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Abstract
In demography, Gompertz and Makeham models have significant role in modeling and

in analysis of mortality and ageing. Till the end of the 20th century, researchers have used the
tables of mortalities (also called life tables) for demographic analysis but in the end of the 20th
century due to the development in statistical methods of survival analysis and reliability one can
treat the individuals data even with the information of censoring. The Gompertz, Makeham, and
Weibull models are compared with respect to the goodness-of-fit to the table of mortality and to
the individuals data in the presence of censoring. For data from the table of mortality, the test
statistic considered by Gerville-Reache and Nikulin (2000) is used. For censored individual data
the chi-squared type test proposed by Bagdonavicius et al. (2010) is used.

Key words: Demography, Chi-square test, Mortality table, Composite hypothesis, Censoring,
Gompertz model, Makeham model, Weibull model, ML estimators, NRR statistic.

1. Introduction
In reliability and demography model selection for some specific data is vital

for further analysis and decision making. Testing the two-parameter Gompertz
distribution (Gompertz (1825)) to model the rate of mortality has been used for a long
time, where the rate of mortality increases with the age. Gompertz-Makeham model
(William Makeham (1860)) with one additional parameter covers the mortality
independent of age. The researchers have used the life and mortality tables to find the
force of mortality. Gerville-Reache and Nikulin (2000) gave a chi-square type
goodness-of-fit test for Makeham model using the table of mortality (grouped data). In
section 3 we briefly discuss their proposed statistic and also we compare Makeham
model with Gompertz and Weibull models for different age groups. But now with the
advanced data collection techniques, one can have the individual's information
(ungrouped data) also with censoring mechanism. Gompertz and Makeham models are
frequently used in demography but in reliability Weibull model is considered the
alternative for Gompertz model (Juckett and Rosenberg, (1993)).

Most researchers compare Gompertz model with the Weibull model due to its
flexible parameters (Gavrilov and Gavrilova (2001)). Logistic distribution can be
another alternative for Gompertz (Wilson (1994)). The Gompertz function is a better
choice for all causes of mortality and combined disease categories while the Weibull
model has been shown to be a better choice over Gompertz model for a specific cause
of mortality (Juckett and Rosenberg (1993)). Nikulin et al. (2011) presented several
models in demography but here we consider the Gompertz-Makeham and Weibull
models for censored data.
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For individual censored data the test is based on the Nikulin-Rao-Robson

statistic known as NRR statistic 2
nY : a modified chi-squared test which is based on the

differences between two estimators of the probabilities in each interval. One estimator
is based on the empirical distribution function and the other is on the ML estimators of
unknown parameters of the tested model from ungrouped data (see Nikulin (1973), Rao
and Robson (1974), Drost (1988), LeCam et al. (1983)). The test is based on the

vector 1( , , )kZ Z Z   , where
1

( )j j jZ U e
n

  , 1, ,j k  , where jU  and je  are

the number of observed and expected failures in each interval. In literature some other
modifications of chi-square goodness-of-fit tests for censored data have been proposed
(see for example Akritas (1988), Hjort (1990), Kim (1993), Van der Vaart (1998)).

Some details on the Gompertz, Makeham and Weibull models are given in
section 2. The NRR statistic for composite hypotheses and application of the test for
Gompertz and Weibull distributions are given in section 4. Non-parametric estimation
of survival function in demography and actuaries is given in section 5.

2. Gompertz-Makeham and Weibull Models
Gompertz model of aging is widely used in demography and other scientific

disciplines e.g. medical sciences, survival analysis, actuarial sciences and reliability.
Gompertz (1825) gave the first mathematical model to explain the exponential increase
in mortality rate with age. He explained that the law of geometric progression pervades
in mortality after a certain age. Gompertz mortality rate can be presented as

, ( , ) 0, 0,x
x e x      (1)

where   is known as the baseline mortality and  is the age specific growth rate of the
force of mortality.

Mortality rate x  in demographic notation is equivalent to the failure rate

( )x  in reliability or hazard rate ( )x  in survival analysis. The Gompertz law has

been the main demographic model since its discovering to fit the human mortality (see
for example Gavrilov and Gavrilova (2001), Ricklefs and Scheuerlein (2002)).

