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Abstract

In this paper we consider a generalization of the log- logistic distribution called Type-I|
exponentiated log- logistic distribution suggested by Kotz and Nadaragjah (2000). The operating
characteristic for a sampling plan is determined for the case that a lot of products are submitted
for inspection with lifetimes specified by a Type-Il exponentiated log- logistic distribution
(TELLD). The results areillustrated by a numerical example.
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1. Introduction

Gupta et. al. (1998) introduced the exponentiated exponential distribution as a
generalization of the standard exponential distribution. Kotz and Nadargjah (2000)
introduced a new method of adding a new parameter to an existing distribution. In this
paper we introduce a new parameter to the standard log- logistic distribution [in lines of
the exponentiated frechet distribution suggested by Nadarajah and Kotz (2003)] and it
iscalled as Type-11 exponentiated log- logistic distribution.

We know that the cumulative distribution function (cdf) of the log- logistic
distributionis

F =X )’
[1+(x/0)’ ]
We define a new distribution by the cdf as follows:
(x/ o)*
{1+ (x/ 0)"}

i Xx>0,0>0,4>1 (1)

G(X;a,ﬂ,o’):l—|:1— } :1—[1+(X/0)”]_a;x> 0,0>0,>0,48>1
(2)
We called (2) as the Type Il exponentiated log- logistic distribution. The
corresponding probability density function (pdf) is given by
Q x/ o)™
g(X;a,ﬂ,a):—’B (x/o) — X>0,0>0,a>0,4>1 (3)
o [1+(x/ o) ]
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When « =1, the pdf of (3) reduces to the log- logistic distribution. However,
extended exponential distribution in reliability test plans, based on life tests, has not
paid much attention. Acceptance sampling plans in statistical quality control concern
with accepting or rejecting a submitted lot of alarge size of products on the basis of the
quality of products inspected in a sample taken from the lot. If the quality of the
product inspected is the lifetime of the product that is put for testing, after the
completion of sampling inspection, then we have a sample of life times of the sampled
products. If adecision to accept or reject the lot subject to the risks associated with the
two types of errors (rejecting a good lot/ accepting a bad lot) is possible, such a
procedure may be termed as ‘Acceptance sampling based on life tests’ or ‘Reliability
test plans’. Such a procedure obviously requires the specification of the probability
model governing the life of the products.

In this paper, we develop Reliability test plans to decide the acceptance /
rejection of a submitted lot of products, whose life time is governed by a Type Il
exponentiated log- logistic distribution, derive its operating characteristic function and
give the corresponding decision rule. Similar plans were developed by Epstein (1954),
Sobel and Tischendrof (1959), Goode and Kao (1961), Gupta and Groll (1961), Gupta
(1962), Fertig and Mann (1980), Kantam and Rosaiah (1998), Kantam et al. (2001),
Baklizi (2003), Wu and Tsai (2005), Rosaiah and Kantam (2005), Rosaiah et al.
(2006), Tsai and Wu (2006), Balakrishnan et. al. (2007), Srinivasa Rao et.al. (2008)
and Srinivasa Rao et.al. (2009a & 2009d). The proposed sampling plans, along with the
operating characteristics, are given in Section 2. The description of tables is given in
Section 3. The results are explained by an example in Section 4.

2. Reliability Test Plan

We assume that the lifetime of a product follows a Type Il exponentiated log-
logistic distribution with scale parameter g, defined by (3). A common practice in life
testing is to terminate the life test by a pre-determined time‘t” and note the number of
failures (assuming that a failure is well defined). One of the objectives of these
experimentsis to set alower confidence limit on the average life. It is then to establish
a specified average life with a given probability of at least p* . The decision to accept
the specified average life occurs if and only if the number of observed failures at the
end of the fixed time ‘t” does not exceed a given number ‘c’— called the acceptance
number. The test may get terminated before the time “t” is reached when the number of
failures exceeds ‘¢’ in which case the decision is to reject the lot. For such a truncated
life test and the associated decision rule; we are interested in obtaining the smallest
sample size to arrive at a decision. It is assumed that the distribution parameter o is
known, while ¢ is unknown. In this case the average lifetime of the product depends
only on o and it is easily seen that the average lifetime is monotonously increasing

ino . Let g, represent the required minimum average lifetime, then the following
holds:
Gt,o) < G(t,o,) & o =2 o, 4

A sampling plan consists of the following quantities:
. The number of units ‘n’ on test.
. The acceptance number ‘c’,
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o The maximum test duration ‘t’, and
. The ratiot/(f0 , Where O isthe specified average life.

