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Abstract
In this paper a method for reliability analysis of restorable items is considered. We

present the model describing a variation of reliability characteristics of objects and taking into
account incomplete repair of operability after failure. The asymptotic solution for the intensity of
the geometric process model is obtained. Reliability characteristics of the geometric process
model for various distribution laws and various parameters are calculated.
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1. Introduction
In the present report we consider a method for reliability analysis of restorable

objects. Suppose that the restorable object is repaired after failure. During the repair its
operability is recovered. It is important to note that the ageing can take place even at
initial stages of the object functioning and leads to degradation of reliability
characteristics. This in turn affects the repair and leads to incomplete repair of the
object’s operability.

Let us consider some generalized object structurally consisting of details,
elements, subcells etc. Operability recovery is performed as follows. The failed element
is replaced by a new one. It is important to note that operable details of the failed object
have already spent a part of resource. Therefore we can assume that the restored object
cannot have the same reliability characteristics as the ones before the functioning start-
up. It is important to note that complete recovery of operability does not occur when a
scheduled preventive maintenance is carried out.

We define the following concept. The repair is called incomplete if after a
complex of regenerative actions, the objects’ reliability characteristics are essentially
above the ones at the moment of failure but lower than the reliability characteristics of a
new element.

The outline of the paper is as follows. In the next section we describe the model of
geometric process. In Section 3 we present the renewal equations for intensity and
renewal function. Section 4 is devoted to the study of the limiting distribution of .

The correlation coefficients of the instances of the nth and mth failure times ( n & m )

are obtained and investigated. In Section 5 we consider the asymptotic behavior of the
renewal function and intensity. In Section 6 we introduce and describe new
characteristics, namely the geometric of renewal function (GRF) and the geometric of
intensity function (GIF). Section 7 summarizes our findings.
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2. Geometric Process
Let us consider the model describing the variation of object reliability

characteristics and taking into account incomplete repair of operability after failure. The
behavior of complex systems is well described by this model. We assume that the
system consists of components, subsystems, system parts.

Consider the functioning process of the system. A failed element is found and
is replaced by a new one. The system passes again in operating state. We should take
into consideration that all elements and system parts (except the replaced element) had
a certain operating time and have already spent a part of the resource. Thus we should
take into account incomplete recovery considering the system functioning process as a
whole.

Definition 1. Let { } 1i i    be a sequence of independent random variables. Each i
corresponds to operating time between failures of the object with the distribution
function ( )

i
F t  generated by the distribution ( )F t as follows

1
( ) 1 2

i i

t
F t F i  

 
     

 
(1)

where   is a positive constant. Then, the sequence { } 1i i    is called geometric

process.
Further we denote by  the common ratio of the geometric process (or the process

ratio).
Geometric processes in a reliability context were introduced by Lam (1988).

Saenko (1994) considered an application of the geometric process to the model of
alternating renewal process. Finkelstein (1993) considered some generalizations by
applying geometric processes to a nonlinear scale of transformation. Antonov et. al.
(2007) described the maximum likelihood method for the estimation of parameters for
the geometric process model. Estimations of the index  were obtained for various

distribution laws of the first operating time.
Consider the following functioning strategy of an object. The object operates

during a random time. After failure the object is restored and we consider that the
restoration is incomplete. The degradation coefficient  characterizes the

incompleteness of repair. We suppose that the repair time of the object is negligible in
comparison with the operating time between failures, i.e. the repair time is immediate.

3. Renewal Equation
As a result of incomplete repair the operating time of the renewal object is

reduced (by probability) by   times in comparison with the previous operation phase:

1
2 1 1 0 1

d d
n

n           .

Mathematical dependence between distribution functions of the operating time
between failures of the restored object (taking into account incomplete repair) can be
expressed as

2 1 1 1
( ) ( )

n n

t t
F t F F t F     

  
     

   
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where ( )
i

F t is the distribution function of the operating time between failures of ( 1)i 

times restored object and  is the coefficient of incomplete restoration (degradation

coefficient). Then, distribution densities are related through the following equation

11 1

1
( )

n n n

t
f t f   

 
  

 
The degradation coefficient  is an average value that reflects the accumulated

process of damages and defects and indirectly characterizes the process of gradual
material weariness, physical ageing, wear ability, corrosion, etc.