Since Gompertz model gives the rate of mortality only related to age and does
not take into account the other factors independent of age, other researchers tried to
modify this model to fulfill the requirement of real data. William Makeham (1860)
modified the Gompertz model considering some other causes of death independent of
age by proposing the so called Gompertz-Makeham law of mortality as

, where ( , , ) 0, 0.x
x e x                  (2)

Here the first term   (Makeham parameter) is a constant and non-aging component of

failure rate (e.g. accidents, independent of age) and the second term te is the
Gompertz function depending on age (aging factor).
The Weibull distribution is one of the most widely used distributions in survival
analysis and reliability due to the characteristics of its shape parameter . The mortality
rate or hazard function is

1, for 0, ( , ) 0.x x x

  


                           (3)

The hazard function of the Weibull distribution can be decreasing, constant or
increasing according to the value of its shape parameter i.e. three Weibull models can



On Reliability Approach and Statistical Inference in Demography 39

make a bathtub shape, but now there are some models like the generalized Weibull
model which can have bathtub shape (Bagdonavicius and Nikulin (2002)). The Weibull
law is more commonly applicable for technical devices while the Gompertz law is more
common for biological systems (Gavrilov & Gavrilova (1991)). When the Gompertz
law fails to follow some biological failure mechanism, the best alternative is Weibull
law due to its basis on reliability theory. If the probability of failure at the start of the
system is almost zero, the failure rate increases with the power function with age i.e.
Weibull law and if the system has defects at the beginning, the failure rate increases
exponentially with age i.e. Gompertz law. So, to apply the Weibull law in demography,
the biological population should be independent of initial deaths. Logistic distribution is
considered as the other alternative for Gompertz distribution (Vanfleteren et al. (1998)).

3. Test Statistic for the Table of Mortality
Consider t = 0 as the origin of time for an individual of age x, and xT  is a

random variable for its residual life from this origin. The probability of death is
{0 }, 0, 0.t x xq T t t x    P

So the annual rate of mortality for the people having age x can be defined as
{0 1}, 0.x xq T x   P

A relation between the rate of mortality and the instantaneous rate of mortality x  is

1
1 exp , 0.

x

x y
x

q dy x
     

 
The theoretical annual rate of mortality in the case of Gompertz model can be written as

1 exp ( 1) , , 0.x
xq e e   


      
 

         (4)

In the same way we can find the theoretical annual rate of mortality for Makeham,
Weibull and other parametric models.

We observe the n persons independent of mortality and we regroup them in the
same age, say   groups, where  is the maximum age in years. The group xG

contains x  persons of age x ( 0, , 1)x    and xq  is the probability of death of

each individual in the year. Let denote by xD  the number of deaths in the group xG .

Using the data xD  and x from the table of mortality, we can obtain the empirical

annual rate of mortality observed at age x, such that

,x
x

x

D
Q 



which follows the binomial law with parameters x  and xq . According to the central

limit theorem if ( )x xmin   when n  , then 0 1( , , )Q Q Q


  ~ ( , )
as

N q P ,

where 0 1( , , )q q q


   and P is the diagonal matrix of the elements
(1 )x x

x

q q


 for

0,1, , 1x   . So we can write that
2

2
1

( )
.

(1 ) ~
as

x x x

x x x

D q

q q







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As it is shown in Gerville-Reache and Nikulin (2000),
1 2

2 2

0

( )
.

(1 ) ~
as

x x x

x x xx

D q
X

q q



 







 


One can use this statistic for testing simple hypotheses, as one uses the classical
Pearson statistic for testing simple hypotheses (see Greenwood and Nikulin (1996)).

3.1 Estimation of Parameters in Composite Hypothesis
Consider the composite hypothesis

0 : ( )x xH q q  ,  1( , , ) , .s
s R s     

We estimate the parameters by the maximum likelihood method using the data from the
table of mortality. We have the random variable xD  which follows the binomial law

with parameters x and xq . The likelihood function is

( )L 
1

0

x

xx
D





 
  

 



[ ( )] [1 ( )]x x xD D

x xq q    .

We take the estimator ̂  that maximizes the likelihood function, i.e. ˆ argmax ( )L  .

One can find the maximum likelihood estimator ̂ for by solving the
following score vector

ln
0, 1, , .

i

L
i s




  




Let consider the statistic

2X
ˆ( )

1

1x






 2ˆ( )

ˆ ˆ( )(1 ( ))

x x x

x x x

D q

q q











 
2 .~ s

as

 

Gerville-Reache and Nikulin (2000) showed that under the hypothesis H0,
2X

ˆ( )
asymptotically follows a chi-square statistic with s  degrees of freedom, where s is
the number of parameters to be estimated, from where it follows that we may use this

statistic for testing H0. One can see that the statistic 2X
ˆ( ) is different from the

classical Pearson statistic.

