a truncated
life test and the associated decision rule; we are interested in obtaining the smallest
sample size to arrive at a decision. It is assumed that the distribution parameter  is
known, while  is unknown. In this case the average lifetime of the product depends
only on  and it is easily seen that the average lifetime is monotonously increasing

in . Let 0  represent the required minimum average lifetime, then the following

holds:

0 0( , ) ( , )G t G t      (4)

A sampling plan consists of the following quantities:
 The number of units ‘n’ on test.
 The acceptance number ‘c’,
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 The maximum test duration ‘t’, and
 The ratio 0t  , where

0
  is the specified average life.

The consumer’s risk i.e., the probability of accepting a bad lot (the one for
which the true average life is below the specified life

0
 ) not to exceed 1 – p , so that

p is a minimum confidence level with which a lot of true average life below
0

  is

rejected, by the sampling plan. For a fixed p our sampling  plan is characterized by

(n,c, 0t  ).  Here we consider sufficiently large sized lots so that the binomial

distribution can be applied.  The problem is to determine for given values of p (0 <

p  <1),
0

  and c, the smallest positive integer ‘n’ such that
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Where 0 0( ; , )p G t    is given by (2) indicates the failure probabilities

before time‘t’ which depends only on the ratio 0t  .  The function L (p) is the

operating characteristic function of the sampling plan, i.e. the acceptance probability of
the lot as function of the failure probability ( ) ( ; , )p G t   . The average lifetime

of the products is increasing in   and, therefore, the failure probability

( ) ( ; , )p G t   decreases with increasing  implying that the operating

characteristic function is increasing in .  For a given value of p and 0t   the

values of n and c are determined by means of the operating characteristic function. For
some sampling plans, the values of the operating characteristic function depending on

0   are displayed in Table 3.

The minimum values of n satisfying the inequality (5) are obtained and

displayed in Table 1 for p = 0.75, 0.90, 0.95, 0.99 and 0t  = 0.315, 0.472, 0.629,

0.786, 1.180, 1.573, 1.966, 2.359 for 2, 2   .

If ( ; , )p G t   is small and n is large the binomial probability may be

approximated by Poisson probability with parameter λ = n. p so that the left side of (5)
can be written as
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Where λ = n. 0( ; , )G t   . The minimum values of ‘n’ satisfying (6) are

obtained for the same combination of p*, 0t   values as those used for (4).  The results

are given in Table 2.
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The producer’s risk is the probability of rejecting a lot although 0   holds. It is

obtained by the operating characteristic function:

   ( ) ( , , )L p L G t   (7)

For a specified value of the producer’s risk say 0.05, one may be interested in
knowing what value of  or 0   will ensure a producer’s risk less than or equal to

0.05 for a given sampling plan. The value of   and, hence, the value of 0  , is the

smallest positive number for which the following inequality holds:
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For some sampling plan (n, c, 0t  ) and values of p*, minimum values of

0  satisfying (8) are given in Table 4.

3. Description of the Tables
Assume that the lifetime distribution is type-II exponentiated log-logistic

distribution with 2, 2    and that the experimenter is interested in establishing

that the true unknown average life is at least 1000 hours with confidence p = 0.75. It

is desired to stop the experiment at t = 315 hours. Then, for an acceptance number c= 2,
the required n in Table 1 is 22. If, during 315 hours, no more than 2 failures out of 22
are observed, then the experimenter can assert, with a confidence level of 0.75 that the
average life is at least 1000 hours. If the Poisson approximation to binomial probability
is used, the value of n= 22 is obtained from Table 2 for the same situation.

If the life distribution is assumed to be a gamma distribution with shape
parameter 2 (an IFR model), the value of n from Table IB of Gupta and Groll (1961) is
63 using binomial probabilities and it is 64 using Poisson approximation. In general, all
the values of n tabulated by us are found to be less than the corresponding values of n
tabulated in Kantam and Rosaiah (1998) for a half logistic distribution, Rosaiah et. al.
(2006) for exponentated log- logistic distribution, which in turn are less than those
tabulated by Gupta and Groll (1961) with a gamma model as the lifetime distribution.