Let us define the expression that establishes the relationship between the failure
rate at the initial stage of operation and the failure rate after the ( 1)n th failure. By

definition the failure rate can be defined by
( )

( )
1 ( )

f t
t

F t
  


Then the expression of the failure rate of ( 1)n  times restored object can be written as

 
 

1 1
1

1

1
1

1

1 1

( ) 1
( )

1 ( ) 1

n n
n

n

nn

t

n n
t

ff t t
t

F t F

 
 

  

 
 

 



 

 
      

Thus, after each restoration the failure rate becomes 1/   times more than the

failure rate during the previous time interval. The time scale of the process also
changes. Such model allows the evaluation of the reliability characteristics for each
operability interval such as the object survival function after the ith restoration.

Note that the given model can be used to estimate object reliability
characteristics at the stage of infant mortality when effects of a rejuvenation system are
observed. At the stage of infant mortality the degradation coefficient has to be more
than 1 unit. Then, the degradation coefficient represents the average of times each
sequential operation time is greater than the preceding one.

In this paper, we consider calculation methods of reliability characteristics for
restored objects, like the intensity and cumulative intensity functions.

The Renewal (cumulative intensity) function (RF) is defined by

( )

1 1

( ) ( ) ( )n
n

n n

t F t F t

 

 

     (2)

where ( ) ( 1)( ) ( ) ( )
n

n nF t F t F t  
  is the nth order convolution of the distribution functions

of the operating times between failures,    ( ) ( )n
n nF t F t Pr t    is the cumulative

distribution function of
1

n

n i
i

 


 which is the instant of  the nth failure ( (0) ( ) 1F t  ).

The intensity function (IF) is defined by

( )

1 1

( ) ( ) ( )n
n

n n

d
t f t f t

dt 
 

 


     (3)

where ( ) ( )nf t  is the convolution of densities of the operating times between failures,

   ( ) ( )n
n n

d
f t f t Pr t

dt     is the density function of
1

n

n i
i

 


 .
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Unfortunately for the given model analytical solutions for RF and IF cannot be
obtained even for standard distributions like the exponential. The solution can be
obtained only by numerical methods.

We find now the asymptotic solution for given measures. Recall that

the ( 1)n th and the nth operating times between failures satisfy the condition 1

d

n n   ,

where   is a positive constant and 1 2    are independent random variables.

Perform some intermediate calculation and obtain

   d
n ndxf t F t , n=2, 3,...,      1 1

d
dxf t F t f t  ,

       1 1

0 0

tt

n n n

t u
F t F f u du f F t d



  




 

 
    

 
 

Finally we get the expression for the density convolution

       1 1

0 0

1 tt

n n n

t u
f t f f u du f f t d



  
 



 

 
    

 
  (4)

Using (2) and (3) we obtain the formulas for IF and RF:

         1
20 0

t t

n
n

t u t u
t F t F f u du F t f u du

 






    
         

   
 

           1
20 0

t t

n
n

F t f F t d F t F t d
 

      
 




      
and

         

           

1
20 0

1
20 0

1t t

n
n

t t

n
n

t u u t u
t f t f f u d f t f u du

f t f f t d f t f t d
 

 
   

      






 




    
       

   

      

 

 
     (5)

Find now the Laplace transformation for RF and IF using the expression

   1 1 11
( ) .

n

n n nF p F p f p
p       Then,

 

 

1

1 1 11 1

1

1 1

1 1
( ) ( ) ( ) ,

( ) .

k

n n
k

n
n nk k

n
k

n k

p F p f p f p
p p

p f p

 

 

  


  




 

   



   


(6)

Equations (6) can be inverted numerically (Braun et. al., 2005]. Note that the IF for
0 1  and for sufficiently large t can be non-finite. However it is always finite

for 1  .

Applying the iteration method we find the particular solutions. For the first step put

   expf t t   .

As initial approximation take  0 0t   and write the expression for 1

     1 expt f t t     



On Some Characteristics of Geometric Processes 5

From (4) find the new value of the density

 ( ) 2 ( )
2

0 0

( ) .
1

t
t t

t t t tf t e e d e e d e e ght



 
          



 
        

 
Further, solving the integral equation (5) again we get the expression for IF

       
2 2

2

1 1 1

t t
t t tt f t f t e e e e e

 
      

  
     
 
 


       

  
In such a manner we find new values of the distribution density for the operating time
between failures and redefine the intensity

   
 

 
2 12

1
3 2

0 0

( )
1

t tte
f t f f t d e e d

 



 
     



     
 
 
 

    
 

 
 

 
 

 
2

2 2 2
1 1

1 1 1

x x
xe e e

 
    

  

      
  

           3 2 3 3

2

1 1

t
tt f t f t f t e e f t


  

 
 

      
 

 
   

 
 
   

2

3 2

2 2 2

2 32
1

11 1 1

t t
te e e

 
  

     
  

  
  

    
  

4. Limit Distributions 
The following conclusion can be obtained from the regular properties of the

infinite geometric progression. If the kth moment of 1  exist and (0,1)   then we can

assume that the kth moment of n  exists.

