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Abstract
This paper presents a mathematical model for performing availability and reliability

analysis of a parallel repairable system consisting of n identical components with degradation
facility and common-cause failures. In addition, system repair time is assumed to be arbitrarily
distributed. Markov and supplementary variable techniques are used to develop equations for the
model. As an illustration, system of four-identical/repairable components is analysed.
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1. Introduction
Markov chain is a stochastic process that have a finite states at time t under

consideration that the chain runs only through a continuous time, the basic assumption
of Markov chain is the transition from the current state of the system is determined only
by the present state and not by previous state or the time at which it reached the present
state Birolini (2007).

Parallel can be used to increase the reliability of a system without any change
in the reliability of the individual components that form the system. The probability of
failure or unreliability for a system with n statistically independent parallel components
is the probability that 1 fails and component 2 fails and all of the other components in
the system fail. Therefore, in a parallel system, all n components must fail for the
system to fail Xie et al. (2004). The problem of evaluating the availability and
reliability of the parallel system has been the subject of many studies throughout the
literature (Kolowrocki (1994), Pan and Nonaka (1995) , Ebeling (2000) ,
Kwiatuszewska-Sarnecka (2001)).

It is observed that in the field of reliability, failures play a vital role. Many
researchers Lam (1995) define different types of failures. In real systems, they cannot
neglect the effect of various failures such as major failure, catastrophic failure, minor
failure, common-cause failure, and so on.

It is a common knowledge that redundancy can be used to increase the
reliability of a system without changing the reliability of the individual unit that forms
the system. It has been realized that in order to predict realistic reliability and
availability of parallel systems the occurrence of common-cause failure must be
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considered. A common-cause failure is defined as the failure of single component or
multiple components due to a single common-cause Sridharan and Kalyani (2002).
Some of the common-cause failure may occur due to many reasons such as wrong
designing of equipment during design phase, high temperature of computer chips, and
so on.

Most reliability models assume that the up and down times of the components
are exponentially distributed. This assumption leads to a Markovian model with
constant transition rates. The analysis in such cases is relatively simple and the
numerical results can be easily obtained. The assumption is often valid for the up time
but the down times are likely to have non-exponential distribution. When the
components are independent, the steady-state results are not affected by the shape of the
distribution.   If the distributions cannot be represented by a single exponential form
then the process becomes non-Markovian and different techniques are required for
system solution. In this paper, we use the supplementary variable method. This method
is used to convert non-Markov process into a Markov process by redefinition of the
state space (Singh and Billinoton (1977)).

By using the supplementary variable method, we can readily obtain all
differential equations in terms of the state transition diagram of the model. However, it
is still difficult to solve these differential equations because they usually involve some
functions to be determined if there are at least two hazard rate functions involved in one
of the equations.

In the traditional systems, the units of the system have only two states up and
down. However, in many situations the units of the system can have finite number of
states. In this paper, we consider that each component of the system has three states: up,
degraded, and down. The transition from  up state to degraded state represents a partial
failure and the transition from up state to down (failed) state or from degraded state to
down (failed) state represents a complete failure.

In (Wei et al (1998)), stochastic analysis of a repairable system with three
units and two repair facilities was introduced. In (Agarwal et al (2010)), reliability
characteristic of cold-standby redundant system was introduced. In (Sachin and Anand
(2009)), some reliability parameters of a three state repairable system with
environmental failure were evaluated. In (El-Damcese (1997))], human error and
common-cause failure modelling was established for a two-unit multiple system. In
(Chander and Singh (2009))], reliability modeling of 2-out-of-3 redundant system is
introduced subject to degradation after repair.

In this paper, we construct a mathematical model for a system consists of n
repairable and identical components connected in parallel and each component has
three states: up, degraded, and down. Each component of the system has three types of
failures. All failures and repair rates are constant and the repaired component is good as
new. The system at any working state can completely fail due to a common-cause
failure with constant failure rate and in this case the system will go to the critical case c.
We assume that the repair time, when the system fails due to a common-cause failure,
follows general distribution. We also introduce a numerical example to illustrate the
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computation of steady-state availability, reliability function, and mean time to failure of
a system consists of 4 components.

2. Model description
We consider that the system consists of n components connected in parallel

and these components are identical and repairable. At time t = 0, the system is operable
and it fails when all components completely fail or it fails due to common-cause failure
and in this case the system goes to the critical case c. Each component has three states:
up, degraded, and down and each component fails with three types of failures. All
failures are statistically independent. All failures and repair rates are constant except for
the repair rate from the critical case which will be not constant. So, this process is non-
Markovian and we will use the supplementary variable method to convert it into
Markovian process. By using supplementary variable method, we can construct the
differential equations associated with the model. The state-space for the model is shown
in Figure 1.