The consumer’s risk i.e., the probability of accepting a bad lot (the one for
which the true average life is below the specified life g ) not to exceed 1 - p*, so that

p" is aminimum confidence level with which alot of true average life below O is

rejected, by the sampling plan.  For afixed P our sampling planis characterized by
(n,c,t/O'o). Here we consider sufficiently large sized lots so that the binomial

distribution can be applied. The problem is to determine for given values of P’ (0 <

p <1), 0, and c, the smallest positive integer ‘n’ such that

L(IQ;)=EL” )Ba-p) < 1-p ©)

i=0

Where p, =G(t;,0,) is given by (2) indicates the failure probabilities

before time‘t” which depends only on the ratiot/ao. The function L (p) is the
operating characteristic function of the sampling plan, i.e. the acceptance probability of
the lot as function of the failure probability p(c) = G(t; ¢, o) . The average lifetime
of the products is increasing in o and, therefore, the failure probability
p(o) =G(t;a,0) decreases  with increasingo  implying that the operating
characteristic function is increasing ino . For a given vaue of p* and t/a0 the

values of n and ¢ are determined by means of the operating characteristic function. For
some sampling plans, the values of the operating characteristic function depending on

o/o, aredisplayedin Table 3.

The minimum values of n satisfying the inequality (5) are obtained and
displayed in Table 1 for p”= 0.75, 0.90, 0.95, 0.99 and t/c70 = 0.315, 0.472, 0.629,
0.786, 1.180, 1.573, 1.966, 2.359 for f =2, = 2.

If p=G(t;,0)is smal and n is large the binomial probability may be
approximated by Poisson probability with parameter A = n. p so that the left side of (5)
can be written as

. A .
Lp=2, 7 e" < 1-p (6)
i=0 .

Where A = n. G(t;,0,). The minimum values of ‘n” satisfying (6) are
obtained for the same combination of p*,t/ 0, Vvaluesasthose used for (4). Theresults
aregivenin Table 2.
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The producer’s risk is the probability of rejecting a lot although o = o, holds. It is
obtained by the operating characteristic function:

L[p(c)]=L[G(t,,0)] (7)

For a specified value of the producer’s risk say 0.05, one may be interested in
knowing what value of & or 0'/0'o will ensure a producer’s risk less than or equal to

0.05 for a given sampling plan. The value of o and, hence, the value of O'/a0 , isthe
smallest positive number for which the following inequality holds:

ZC)(F) p(e) [1- p(o)]" 2095 8)

i=0
For some sampling plan (n, c,t/ao) and values of p*, minimum values of

o/ o, satisfying (8) are given in Table 4.

3. Description of the Tables
Assume that the lifetime distribution is type-ll exponentiated log-logistic

distribution with & = 2, f# = 2 and that the experimenter is interested in establishing

that the true unknown average life is at least 1000 hours with confidence p*= 0.75. It

is desired to stop the experiment at t = 315 hours. Then, for an acceptance number c= 2,
the required n in Table 1 is 22. If, during 315 hours, no more than 2 failures out of 22
are observed, then the experimenter can assert, with a confidence level of 0.75 that the
average lifeis at least 1000 hours. If the Poisson approximation to binomial probability
isused, the value of n= 22 is obtained from Table 2 for the same situation.

If the life distribution is assumed to be a gamma distribution with shape
parameter 2 (an IFR model), the value of n from Table IB of Guptaand Groll (1961) is
63 using binomial probabilities and it is 64 using Poisson approximation. In general, all
the values of n tabulated by us are found to be less than the corresponding values of n
tabulated in Kantam and Rosaiah (1998) for a half logistic distribution, Rosaiah et. al.
(2006) for exponentated log- logistic distribution, which in turn are less than those
tabulated by Gupta and Groll (1961) with a gamma model as the lifetime distribution.

For the sampling plan (n = 22, ¢ = 2, t/o, = 0.315) and confidence level

p* = 0.75 under type-1l exponentiated log-logistic distribution with & = 2, 8 = 2 the
values of the operating characteristic function from Table 3 are as follows:

oloy |2 4 6 8 10 12

L(p) 0.9144 0.9976 0.9998 1.0000 1.0000 1.0000

The above values show, that if the true mean lifetime is twice the required
mean lifetime ( 0'/0'O = 2) the producer’s risk is approximately 0.0856. The producer’s
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risk is about zero when the true mean life is 8 times or more the specified mean life
(olo, > 8).