3.2. Example – Data Analysis from the Table of Mortality
The data in Table 1 is from INSEE Aquitaine-France and give the number of

deaths xD in 1990 for each 5-year age group, where x  is the number of habitants for

each age group on January 1st, 1990. This data is used for the validity of three models
i.e. Gompertz, Makeham, and Weibull. The rate of mortality for these three models is
adjusted with maximum likelihood estimators and then the value of chi-square is
calculated. In case of the adjustment between 5 and 84 years of age, the annual  rate of



On Reliability Approach and Statistical Inference in Demography 41

Table 1: Table of Mortality (INSEE, Gironde, 1990)

mortality follows neither the Gompertz and Makeham nor the Weibull model. But when
the adjustment is made for the age groups between 30 and 74 years, the Makeham
model is accepted. The Gompertz model also becomes valid with Makeham when the
annual rate of mortality is adjusted for the age between 50 and 79 years. This means
that the Gompertz model is validated in the older age and it coincides with the theory
regarding Gompertz model as discussed in the previous section. The Weibull model
gets close but still it does not fit the data significantly. The calculated values of the test
statistic with corresponding p-values are shown in Table 2 and the fitted models are
presented in Figures 1-3.

Figure 1: Models fitted for age between 5 and 84 years (log scale)

Figure 2: Models fitted for age between 30 and 74 years (log scale)

age x xD age x xD

5-9 75498 14 45-49 64575 195

10-14 77284 16 50-54 57974 247

15-19 90337 45 55-59 61871 384

20-24 102544 91 60-64 62473 622

25-29 91339 92 65-69 61122 958

30-34 90769 128 70-74 36425 944

35-39 93324 156 75-79 37124 1341

40-44 96692 226 80-84 29541 2020
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Table 2: Results from the Table of Mortality

Figure 3: Models fitted for age between 50 and 79 years (log scale)

4. Goodness-of-fit Test for Right Censored Data
Here we apply the survival analysis methods in demography when we have

individuals' information with right censoring. For this purpose Bagdonavicius et al.
(2010) proposed a chi-squared type goodness of fit test based on the NRR statistic
(Bagdonavicius and Nikulin (2011)). We give a chi-squared type test for testing
composite parametric hypothesis when individual data are right censored.
Let us consider the composite hypothesis

0 : ( ) ( , )H F x F x  , 1,x R  1( , , ) s
s R    

i.e. the distribution of failure times T belongs to the given parametric class. Here we
consider Gompertz, Makeham, and Weibull as parametric families.
Suppose we have right censored individual data as

1 1 { }( , ), , ( , ), , ,
i in n i i i i T CX X X T C       1 (5)

where 1, , nT T  are the failure times which are absolutely continuous i.i.d. random

variables and 1, , nC C  are the censoring times which are independent. The probability

density function of the random variable 1T belongs to a parametric family

{ (·, ), }.sf   R   Denote by

1
0

( ) ( , ) { } & ( ) ( ) ( ) , ,
t

t t t yS S t T t lnS dy       P      

the survival function and the cumulative hazard function, respectively. In demographic
literature t is used in the subscript. With non-informative random censoring mechanism
the loglikelihood function can be written as,

Gompertz Makeham Weibull

Age Groups 2X
ˆ( ) p-value 2X

ˆ( ) p-value 2X
ˆ( ) p-value

5-84 214.19 0 99.98 0 2363.98 0

30-74 45.62 0 3.70 0.72 158.93 0

50-79 9.01 0.11 8.48 0.08 25.44735 0.0001
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1 1

( ) ln

μ ( ) ln ( ), .

i i

n n

i X X
i i

S
 

        (6)

ML estimators can be found by equating the score vector ( )   to zero and the Fisher's

information matrix is ( ) ( ). I E   Consistency and asymptotic normality of the ML

estimators ̂ hold under some regularity sufficient conditions (Hjort (1990),
Bagdonavicius et al. (2010)).

To construct the test we introduce two counting processes and write the
censored sample (5) as

1 1( ( ), ( ), 0), , ( ( ), ( ), 0),n nN t Y t t N t Y t t  (7)

where { , 1} { }( ) , ( ) ,
i i ii X t i X tN t Y t   1 1

1 1

( ) ( ), and ( ) ( ).
n n

i i
i i

N t N t Y t Y t
 

  
Suppose that the processes iN , iY  are observed at finite time   (time of experiment).