2.1 Notations
 : the constant failure rate of the unit when it goes from up state to degraded state,
 : the constant failure rate of the unit when it goes from up state to down state,
 : the constant failure rate of the unit when it goes from degraded state to down state,
 : the  constant failure rate of the system when it fails due to a common-cause failure,
 : the constant repair rate of the unit from degraded state to up state,
 : the constant repair rate of the unit from down state to up state,

 : the repair rate of the failed system when it fails due to common-cause failure
            and the distribution of the elapsed repair time, x, is general,

 : the probability that the system is in state (i, j) at time t, where i is the number
              of degraded units and j is the number of failed units,

 : the Laplace transform of the probability
 : the probability that the system is in the critical state c at time t and the

              elapsed repair time is x,
 : the steady-state probability of being in state (i, j),

n : the total number of components in the system.
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Fig. 1: State-space diagram

2.2 State Probabilities
By probability and continuity arguments, the difference-differential equations

for the stochastic process which is continuous  in time and discrete in space are given as
follows.

For

For

(2)

c

1, 0

0, 0

0, 1

1, 1

2, 0 0, 2
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For

For

(4)
For

For

For

For the critical case c

Boundary condition

Initial conditions

2.3 System Availability Analysis
To solve the previous mathematical model (1)-(9) for a given value of n, we

will take Laplace transform of the equations from (1) to (9) and use the associated
initial conditions. Hence, we obtain the following system of equations.
For



 Journal of Reliability and Statistical Studies, June 2012, Vol. 5 (1)100

For

For

For

For

For

(15)
For

For the critical case c

The boundary condition becomes

Solving differential equation (17), we get the following resulting expression

(19)
Thus, from equation (18), we have

Now, substituting from equation (20) into the following integration, we have
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where

where  is the Laplace transform of the reliability function of the random variable
X. The availability function can be obtained by taking the inverse of Laplace transform
as follows.

2.4 System Reliability and Mean Time to Failure
To obtain the reliability function of model (1)-(9), we assume that all failed

states are absorbing states and set all transition rates from these states equal to zero. We
also consider that  The reliability function can be obtained by taking
the inverse of Laplace transform as follows.

The mean time to system failure (MTTF) can be obtained from the following relation.

2.5 System Steady-State Availability
Now, to obtain the steady-state availability, we consider that :

Equations (2)-(8) reduce to equations (26) to (32) respectively.
For
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(26)

For
(27)

For

For

For

For the critical case c

The sum of all probabilities equals to one

Where

The boundary condition becomes

Solving equation (32), we get
(36)

Substituting   from equations (35) and (36) into equation (34), we get

The steady-state availability probability can be obtained from the following relation.
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3. Numerical Example
In this example, we will apply the introduced mathematical model (1) to (9)

for n = 4 and determine steady-state availability, reliability function, and mean time to
failure of this model. In this case for (n = 4), the working states are: (0, 0), (1, 0), (0, 1),
(2, 0), (0, 2), (1, 1), (3, 0), (0, 3), (1, 2), (2, 1), (4, 0), (3, 1), (1, 3), (2, 2), and the failed
states are: (0, 4), (c). To obtain the reliability function, we consider that all failed states
are absorbing states in the model (1)-(9), and we consider the following data:

Using numerical solutions with MAPLE program, we can solve the resultant
system of equations by using equation (24) and the results are shown in Figure 2. Also,
we obtain the mean time to failure by using equation (25) and the mean time to failure
(MTTF) versus the common-cause failure rate  and  are shown in Figure 3 and
Figure 4, respectively.

Fig. 2: Reliability function R(t) versus time

Now, We consider that the random variable X follows Gamma distribution
with parameters (=1, β=2), hence the expected value of X will be given by  E(X)=2,
and then we substitute in equation (37). Using the same data given in reliability, we can
solve the system of equations from (26) to (31), equation (33), and equation (37) by
using MAPLE program and get the steady-state availability probability by the aid of
equation (38). The results for the steady-state availability probability A versus the
common-cause failure rate  and  are shown in Figure 5 and Figure 6, respectively.
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Fig. 3: MTTF versus

Fig. 4: MTTF versus

Fig. 5:  Steady-state availability probability A versus
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Fig. 6:  Steady-state availability probability A versus

4. Conclusion
The main objective for this study was to offer a methodology for analysing

parallel repairable system subject to degradation, common-cause failures, and general
repair rate. The problem of evaluating the availability and reliability depending on the
size of the parallel system was formulated in a set of first order linear differential
equations form, which seems convenient for computation with software packages like
Maple. Numerical solutions based on Runge-Kutta and Laplace Transform methods
were used in this model to evaluate the state probabilities from the set of first order
linear differential equations. Tractable solutions were found for the repairable parallel
system of 4-component and 16-state. The results obtained in this paper can be applied
to similar models.
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