From Table 4, we can get the values of theratio o / &, for various choices of
(c, t/O'o) in order that the producer’s risk may not exceed 0.05. For example if p’ =

0.75, t/ 0, =0.315, c=2, Table 4 gives areading of 2.31. This means the product can

have an average life of 2.31 times the required average lifetime in order that under the
above acceptance sampling plan the product is accepted with probability of at least
0.95. The actual average lifetime necessary to accept 95 percent of the lots is provided
inTable 4.

4. Numerical Example

Consider the following ordered failure times of the release of a software given
in terms of hours from starting of the execution of the software up to the time at which
a failure of the software occurs (Wood, 1996). This data can be regarded as an ordered
sample of size n = 9 with observations

{x:1=12,..9} = {254,788, 1054, 1393, 2216, 2880, 3593, 4281, 5180}

Let the required average lifetime be 1000 hours and the testing time be t = 786
hours, this leads to ratio of t/ 0, = 0.786 with a corresponding sample size n = 9 and

an acceptance number ¢ = 4, which are obtained from Table 1 for p* = 0.75. Therefore,

the sampling plan for the above sample datais (n =9, ¢c =42, t/O'O = 0.786). Based on

the observations, we have to decide whether to accept the product or reject it. We
accept the product only, if the number of failures before 786 hours is less than or equal
to 4.

However, the confidence level is assured by the sampling plan only if the
given life times follow type- 1l exponentiated log-logistic distribution. In order to
confirm that the given sample is generated by life times following at least
approximately the type- Il exponentiated log-logistic distribution, we have compared
the sample quantiles and the corresponding population quantiles and found a
satisfactory agreement. Thus, the adoption of the decision rule of the sampling plan
seems to be judtified. In the sample of 9 units, thereis a1 failure at 254 hours beforet =
786 hours. Therefore we accept the product.
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o . t/ o,
0.315 0.472 0.629 0.786 1.180 1.573 1.966 2.359

075 |0 8 4 3 2 1 1 1 1
075 |1 15 8 5 4 3 2 2 2
075 |2 22 11 7 6 4 3 3 3
075 |3 29 15 10 8 5 5 4 4
075 | 4 36 18 12 9 7 6 5 5
075 |5 42 22 14 11 8 7 6 6
075 |6 49 25 17 13 9 8 8 7
075 |7 55 28 19 15 10 9 9 8
0.75 8 62 32 21 16 12 10 10 9
0.75 9 68 35 23 18 13 11 11 10
075 | 10 75 38 26 20 14 13 12 11
0.90 0 13 6 4 3 2 1 1 1
0.90 1 22 11 7 5 3 3 2 2
0.90 2 30 15 10 7 5 4 4 3
0.90 3 37 19 12 9 6 5 5 4
0.90 4 45 23 15 11 8 6 6 6
0.90 5 52 26 17 13 9 8 7 7
0.90 6 59 30 20 15 10 9 8 8
0.90 7 66 33 22 17 12 10 9 9
090 |8 73 37 24 19 13 11 10 10
090 |9 80 41 27 20 14 12 11 11
090 | 10 87 a4 29 22 16 13 12 12
095 |0 16 8 5 4 2 2 1 1
095 |1 26 13 8 6 4 3 3 2
095 |2 35 17 11 8 5 4 4 4
095 |3 43 21 14 10 7 6 5 5
095 |4 51 25 16 12 8 7 6 6
095 |5 59 29 19 14 10 8 7 7
095 |6 66 33 22 16 11 9 8 8
095 |7 74 37 24 18 12 10 10 9
095 |8 81 41 27 20 14 12 11 10
0.95 9 88 44 29 22 15 13 12 11
0.95 10 96 48 31 24 16 14 13 12
0.99 0 25 12 7 5 3 2 2 2
0.99 1 36 18 11 8 5 4 3 3
099 |2 46 22 14 10 7 5 5 4
0.99 3 55 27 17 13 8 6 6 5
0.99 4 64 31 20 15 10 8 7 6
0.99 5 73 36 23 17 11 9 8 8
0.99 6 81 40 26 19 13 10 9 9
099 |7 89 44 28 21 14 11 10 10
099 |8 97 48 31 23 15 13 11 11
099 |9 105 52 34 25 17 14 13 12
099 | 10 112 56 36 27 18 15 14 13

Table 1: Minimum sample size for the specified ratio '[/(70 , confidence level p°,

acceptance number ¢, @ = 2, f = 2 using the binomial approximation
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. t/ o,
p C
0.315 0.472 0.629 0.786 1.180 1.573 1.966 2.359

