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Abstract
This article is concerned with the estimation of the stationary distribution of a discrete-

time semi-Markov process. After briefly presenting the discrete-time semi-Markov setting, we
propose an estimator of the associated stationary distribution. The main results concern the
asymptotic properties of this estimator, as the sample size becomes large. A numerical example
illustrates the asymptotic properties of the estimators.
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1. Introduction
Semi-Markov processes and Markov renewal processes represent a class of

stochastic processes that generalize the Markov and the renewal processes. As it is well
known, for a discrete-time (respectively continuous-time) Markov process, the sojourn
time in each state is geometrically (respectively exponentially) distributed. In the semi-

Markov case, the sojourn time distribution can be any distribution on *  (resp.  ).

For this reason, the semi-Markov approach is much more suitable for applications, than
the Markov one (see, e.g., [1], [2], [5], [6], [8]).

A quantity related to a semi-Markov process is the so-called limit distribution
(assumed to exist), which describes the limit behavior of the process, when time
becomes large (cf. Definition 4). In a certain sense, this is also the stationary
distribution of the chain (see the discussion after Definition 4). Estimating the
stationary distribution of a semi-Markov chain is an important question, at least for two
reasons. Firstly, from a theoretical or applied point of view, one is always interested in
the equilibrium behavior of a process (when this equilibrium exists). Secondly, when a
certain phenomenon has started sufficiently far in the past, one can always consider that
it has reached it's equilibrium behavior when we actually begin the observation. When
this is the case, it is justified to consider that the stationary distribution is the initial
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distribution of the process. As this initial distribution appears in the computation of
many quantities we are interested in (for example, when computing the
reliability/survival function, the availability, the failure rate, the mean time to
failure/repair), it is important to be able to estimate this stationary distribution and to
find estimators that have nice asymptotic properties.

To conclude, the purpose of this paper is to estimate the stationary distribution
of a discrete-time semi-Markov process and to investigate the asymptotic properties of
this estimator, as the sample size becomes large. Similar results have already been
obtained in [7] for a continuous-time semi-Markov process.

The present article is structured as follows: in the next section we briefly
introduce the semi-Markov framework and give the necessary notation and definitions.
In Section 3 we define the stationary distribution of a semi-Markov chain, propose
empirical estimators of the mean sojourn times of the semi-Markov chain and of the
stationary distribution of the so called embedded Markov chain. Consequently, we
obtain the corresponding estimator of the stationary distribution of the semi-Markov
chain. Section 4 is devoted to the asymptotic properties of the estimator of the
stationary distribution of the semi-Markov chain, namely to the strong consistency and
asymptotic normality. We illustrate the theoretical results by a numerical example.

2. Discrete-time Semi-Markov Framework
In this section we introduce the basic notation concerning a discrete-time

semi-Markov model. We consider a random system with finite state space
{1, , },E s   whose evolution in time is governed by a stochastic process

( )k kZ Z   . Let us denote by ( )n nS S    the successive time points when state

changes in ( )k kZ   occur and by ( )n nJ J    the successively visited states at these

time points. Set also *( )n n
X X    for the successive sojourn times in the visited

states; thus, 1,n n nX S S   *.n  Figure 1 gives a representation of the evolution of

the system. The relation between process Z and process J of the successively visited
states is given by ( ) ,k N kZ J  or, equivalently, , , ,

nn SJ Z n k   where

( ) : max{ }nN k n S k  ∣  is the discrete-time counting process of the number of

jumps in [1, ]k   .

Figure 1: Sample path of a semi-Markov chain
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We suppose that ( )k kZ Z    is a semi-Markov chain (SMC), or, equivalently,

that the couple ( , ) ( , )n n nJ S J S    is a Markov renewal chain (MRC) and we denote

by ( ( ); , , )ijq k i j E k  q   the associated discrete-time semi-Markov kernel defined

by 1 1( ) : ( , ).ij n n nq k J j X k J i     ∣

We also introduce the cumulative semi-Markov kernel ( ( ); )k k Q Q   defined by

1 1
0

( ) : ( , ) ( ), , ,  .
k

ij n n n ij
l

Q k J j X k J i q l i j E k 


        ∣

Note that, for ( , )J S a Markov renewal chain, we can easily see that ( ) ,n nJ   is a

Markov chain, called the embedded Markov chain (EMC) associated to the MRC
( , )J S . We denote by ,( )ij i j E Ep  p   the transition matrix of ( ) ,n nJ 

1( ), , ,  .ij n np J j J i i j E n     ∣

Let the row vector 1( , , )s  α  denote the initial distribution of the semi-Markov

chain ( ) ,k kZ Z    where 0 0: ( ) ( ), .i Z i J i i E      

We also assume that 0, ( ) 0, , .ii iip q k k i E    We define now the sojourn time

distributions in a given state and the conditional distributions depending on the next
state to be visited.