For the sampling plan (n = 22, c = 2, 0t   = 0.315) and confidence level

p = 0.75 under type-II exponentiated log-logistic distribution with 2, 2    the

values of the operating characteristic function from Table 3 are as follows:

0/  2 4 6 8 10 12
L(p) 0.9144 0.9976 0.9998 1.0000 1.0000 1.0000

The above values show, that if the true mean lifetime is twice the required

mean lifetime ( 0/   = 2) the producer’s risk is approximately 0.0856. The producer’s
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risk is about zero when the true mean life is 8 times or more the specified mean life

( 0/    8).

From Table 4, we can get the values of the ratio 0/   for various choices of

(c, 0t  ) in order that the producer’s risk may not exceed 0.05.  For example if p =

0.75, 0t   = 0.315, c=2, Table 4 gives a reading of 2.31.  This means the product can

have an average life of 2.31 times the required average lifetime in order that under the
above acceptance sampling plan the product is accepted with probability of at least
0.95. The actual average lifetime necessary to accept 95 percent of the lots is provided
in Table 4.

4. Numerical Example
Consider the following ordered failure times of the release of a software given

in terms of hours from starting of the execution of the software up to the time at which
a failure of the software occurs (Wood, 1996). This data can be regarded as an ordered
sample of size n = 9 with observations

   : 1,2,...9 254,788, 1054, 1393, 2216, 2880, 3593, 4281, 5180ix i  

Let the required average lifetime be 1000 hours and the testing time be t = 786

hours, this leads to ratio of 0t   = 0.786 with a corresponding sample size n = 9 and

an acceptance number c = 4, which are obtained from Table 1 for p = 0.75. Therefore,

the sampling plan for the above sample data is (n = 9, c =42, 0t   = 0.786). Based on

the observations, we have to decide whether to accept the product or reject it. We
accept the product only, if the number of failures before 786 hours is less than or equal
to 4.

However, the confidence level is assured by the sampling plan only if the
given life times follow type- II exponentiated log-logistic distribution. In order to
confirm that the given sample is generated by life times following at least
approximately the type- II exponentiated log-logistic distribution, we have compared
the sample quantiles and the corresponding population quantiles and found a
satisfactory agreement. Thus, the adoption of the decision rule of the sampling plan
seems to be justified. In the sample of 9 units, there is a 1 failure at 254 hours before t =
786 hours. Therefore we accept the product.
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0/t 
p c

0.315 0.472 0.629 0.786 1.180 1.573 1.966 2.359
0.75 0 8 4 3 2 1 1 1 1
0.75 1 15 8 5 4 3 2 2 2
0.75 2 22 11 7 6 4 3 3 3
0.75 3 29 15 10 8 5 5 4 4
0.75 4 36 18 12 9 7 6 5 5
0.75 5 42 22 14 11 8 7 6 6
0.75 6 49 25 17 13 9 8 8 7
0.75 7 55 28 19 15 10 9 9 8
0.75 8 62 32 21 16 12 10 10 9
0.75 9 68 35 23 18 13 11 11 10
0.75 10 75 38 26 20 14 13 12 11
0.90 0 13 6 4 3 2 1 1 1
0.90 1 22 11 7 5 3 3 2 2
0.90 2 30 15 10 7 5 4 4 3
0.90 3 37 19 12 9 6 5 5 4
0.90 4 45 23 15 11 8 6 6 6
0.90 5 52 26 17 13 9 8 7 7
0.90 6 59 30 20 15 10 9 8 8
0.90 7 66 33 22 17 12 10 9 9
0.90 8 73 37 24 19 13 11 10 10
0.90 9 80 41 27 20 14 12 11 11
0.90 10 87 44 29 22 16 13 12 12
0.95 0 16 8 5 4 2 2 1 1
0.95 1 26 13 8 6 4 3 3 2
0.95 2 35 17 11 8 5 4 4 4
0.95 3 43 21 14 10 7 6 5 5
0.95 4 51 25 16 12 8 7 6 6
0.95 5 59 29 19 14 10 8 7 7
0.95 6 66 33 22 16 11 9 8 8
0.95 7 74 37 24 18 12 10 10 9
0.95 8 81 41 27 20 14 12 11 10
0.95 9 88 44 29 22 15 13 12 11
0.95 10 96 48 31 24 16 14 13 12
0.99 0 25 12 7 5 3 2 2 2
0.99 1 36 18 11 8 5 4 3 3
0.99 2 46 22 14 10 7 5 5 4
0.99 3 55 27 17 13 8 6 6 5
0.99 4 64 31 20 15 10 8 7 6
0.99 5 73 36 23 17 11 9 8 8
0.99 6 81 40 26 19 13 10 9 9
0.99 7 89 44 28 21 14 11 10 10
0.99 8 97 48 31 23 15 13 11 11
0.99 9 105 52 34 25 17 14 13 12
0.99 10 112 56 36 27 18 15 14 13