075 |0 9 5 3 3 2 2 2 2
075 |1 14 7 5 4 3 3 3 3
075 |2 22 12 8 7 5 5 4 4
075 |3 30 16 1 9 7 6 6 6
075 | 4 37 19 13 11 8 7 7 7
0.75 5 44 23 16 12 9 9 8 8
0.75 6 50 26 18 14 11 10 9 9
075 |7 57 30 20 16 12 11 11 10
0.75 8 63 33 23 18 14 12 12 12
0.75 9 70 36 25 20 15 13 13 13
075 | 10 76 40 27 22 16 15 14 14
0.90 0 14 7 5 4 3 3 3 3
090 |1 21 11 8 6 5 4 4 4
09 |2 31 16 11 9 7 6 6 6
09 |3 39 21 14 11 9 8 7 7
0.90 4 47 25 17 13 10 9 9 9
09 |5 54 29 20 15 12 11 10 10
09 |6 62 32 22 18 13 12 11 11
0.90 7 69 36 25 20 15 13 13 13
09 |8 76 40 27 22 16 15 14 14
09 |9 83 43 30 23 18 16 15 15
0.90 10 90 47 32 25 19 17 17 16
095 |0 18 10 7 5 4 4 4 4
095 |1 27 14 10 8 6 5 5 5
095 |2 37 19 13 11 8 7 7 7
0.95 3 46 24 16 13 10 9 9 8
095 |4 54 28 19 15 12 10 10 10
095 |5 62 32 22 18 13 12 11 11
0.95 6 69 36 25 20 15 13 13 13
095 |7 77 40 28 22 16 15 14 14
095 |8 84 44 30 24 18 16 16 15
0.95 9 92 48 33 26 20 18 17 17
0.95 10 99 52 35 28 21 19 18 18
09 |0 27 14 10 8 6 6 5 5
0.99 1 38 20 14 11 8 8 7 7
099 |2 49 26 18 14 11 10 9 9
099 |3 59 31 21 17 13 1 11 11
099 |4 68 36 24 19 15 13 13 12
099 |5 77 40 27 22 16 15 14 14
0.99 6 85 45 30 24 18 16 16 15
0.99 7 94 49 33 26 20 18 17 17
0.99 8 102 53 36 29 22 19 19 18
09 |9 110 57 39 31 23 21 20 20
099 |10 118 61 42 33 25 22 22 21

Table 2: Minimum sample size for the specified ratio t/ o, confidence level p”,
acceptance number ¢, @ = 2, f = 2 using the Poisson approximation.
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p° | n c t/o, oloq
2 4 6 8 10 12
075 | 22 2 0.315 | 0.9144 09976 0.9998 1.0000 1.0000 1.0000
075 | 11 2 0.472 | 0.9045 0.9972 0.9997 0.9999 1.0000 1.0000
075 | 7 2 0.629 | 0.8967 0.9967 0.9997 0.9999 1.0000 1.0000
075 | 6 2 0.786 | 0.8311 0.9934 0.9993 0.9999 1.0000 1.0000
075 | 4 2 1180 | 0.7588 0.9871 0.9985 0.9997 0.9999 1.0000
075 | 3 2 1573 | 0.7636 0.9844 0.9981 0.9996 0.9999 1.0000
075 | 3 2 1966 | 0.5925 0.9567 0.9937 0.9986 0.9996 0.9999
075 | 3 2 2.359 | 04383 0.9092 0.9844 0.9964 0.9989 0.9996
0.90 | 30 2 0.315 | 0.8285 0.9941 0.9994 0.9999 1.0000 1.0000
0.90 | 15 2 0.472 | 0.8053 0.9928 0.9992 0.9999 1.0000 1.0000
0.90 | 10 2 0.629 | 0.7604 0.9899 0.9989 0.9998 0.9999 1.0000
090 |7 2 0.786 | 0.7571 0.9891 0.9988 0.9998 0.9999 1.0000
090 | 5 2 1180 | 05936 09715 0.9965 0.9993 0.9998 0.9999
090 | 4 2 1573 | 04930 09493 0.9930 0.9985 0.9996 0.9999
090 | 4 2 1.966 | 0.2764 0.8723 09784 0.9950 0.9985 0.9995
0.90 | 3 2 2.359 | 04383 0.9092 0.9844 0.9964 0.9989 0.9996
0.95 | 35 2 0.315 | 0.7663 0.9909 0.9991 0.9998 1.0000 1.0000
095 | 17 2 0.472 | 0.7490 0989 0.9989 0.9998 0.9999 1.0000
095 |11 2 0.629 | 0.7099 0.9866 0.9985 0.9997 0.9999 1.0000
095 | 8 2 0.786 | 0.6794 09835 0.9982 0.9996 0.9999 1.0000
095 |5 2 1180 | 05936 0.9715 0.9965 0.9993 0.9998 0.9999
09 | 4 2 1573 | 04930 0.9493 0.9930 0.9985 0.9996 0.9999
095 | 4 2 1.966 | 0.2764 0.8723 09784 0.9950 0.9985 0.9995
09 | 4 2 2359 | 01435 0.7592 0.9493 0.9872 0.9960 0.9985
0.99 | 46 2 0.315 | 0.6214 09810 0.9979 0.9996 0.9999 1.0000
0.99 | 22 2 0.472 | 0.6030 0.9788 0.9976 0.9995 0.9999 1.0000
099 | 14 2 0.629 | 05581 0.9734 0.9969 0.9994 0.9998 0.9999
0.99 | 10 2 0.786 | 0.5266 0.9684 0.9962 0.9993 0.9998 0.9999
099 |7 2 1180 | 0.3169 0.9216 0.9891 0.9977 0.9993 0.9998
099 |5 2 1573 | 0.2863 0.8966 0.9841 0.9965 0.9990 0.9996
099 |5 2 1966 | 0.1128 0.7628 0.9533 0.9886 0.9965 0.9987
099 | 4 2 2.359 | 01435 0.7592 0.9493 0.9872 0.9960 0.9985