Definition 1 (Conditional distributions of the sojourn times) For all , ,i j E  let us

define:

1. (·),ijf  the conditional distribution  of 1, :nX n 

1 1( ) ( , ), .ij n n nf k X k J i J j k      ∣

2. (·),ijF  the conditional cumulative distribution of 1, :nX n 

1 1
0

( ) ( , ) ( ), .
k

ij n n n ij
l

F k X k J i J j f l k 


       ∣

Definition 2 (Sojourn times distributions in a given state) For all i E , let us
denote by:

1. (·)ih , the sojourn time distribution in state i:

*
1( ) ( ) ( ), .i n n ij

j E

h k X k J i q k k


      ∣

2. (·)iH , the sojourn time cumulative distribution function in state i:
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*
1

1

( ) ( ) ( ), .
k

i n n i
l

H k X k J i h l k


      ∣

Let us also denote by im  the mean sojourn time in a state i E ,

1 0
1 1

: ( ) ( ) (1 ( )).j j j
k k

m S J j kh k H k
 

      ∣

Note that, for all ,i j E   and k   such that 0ijp  , the semi-Markov kernel

verifies the relation
( ) ( ).ij ij ijq k p f k

If we suppose that the sojourn times in a state depend only on the present visited state, a
particular type of semi-Markov chain is obtained, whose semi-Markov kernel is

( ) ( ),ij ij iq k p h k , ,i j E .k  For this particular type of semi-Markov chain we will

prove the asymptotic normality of the stationary distribution estimator (Proposition 2).

For G the cumulative distribution function of a r.v. X, we denote its survival function by

( ) : 1 ( ) ( ), .G n G n X n n      Thus, for all states ,i j E  we put ijF  and iH  for

the corresponding survival functions.

Definition 3 The transition function ( ( ); )k k P P   of the semi-Markov chain Z is

defined by

0( ) : ( ), , ,   .ij kP k Z j Z i i j E k     ∣

3.  Estimation of the Stationary Distribution

Definition 4 (limit distribution of a SMC) For a semi-Markov chain ( )k kZ   the

limit distribution 1( , , )s  π   is defined, when it exists, by lim ( ),j ij
k

P k


  for

every , .i j E

Let us denote by nU  the backward recurrence time ( ):n N nU n S   of the

semi-Markov chain. It is worth noting that the limit distribution π  is also the stationary
distribution of the SMC ( )k kZ   in the sense that it is the marginal distribution of the

stationary distribution   of the Markov chain ( , ) ,n n nZ U   that is

({ }, ),j j j E    (see [1] & [3]). For these reasons, the limit distribution π  will

be also called the stationary distribution of the SMC.

All along this paper, we consider that the SMC Z is irreducible, aperiodic, with
finite mean sojourn times.
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Let ( )j
n nS   be the successive passage times in a fixed state .j E  For any

arbitrary states , ,i j E ,i j  we denote by ij  the mean first passage time from state

i to j  for the SMC, 0: ( )j
ij i S   , and by jj  the mean recurrence time of state j for

the SMC, 1: ( ),j
jj j S    where i  is the conditional expectation given 0{ }.J i

Proposition 1 The limit distribution of an SMC is given by

( ) ( )1
, ,

( )

j j
j j

jj i
i E

j m j m
m j E

mi m

 


 


   


where the row vector ( (1), , ( ))s  ν  is the stationary distribution of the EMC

( )n nJ   and we denoted by : ( ) ii E
m i m


  the mean sojourn time of the SMC.

A proof of this result can be found in [1]. A different proof, based on generating
functions, can be found in [4].

Let us assume  now that we have an observation of this SMC, censored at fixed

arbitrary time * ,M  0( , , )MZ Z , or, equivalently, an observation of the associated

Markov renewal chain ( , ) ,n n nJ S  0 1 ( ) 1 ( ) ( )( , , , , , , ),N M N M N M MJ X J X J u where

( ):M N Mu M S   is the censored sojourn time in the last visited state ( ) .N MJ

For all states , ,i j E  let us introduce:


1

( ) 1

{ } { , }
0 0

( ) :
n n n

N M M

i J i J i S M
n n

N M




  
 

  1 1  the number of visits to state i  of the

EMC ( )n nJ  , up to time M;


1 1

( )

{ , } { , , }
1 1

( ) :
n n n n n

N M M

ij J i J j J i J j S M
n n

N M
     

 

  1 1 the number of transitions of the

EMC ( )n nJ  from i to j, up to time M.