Table 1: Minimum sample size for the specified ratio 0/t  , confidence level p ,

acceptance number c, 2, 2    using the binomial approximation
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0/t 
p c

0.315 0.472 0.629 0.786 1.180 1.573 1.966 2.359
0.75 0 9 5 3 3 2 2 2 2
0.75 1 14 7 5 4 3 3 3 3
0.75 2 22 12 8 7 5 5 4 4
0.75 3 30 16 11 9 7 6 6 6
0.75 4 37 19 13 11 8 7 7 7
0.75 5 44 23 16 12 9 9 8 8
0.75 6 50 26 18 14 11 10 9 9
0.75 7 57 30 20 16 12 11 11 10
0.75 8 63 33 23 18 14 12 12 12
0.75 9 70 36 25 20 15 13 13 13
0.75 10 76 40 27 22 16 15 14 14
0.90 0 14 7 5 4 3 3 3 3
0.90 1 21 11 8 6 5 4 4 4
0.90 2 31 16 11 9 7 6 6 6
0.90 3 39 21 14 11 9 8 7 7
0.90 4 47 25 17 13 10 9 9 9
0.90 5 54 29 20 15 12 11 10 10
0.90 6 62 32 22 18 13 12 11 11
0.90 7 69 36 25 20 15 13 13 13
0.90 8 76 40 27 22 16 15 14 14
0.90 9 83 43 30 23 18 16 15 15
0.90 10 90 47 32 25 19 17 17 16
0.95 0 18 10 7 5 4 4 4 4
0.95 1 27 14 10 8 6 5 5 5
0.95 2 37 19 13 11 8 7 7 7
0.95 3 46 24 16 13 10 9 9 8
0.95 4 54 28 19 15 12 10 10 10
0.95 5 62 32 22 18 13 12 11 11
0.95 6 69 36 25 20 15 13 13 13
0.95 7 77 40 28 22 16 15 14 14
0.95 8 84 44 30 24 18 16 16 15
0.95 9 92 48 33 26 20 18 17 17
0.95 10 99 52 35 28 21 19 18 18
0.99 0 27 14 10 8 6 6 5 5
0.99 1 38 20 14 11 8 8 7 7
0.99 2 49 26 18 14 11 10 9 9
0.99 3 59 31 21 17 13 11 11 11
0.99 4 68 36 24 19 15 13 13 12
0.99 5 77 40 27 22 16 15 14 14
0.99 6 85 45 30 24 18 16 16 15
0.99 7 94 49 33 26 20 18 17 17
0.99 8 102 53 36 29 22 19 19 18
0.99 9 110 57 39 31 23 21 20 20
0.99 10 118 61 42 33 25 22 22 21

Table 2: Minimum sample size for the specified ratio 0/t  , confidence level p ,

acceptance number c, 2, 2    using the Poisson approximation.
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0/ 
p n c 0/t 