Let us define some characteristics of the random operating time between
failures. Let the expectation be 1E m 

     and the variance 2
1V   

      Then from (1)

it follows that 1E n
n m   

     and 2( 1) 2V n
n   

    . Based on these expressions it can

be shown that the following statement holds for the ageing objects. The restored object
spends the resource during finite time.

To demonstrate the above statement define the sum

1

1 1

E ( 1)
1

i
i

i i

m
m  



 
 

  
 

    
  (7)

The above relation shows that the infinite sum of operating times between
failures for the restored object is finite. Lam (2003) proved that the limiting random
variable  exists, using the fact that n  is supermartingale. The geometric property (2)

can be generalized. Define    k

k
     and let

1
( )

1
s 

 


.  Using this

definition we can prove the following property.

Property 1. The expectation and the kth moment of  exist if (0,1)   and n  :
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· ( ) ,
1

m
m s 

   


   
( )

( )· , 2,3;
1

k k
k k k

s k


  
  




  


 (8)

 
    

  

2
2

2
4

4 4 2 4
6 ;

1 1 1





 


  

  
  

 
     

   
2 3( )

2 35
5 5 2 3 5

10 .
1 1 1 1

 
    


   




 
   

(9)

We can take, e.g., a normally distributed random variable 1 with mean m  and

variance 2 , ( 3 )m  . Using properties of the normal distribution we can obtain

2 2
2

2 2

1 1
~ , , ~ , .

1 11 1

n n

n
m

N m N
    
  

    
           

(10)

It is easy to see that if 3m   then
2

3
1 1

m 
 


 
.

Take 1 ~ m  with singular point m . In this case n  will be a singular variable with

singular point ) /( (1 1 )nm    . Then the instance of failure will be a geometric

progression subsum.

1
( ) · ( ) .

1

n

n ng n m s m
 



  


(11)

and

1
11

~ , ~ .nn m
m




   


(12)

Studies showed that if (0,1)  then the process realizations n  for the

irregular case, can be described sufficiently by (11) with accuracy up to a constant (see
Fig. 1). Here,  1 ~ 2,0.25N with process ratio 0.8   and realization volume 25k  .

We can obtain useful information by studying the correlation between n  and m . The

correlation coefficient for the regular restoration process can be written as

,
V

V V
,

n m

n m

n m

m n

n m 



 

      where min( , )a b a b  .  (13)

If m is constant and n  , then , 0
n m   . So, if n is large it is practically

impossible to predict more or less, exactly n  when m  is known.

Using Property 1 we can obtain Property 2.

Property 2. For the geometric process with finite variance 1V    correlation is

defined as

  

2( ) 2 2

, 2 22 2

1 1 1
.

1 11 1
n m

n m m n

n mn m
 

  
  

  
  

  
(14)

Let (0,1)  . If n   the correlation is nonzero, if m is nonzero

,lim 1 .
n m

m

n
  


  (15)
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If m is big, then a sufficiently exact optimal prediction of n  can be obtained. If 1 
then the correlation tends to 0 (as in case of RP process).

Figure 1: Process path function n , (0 1) 

5. IF and RF Asymptotic Behavior
In Braun et. al. (2005) it is proved that the RF ( 1  ) in each interval of time

is infinite, a result that was generalized by Finkelstein (2010). In Braun et. al (2005) it
was considered that the governing lifetime GDF  F t is absolutely continuous, strictly

positive, and strictly increasing for all 0t  . In Finkelstein (2008) the main

requirement is that   0F    for all 0   and 1  . The condition   0F   holds

for numerous distributions in reliability applications such as exponential, gamma and
Weibull. Braun et. al (2005) established that if   0F    for some 0  , then RF can

be finite for small t. Note though that this proof can be modified to show that RF is
infinite for all t  where  is such that   0F   .