Let us consider the empirical estimator of the stationary distribution of the EMC
( )n nJ   defined by:

( )ˆ( , ) , .
( )

iN M
i M i E

N M
                            (1)

For any state i E , writing the mean sojourn time in state i as

0 0
( )) ( )(1i i ik k
km kH H

 
     and using the empirical estimator of the survival

function in state i, ( ),iH k  we get an estimator for ,im
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( )

1

1ˆ ( ) .
( )

iN M

i ik
i k

m M X
N M 

            (2)

Consequently, an estimator of the mean sojourn time of the SMC, ,m  is

( ) ( )

1 1

1 1ˆ ( ) ,
( ) ( )

jN M N M

jk k
j E k k

m M X X
N M N M  

                    (3)

and we get the following estimator of the stationary distribution of the SMC

( )

1

1ˆ ( ) , .ˆ ( ) ( )

iN M

i ik
k

M X i E
m M N M




          (4)

4.  Asymptotic Results

First of all, note that we have the following asymptotic results:

. .( ) / ( ) ( ),a s
i M

N M N M i


      (5)

. .( ) / ( ) ( ) ,a s
ij ijM

N M N M i p


           (6)

. .( ) / 1/ .a s
i iiM

N M M 


               (7)

The first two results are immediately obtained from classical Markov chain asymptotic
properties, whereas the third one is a direct application of the Strong Law of Large

Numbers (SLLN) to the simple renewal chain 0( ) .jj
n nS S  

Lemma 1 For any state i E  of the SMC, the estimators ˆ( , )i M , ˆ ( )im M , ˆ ( )m M , and

ˆ ( )i M  proposed in Equations (1-4) for the stationary distribution of the EMC, mean

sojourn time in state i mean sojourn time of the SMC, and stationary distribution of the
SMC, respectively, are strongly consistent, as M tends to infinity.

Proof.
The consistency of ˆ( , )i M  has been already stated in (5). From the SLLN and the fact

that . .( ) a s
i M

N M


 , we obtain the strong consistency of ˆ ( )im M  These results,

together with continuous mapping theorem, yield the strong consistency of ˆ ( )m M  and

ˆ ( )i M , as M tends to infinity. □

The asymptotic normality of the stationary distribution estimator of a SMC will be
proved for a particular semi-Markov model, defined by the semi-Markov kernel

( ) ( ),ij ij iq k p h k , ,i j E k  . Remark 1 given after the proof of the result gives

details on this choice.
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Proposition  2 For any fixed arbitrary state i E , we have

2ˆ[ ( ) ] (0, ),
ii i M

M M   


             (8)

with asymptotic variance
2 2 2

2 2
2

2

( )1
,

1 1
i

i ii i

i ii i

ii

i ii i

m m

m m



  













 
  

         (9)

where 2
ii  is the variance of the recurrence time of state i and 2

i  is the variance of the

sojourn time in state i.

Proof. The proof is essentially based on the limiting distribution of the total sojourn
time in a state of semi-Markov process (cf. Theorem 3.1 of [9]).

Without loss of generality, for any fixed arbitrary state i, we can consider the
initial visited state 0J  to be i. First, let us denote by ( )iS M  the total time spent by the

SMC in state i up to time M, without taking into account the last censored time

( )M N Mu M S  , i.e.,

( )

1

ˆ( ) ( ) ( )
iN M

i ik i i
i

S M X m M N M


 
and by *( )iS M  the total time spent by the SMC in state i up to time M, taking into

account the last censored time, i.e.,

( )

*
{ }( ) ( ) .

N Mi i M J iS M S M u   1

Second, let us express the variable of interest as follows:

( ) ( ) /ˆ[ ( ) ]
1 /

i i
i i i i

M M

S M S M M
M M M M

M u u M
   

   
           

( ) ( )
(1 (1))i i M

i p
S M S M u

M o
M M M

 
    

 

( )

*

{ }
( ) ( )

(1 (1)) .
N M

i i M M
i p J i

S M S M u u
M o

M M M M
 

 
     

  
1

As . ./ 0a s
M M

u M


  and . .( ) ( )ˆ ( ) a si i i
i M

ii

S M N M m
m M

M M 
    , we get from

Slutsky's theorem that ˆ[ ( ) ]i iM M   has the same limit in distribution as
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*( )i
i

S M
M

M


 
 

  
. Consequently, applying the result from [9] on the limiting

distribution of the total sojourn time in a state of semi-Markov process, we get the
desired result. □

Remark 1 The proof of Theorem 3.1 of [9] is based on Takács's paper [10], that

considers an alternating renewal chain *( )n n
V  , with : ,n n nV X Y  *n , under

the assumptions that *( )n n
X   and *( )n n

Y   are sequences of i.i.d. random variables,

and *( )n n
X   and *( )n n

Y   are independent between them. In order to apply this

result in our framework, we need to consider sojourn times in a state depending only on
the present visited state, i.e., a semi-Markov kernel of the form ( ) ( ).ij ij iq k p h k

The following result illustrates how the variance of the recurrence times can be
recursively computed. A proof of this result could be found in [4].