2 4 6 8 10 12
0.75 22 2 0.315 0.9144 0.9976 0.9998 1.0000 1.0000 1.0000
0.75 11 2 0.472 0.9045 0.9972 0.9997 0.9999 1.0000 1.0000
0.75 7 2 0.629 0.8967 0.9967 0.9997 0.9999 1.0000 1.0000
0.75 6 2 0.786 0.8311 0.9934 0.9993 0.9999 1.0000 1.0000
0.75 4 2 1.180 0.7588 0.9871 0.9985 0.9997 0.9999 1.0000
0.75 3 2 1.573 0.7636 0.9844 0.9981 0.9996 0.9999 1.0000
0.75 3 2 1.966 0.5925 0.9567 0.9937 0.9986 0.9996 0.9999
0.75 3 2 2.359 0.4383 0.9092 0.9844 0.9964 0.9989 0.9996
0.90 30 2 0.315 0.8285 0.9941 0.9994 0.9999 1.0000 1.0000
0.90 15 2 0.472 0.8053 0.9928 0.9992 0.9999 1.0000 1.0000
0.90 10 2 0.629 0.7604 0.9899 0.9989 0.9998 0.9999 1.0000
0.90 7 2 0.786 0.7571 0.9891 0.9988 0.9998 0.9999 1.0000
0.90 5 2 1.180 0.5936 0.9715 0.9965 0.9993 0.9998 0.9999
0.90 4 2 1.573 0.4930 0.9493 0.9930 0.9985 0.9996 0.9999
0.90 4 2 1.966 0.2764 0.8723 0.9784 0.9950 0.9985 0.9995
0.90 3 2 2.359 0.4383 0.9092 0.9844 0.9964 0.9989 0.9996
0.95 35 2 0.315 0.7663 0.9909 0.9991 0.9998 1.0000 1.0000
0.95 17 2 0.472 0.7490 0.9896 0.9989 0.9998 0.9999 1.0000
0.95 11 2 0.629 0.7099 0.9866 0.9985 0.9997 0.9999 1.0000
0.95 8 2 0.786 0.6794 0.9835 0.9982 0.9996 0.9999 1.0000
0.95 5 2 1.180 0.5936 0.9715 0.9965 0.9993 0.9998 0.9999
0.95 4 2 1.573 0.4930 0.9493 0.9930 0.9985 0.9996 0.9999
0.95 4 2 1.966 0.2764 0.8723 0.9784 0.9950 0.9985 0.9995
0.95 4 2 2.359 0.1435 0.7592 0.9493 0.9872 0.9960 0.9985
0.99 46 2 0.315 0.6214 0.9810 0.9979 0.9996 0.9999 1.0000
0.99 22 2 0.472 0.6030 0.9788 0.9976 0.9995 0.9999 1.0000
0.99 14 2 0.629 0.5581 0.9734 0.9969 0.9994 0.9998 0.9999
0.99 10 2 0.786 0.5266 0.9684 0.9962 0.9993 0.9998 0.9999
0.99 7 2 1.180 0.3169 0.9216 0.9891 0.9977 0.9993 0.9998
0.99 5 2 1.573 0.2863 0.8966 0.9841 0.9965 0.9990 0.9996
0.99 5 2 1.966 0.1128 0.7628 0.9533 0.9886 0.9965 0.9987
0.99 4 2 2.359 0.1435 0.7592 0.9493 0.9872 0.9960 0.9985

Table 3: Values of the operating characteristic function of the sampling plan

0( , , / )n c t   for given p with 2, 2   .
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0/t 
p c