We are interested in the asymptotic behavior of RF & IF when   0F   for

some 0  . The limit distribution exists for (0,1)   hence
1

( ) ( )nn
x F x




   tends

to   as x attained ( )   (the  - percentage point of the limit distribution).
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Define the set  ( ) : ( )fX x f x  


   for 0  . Let ( )inf fx X  .  The series

1
( )nn

f x


  is divergent for every fixed 0   . Hence the following limit is the

vertical asymptote for IF and RF:

0
lim .x


 

      (16)

In Fig. 2 the summarized densities for the normal operating time with expectation

2m  , variance 2 0.25   and 0.75   are depicted.

Figure 2: IF and densities ( )
n

f t ,  2,0.25N 

To find the IF we calculate the finite sum
1

( ) ( )
n

n kt f t  for 500n  . The

value
2

3.5 5.375
1 1

m s

 
 

 
 was selected as asymptotic. Note that the real one

should be smaller. RF will have the same vertical asymptote since IF is the derivative of
RF.

Note that power indices of exponent differ by a constant equal to  . Now, we

try to obtain the asymptotic solution for the given index considering the cases 1 
and 0 1  .

1. The cumulative intensity function increases by one unit when the object fails.
An average time increment in which one failure occurs is equal to the average operating
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time. For the first operating time we have E m  , for the second m , for the third
2m  etc. In general the average duration of the nth operating time is equal to 1n m  .

The ratio of the averages of the ( 1)n th and the nth operating times is constant

and equal to  .

Consider the function    1tg t b a   and the ratio

   
1

1

( 1) ( )
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n n

n n

g n g n a a
a

g n g n a a





  
  

  

Take a   and  1 1b a m  . Then    1 1tmg t    . The inverse of g(t)

possesses all properties of the cumulative intensity function and it is the asymptotic
solution for the cumulative intensity function:

  1 1
( ) log 1t g t t

m
      

 
 (17)

The asymptotic solution for the intensity can be written as

      
1 1
( ) 0

ln 1 t
t g t

m t


 





  

 
 (18)

This case corresponds to the system functioning at the stage of infant mortality
(rejuvenescent system).

2. Let 0 1  . Similar reasoning leads to the function   1 1 tmg t   
   

  . The

inverse function possesses all properties of cumulative intensity function

   1 1
log 1t g t t

m
      

 
 (19)

The asymptotic solution for IF is defined as

        1
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
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
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 
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The second case allows describing the system with incomplete recovery.
For the given model the following result is obtained. The intensity tends to

infinity on the bounded interval of the time which is equal to 1
m
 . This means that the

system practically spends the resource and after recovery fails again when the time
tends to the given time instant.

If 1 ~ m   then using (12) we obtain the following result (Finkelstein, 2010)
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(21)

RF will increase each time by 1 at points of failures, i.e. ( ) .n n    RF is constant on

intervals 1,n n   . We define a monotonic function of trend for RF, namely ( )t .

This function must coincide with the RF graph at the points n :    .n n   

It follows from (18) that the inverse function of    ( ) ( ) 1 / 1t
tg t ms m       is:
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1 1
( ) ( ) log 1 .t g t t

m
      

 
  (22)

This expression can be compared with (12). Hence we can suppose that the RF trend
can be defined by (19) in the case of a random process.

6. Geometric of Renewal Function and Function Intensities
In Section 5, we mentioned that the RF is infinite in each time interval if

  0F    for all 0   and 1  . If   0F   for all 0  , then RF and IF for

(0,1)  , have a vertical asymptote and are defined on some bounded set. For a

complete description of all properties of the geometric process ( (0,1)  ) we introduce

some additional features.

Definition 2. Let t  be a geometric process with the ratio 1  . Geometric of renewal

function (GRF) is a function of the real variable:
1 1

( ) , [0, ).
1

t

t t



 
  


 (23)

Geometric of (failure) intensity function (GIF) is a function of the real variable

( ) ( ), [0, ).
d

t t t
dt

     (24)

Property 3. GRF and GIF can be written as
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Proof.  
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Using the L’ Hospital rule we obtain

 
1

lim ( ) 1 ( ) ( ),tt t t


 

     

1
lim ( ) ( ) ( ),t t t


  


  (26)

where ( )t  is the Heaviside function and ( )t is the Dirac delta-function. We can now

derive analogues of the renewal equations for the new features:

1
1

20

/

0
0

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) .