Lemma 2 For any state j, the variance 2
jj  of the recurrence time of state j is given by

2 2 2 21
( )( ) 2 ( ) ,

( )jj i i i kj ik jj
i i k j

i m m i p
j

     
 

 
    
  
 

where the mean first passage times , , ,ij i j E   can be computed using the following

recurrence formulas (see [4] or[1] for a proof)

, , .ij i ik kj
k j

m p i j E 


  

5.  Numerical Example
In the following we demonstrate the findings of the previous section by means of

a short simulation study. More precisely, we chose a 3-state SMC with shifted Poisson
sojourn time distributions, that is,

1

( ) .
( 1)!

i

k
i

ih k e
k

 




The true parameter values of the model equal

 
0 0.5 0.5

0.7 0 0.3    and   4 5 3 .

0.8 0.2 0


 
   
 
 

p

Additionally, a uniform distribution is assumed for the initial distribution  .

From this parameterization directly follows  5 6 4m  ,  2 4 5 3  ,

 0.429 0.274 0.297  ,  11.6 18.2 16.8  , and  0.431 0.330 0.239  .
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Thus, the true values of   and   are available for checking the consistency of the

estimators presented in Equation (7) and (4). Therefore, we simulate 200 sequences
with N(M) = 500 each, which is equivalent to values of M moderately superior to 2000.

Figure 2: Estimated values of Ni(M)/M (gray lines) from simulated series together
with the true value of 1/ ii  (black lines) for states i=1, 2, and 3

Figures 2 & 3 provide a visual impression of convergence towards the true parameter
values by means of 20 randomly selected sample paths. While the black horizontal lines
represent the true values of 1/   and  , respectively, the gray lines result from the

corresponding estimators. To confirm the optical impression, we calculate the empirical
5%- and 95%-quantile of the two estimators for N(M) = 50, 200 and 500, respectively,
from the 200 simulated trajectories. Table 1 displays the results, showing that the
estimated quantities converge toward the true values for increasing N(M) (or M).
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Finally, we investigate the findings of Proposition 2. Note that Equation (9) requires the

calculation of 2 , the variance of the recurrence time of all states. Using a parametric

bootstrap approach, we obtain the estimate  2ˆ 20.8 108 122  . Using this estimate

and the true values of the remaining quantities described above, we obtain the ''true''

 2 0.382 0.743 0.508  . In order to check for normality of ̂ , we carry out the

Shapiro-Wilk test. Furthermore, a potential dependence on M  (N(M)) is investigated,
we consider each 200 estimates ̂  obtained for fixed ( ) 1,2, ,500N M   and test for

normality by state. The results show that normality is rejected in a majority of cases for
( ) 10N M  , sometimes for 10 ( ) 50N M  , and rarely for ( ) 50N M  . Moreover, for

increasing M the variance of the quantity on the left hand side of equation (8) converges

towards the ''true'' values of 2
 . Figure 4 displays the evolution of variance of this

quantity for increasing values of N(M) (or M). Recall that 200 observations serve for
the variance estimation for each value of N(M).

Figure 3: Estimated values of ˆ ( )i M  (gray lines) from simulated series together

with the true value of i  (black lines) for states i=1, 2, and 3
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Table 1: Simulated results: 5%-and 95% quantile of  & π for N(M)=50, 100, 500

N(M)=50 N(M)=200 N(M)=500
true q05 q95 q05 q95 q05 q95

111/  0.0862 0.0747 0.098 0.0809 0.0921 0.0825 0.0899

221/  0.055 0.0396 0.0691 0.0491 0.062 0.0509 0.0597

331/  0.0596 0.0393 0.076 0.0505 0.0686 0.0544 0.0651

1 0.431 0.363 0.498 0.399 0.463 0.412 0.451

2 0.33 0.232 0.419 0.286 0.377 0.305 0.361

3 0.239 0.157 0.312 0.197 0.282 0.217 0.263

Figure 4: Estimated value of 2
i (gray lines) from simulated series together with

the true values (black lines) for states i=1, 2, and 3

Similar statements to those articulated above in the context of tests for
normality hold true: For small values of N(M), the sample variance is not too close to
the target value, but this quickly changes for increasing N(M).
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