Table 3: Values of the operating characteristic function of the sampling plan
(n,c,t/o,) for given pwith a =2,4=2.
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o . t/ o,

0.315 0.472 0.629 0.786 1.180 1.573 1.966 2.359
075 |0 58 679 692 733 977 1221 1464 1956
075 |1 305 313 343 431 429 535 646 859
075 |2 231 236 268 301 310 387 464 623
075 |3 207 217 234 244 326 320 38 514
075 |4 187 194 199 245 28 28 3338 453
075 |5 179 180 190 219 253 255 306 410
075 |6 169 177 183 200 233 29 283 379
075 |7 162 169 178 18 217 272 266 355
0.75 8 1.59 1.62 1.66 1.92 2.04 2.55 2.52 3.37
075 |9 154 157 164 18 194 243 241 321
0.75 10 1.50 1.57 1.62 1.73 2.10 2.32 2.31 3.08
0.90 0 7.22 7.84 8.49 10.39 9.77 12.21 14.64 19.56
0.90 1 3.62 3.78 3.90 431 5.76 5.35 6.46 8.59
090 |2 274 292 294 355 403 503 464 623
09 |3 237 242 253 28 326 408 38 514
090 |4 216 223 229 274 28 353 423 565
09 |5 197 204 214 243 29 317 381 508
09 |6 188 197 203 222 267 292 350 467
09 |7 178 18 195 223 248 272 326 435
09 |8 174 177 189 208 233 255 307 410
090 |9 170 175 177 197 220 243 292 390
090 |10 164 169 174 199 210 232 279 373
095 |0 833 878 981 1039 1386 1221 1464 1956
095 |1 396 406 433 514 576 717 646 859
095 |2 203 307 319 35 403 503 603 806
095 |3 250 265 271 320 38l 408 489 655
095 |4 226 233 243 274 327 353 423 565
095 |5 210 219 225 265 292 317 381 508
095 |6 199 209 212 241 267 292 350 467
0.95 7 1.91 1.96 2.03 2.23 2.48 3.09 3.26 4.35
0.95 8 1.84 1.91 1.96 2.23 2.56 291 3.07 4.10
0.95 9 1.77 1.83 1.90 2.10 2.43 2.76 2.92 3.90
0.95 10 1.73 1.76 1.85 1.99 2.31 2.63 2.79 3.73
0.99 0 10.21 10.39 10.97 12.74 13.86 17.32 20.81 27.82
099 |1 469 481 508 587 690 717 859 1153
0.99 2 3.37 3.53 3.64 4.44 4.74 5.95 6.03 8.06
0.99 3 2.87 2.96 3.17 3.51 3.81 4.76 4.89 6.55
0.99 4 2.54 2.65 2.79 3.23 3.65 4.10 4.23 5.65
0.99 5 2.37 2.45 2.55 2.85 3.25 3.65 4.37 5.87
09 |6 222 231 238 276 29 333 401 535
099 |7 211 216 225 253 274 309 371 497
099 |8 202 208 216 236 278 291 349 467
099 |9 195 202 208 234 262 303 331 442
099 |10 180 194 201 222 249 289 316 421

Table 4: Minimum ratio of true o and required o, for the acceptability of a lot
with producer’s risk of 0.05 fora =2, =2.