x
n

n
n

x
x

x u
x x F f u du

x u
x f u du x u F x u du



  


     








 
    

 

 
      

 



 
(27)

1
1

20

/

0
0

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) .

x
n

n
n

x
x

x u
x x f f u du

x u
x f u du x u f x u du



  


     








 
   

 

 
     

 



 
The graph of GIF ( )v t without the first term (the function ( )t ) is shown in Fig.3.
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Also graphs of terms and resulting sums appear in the figure. The r.v. 1 is simulated by

the normal law (2,0.25)N and the process ratio 0.75  . To obtain ( )v t  the finite sum

1
( ) ( ) ( )

n k
n kt t f t     was calculated. We use n=500 for the calculations. The area

of localization for the density function of  - ,   
  is denoted by dotted lines.

This area corresponds to the support of the distribution.

Figure 3: GIF,  (0,1) 

We take  ;   
2

3.5 (6.677,9.323).
1 1

m s

 
 

 
The distribution of limit point

is concentrated in this area.
Bursts of ( )v t  occur in the modes of the density (maximum points).

This is clearly seen at the beginning of observation. The first mode is equal to
2, the second 2 2·0.75 3.5  , etc. Then the gradual right shift of maximum points
of ( )v t relative to the modes of the density ( )kf t  takes place.

This graph looks like the RF graph for the normal renewal process.  However
there is a critical distinction. A gradual GIF decrease occurs after completion of the
oscillating process. This process begins at the  -percentage point of the distribution of
 .  As it seen from Fig. 3 the GIF goes down to zero at the 1  -percentage point.
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The geometric process is completed and the system fails with probability one.
Note that such findings can be obtained only from the graph of ( )t . The IF graph

asymptotically tends to  as t  . Hence the graph of ( )t  is more informative.

The graph of GRF ( )t  without the first term (the function ( )t )  is shown in Fig.4.

Figure 4: GRF,  (0,1) 
Also graphs of terms and resulting sums appear in the figure. The input

parameters of the model are the same as the ones used before. To obtain ( )t  the finite

sum
1

( ) ( ) ( )
n k

n kt t F t     was calculated. We used again n=500.

GRF graph looks like the RF graph for the normal renewal process. However
there is a critical distinction. After the completion of a linearly increasing oscillating
process (at the  -percentage point of the distribution of  ), the graph is almost linear

at first and then gradually becomes constant 1/ (1 )  (at the 1  -percentage point).

This looks like ECG. The geometric process is completed and the system fails with
probability 1.

The GIF behavior when 1  is of interest. Fig. 5 presents the summarized

densities multiplied by the corresponding power   and the summing result (GIF). The

r.v. 1  is simulated by the normal law (2,0.25)N  with process ratio 1.25  .

Bursts of ( )t  occur in the modes (maximum points). This is clearly seen at the

beginning of observation. The first mode is equal to 2, the second 2 2·1.25 4.5   etc.
The maximum points of ( )t  coincide approximately with the modes of ( )kf t . The
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oscillatory process is not completed. The period of oscillations gradually increases and
the amplitude tends to a constant.

For example, if  2
1 ~ ,N a  , then  2~ ,n n nN a  , where  1 / 1M n

n na a     

and  2 2 2 2var 1 1n
n n        . In this case, each term of GIF intensity tends to

the next constant in the point of maximum
22
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( ) .
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n n

n n n n
f a

 
  


 


The difference between two nearest maximum points will increase indefinitely

(since 1  ). 1M M .n
n n n

a   
  

In summary, we conclude that the use of geometric characteristics for the geometric
process has some advantages over traditional RF and IF.
We formulate the basic properties of the newly introduced geometric characteristics
based on the analysis of the graphs.

Property 4. GRF ( )t does not decrease. GIF is nonnegative: ( ) 0t  .

0

1
lim ( ) ( ) , lim ( ) 0.

1t t
t t dt t 





 
   



Figure: 5. GIF,  1 
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7. Conclusion
In the present report we considered a reliability analysis method for renewal

objects taking into account incomplete repair. We obtained the asymptotic solution for
the intensity of the geometric process model. Reliability characteristics of the geometric
process model for various distributions and various parameters were calculated. We
obtained such characteristic as the correlation between the recovery times n  and m .

We derived asymptotic properties for IF and RF when 1  . Also, we introduced and

analyzed new measures of the geometric process, namely GIF and GRF.
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