0.315 0.472 0.629 0.786 1.180 1.573 1.966 2.359
0.75 0 5.89 6.79 6.92 7.33 9.77 12.21 14.64 19.56
0.75 1 3.05 3.13 3.43 4.31 4.29 5.35 6.46 8.59
0.75 2 2.31 2.36 2.68 3.01 3.10 3.87 4.64 6.23
0.75 3 2.07 2.17 2.34 2.44 3.26 3.20 3.86 5.14
0.75 4 1.87 1.94 1.99 2.45 2.82 2.82 3.38 4.53
0.75 5 1.79 1.80 1.90 2.19 2.53 2.55 3.06 4.10
0.75 6 1.69 1.77 1.83 2.00 2.33 2.92 2.83 3.79
0.75 7 1.62 1.69 1.78 1.86 2.17 2.72 2.66 3.55
0.75 8 1.59 1.62 1.66 1.92 2.04 2.55 2.52 3.37
0.75 9 1.54 1.57 1.64 1.82 1.94 2.43 2.41 3.21
0.75 10 1.50 1.57 1.62 1.73 2.10 2.32 2.31 3.08
0.90 0 7.22 7.84 8.49 10.39 9.77 12.21 14.64 19.56
0.90 1 3.62 3.78 3.90 4.31 5.76 5.35 6.46 8.59
0.90 2 2.74 2.92 2.94 3.55 4.03 5.03 4.64 6.23
0.90 3 2.37 2.42 2.53 2.85 3.26 4.08 3.86 5.14
0.90 4 2.16 2.23 2.29 2.74 2.82 3.53 4.23 5.65
0.90 5 1.97 2.04 2.14 2.43 2.92 3.17 3.81 5.08
0.90 6 1.88 1.97 2.03 2.22 2.67 2.92 3.50 4.67
0.90 7 1.78 1.86 1.95 2.23 2.48 2.72 3.26 4.35
0.90 8 1.74 1.77 1.89 2.08 2.33 2.55 3.07 4.10
0.90 9 1.70 1.75 1.77 1.97 2.20 2.43 2.92 3.90
0.90 10 1.64 1.69 1.74 1.99 2.10 2.32 2.79 3.73
0.95 0 8.33 8.78 9.81 10.39 13.86 12.21 14.64 19.56
0.95 1 3.96 4.06 4.33 5.14 5.76 7.17 6.46 8.59
0.95 2 2.93 3.07 3.19 3.55 4.03 5.03 6.03 8.06
0.95 3 2.50 2.65 2.71 3.20 3.81 4.08 4.89 6.55
0.95 4 2.26 2.33 2.43 2.74 3.27 3.53 4.23 5.65
0.95 5 2.10 2.19 2.25 2.65 2.92 3.17 3.81 5.08
0.95 6 1.99 2.09 2.12 2.41 2.67 2.92 3.50 4.67
0.95 7 1.91 1.96 2.03 2.23 2.48 3.09 3.26 4.35
0.95 8 1.84 1.91 1.96 2.23 2.56 2.91 3.07 4.10
0.95 9 1.77 1.83 1.90 2.10 2.43 2.76 2.92 3.90
0.95 10 1.73 1.76 1.85 1.99 2.31 2.63 2.79 3.73
0.99 0 10.21 10.39 10.97 12.74 13.86 17.32 20.81 27.82
0.99 1 4.69 4.81 5.08 5.87 6.90 7.17 8.59 11.53
0.99 2 3.37 3.53 3.64 4.44 4.74 5.95 6.03 8.06
0.99 3 2.87 2.96 3.17 3.51 3.81 4.76 4.89 6.55
0.99 4 2.54 2.65 2.79 3.23 3.65 4.10 4.23 5.65
0.99 5 2.37 2.45 2.55 2.85 3.25 3.65 4.37 5.87
0.99 6 2.22 2.31 2.38 2.76 2.95 3.33 4.01 5.35
0.99 7 2.11 2.16 2.25 2.53 2.74 3.09 3.71 4.97
0.99 8 2.02 2.08 2.16 2.36 2.78 2.91 3.49 4.67
0.99 9 1.95 2.02 2.08 2.34 2.62 3.03 3.31 4.42
0.99 10 1.89 1.94 2.01 2.22 2.49 2.89 3.16 4.21

Table 4: Minimum ratio of true  and required 0   for the acceptability of a lot

with producer’s risk of 0.05 for 2, 2   .