Using these data one can calculate immediately the non-parametric Nelson-Aalen
estimator and the Kaplan-Meier estimator

0

( ) ( )ˆ ˆˆ ( ) , ( ) ( ) 1
( ) ( )

t dN u N t
t S t S t

Y u Y t

 
     

 
for the unknown cumulative hazard function  , and for the survival function S(t)
respectively, when the censored data are ungrouped, where S(t-) is the value of survival
function just before time t.

Let us divide the interval [0, ]  into k s  smaller intervals

1 0 ( )( , ], 1,2,..., , 0, max( , ).j j j k nI a a j k a a X    

We denote the number of observed failures in the j -th interval by

1
:

( ) ( ) .
i j

j j j i
i X I

U N a N a 


   
The choice of random grouping intervals ˆ ja  is made to overcome the problem of very

small expected number of events for some interval. This can happen in demography
because the number of deaths at early age is very small. Set

( ) ( )

1

ˆ ˆ( ) ( ) ( )
i l

i

X X
l

ib n i


     

where ( )iX  is the ith element in the ordered statistics (1) ( )( , , )nX X . If i is the smallest

natural number satisfying 1[ , ], 1, , 1j i iE b b j k   , then

( )

1

1

ˆ ˆ( 1) ( ) ( )
l

i

X j
l

an i E




      

and


( )

1
1

1

ˆ [ ( )] / ( 1), ˆ ,
l

i

j j X
l

a E n i






 
       

 
   ( )ˆ max( , ),k na X 
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where 1  is the inverse of the cumulative hazard function  . We have

1 2 ( )ˆ ˆ ˆ0 max( , )k na a a X     . With this choice of intervals the expected number

of failures is / ,j ke E k for any j where 
( )1

( )
l

n

k Xi
E


   . Bagdonavicius et al.

(2010) and Greenwood and Nikulin (1996) give some recommendations for the choice
of intervals. If there is no alterative hypothesis, the number of intervals k is such
that / 5n k  .

For testing H0, Bagdonavicius et al. (2010) considered the following statistic

2 ,nY
 Z V Z

where

        1 1 1 1
, ,

      
   V A A C G CA G i CA C

is a consistent estimator of a generalized inverse V of the asymptotic variance-

covariance matrix ( )V V   of the statistic 1( ,..., ) ,kZ Z Z  where

1
( ),j j jZ U e

n
  1,..., .j k So the test statistic can be written in a simple form as

2
2

1

( )
,

k
j j

n
jj

U e
Y Q

U


  (8)

where

 ,Q
   

1 1
W G W W CA Z 1 s(W ,..., W ) ,

 1 1

1 1

ˆ ˆ ˆ ˆ ˆˆˆ ˆ[ ] , , .
k k

ll s s ll ll lj l j j l lj j j
j j

g g i C C A W C A Z 
   

 

    G


 

1 :

ˆln
μ ( ) lnμ ( )

1 1δ , δ lnμ ( ),i i

i

i j

n
X X

ll lji i X
l li i X I

n n


 

  
 

   i C 

 






:

1ˆ / , , ( ),
i j

j j j i j j j
i X I

A U n U Z U e
n




   
1, , , 1, , , , 1, , .i n j k l l s    

Denote by ˆ llg   the elements of 


G . The quadratic form Q  can be written as follows:

1 1

.
s s

ll
l l

l l

Q W g W 
 


The limiting distribution of the statistic 2

nY  is chi-square with

( ) ( )r rank Tr  V V V degrees of freedom. If G is non-degenerate then r k .

Statistical inference for the hypothesis H0 : The hypothesis is rejected with approximate

significance level  if 2 2 ( )nY r .
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4.1. Goodness-οf-Fit Tests for Gompertz and Weibull Models
Let consider the hypothesis that under H0 the distribution of the failure times is

Gompertz with hazard function and cumulative hazard function given by

, ( 1) 0, ( , ) 0.x x
x xe e x    


     

The loglikelihood function is

1

( , ) [ln ] ( 1) .i

n
X

i i
i

X e
    


     
 

We denote by ̂  and ̂  the ML estimators of   and  .

Since the matrix G is found to be degenerated, the quadratic form can be
written as:

2
2

22

,
ˆ

W
Q

g


where

2 1 2
22 22 2 22 2

1 1 :

1 1ˆ ˆ ˆˆ ˆˆ , , ,
i j

k n

j j i i j i i
j i i X I

g i C A i X C X
n n

 

  

     

1
2 2

1

1ˆ ˆ ˆ, , ( ).
k

j
j j j j j j j

j

U
A W C A Z Z U e

n n




   
Choice of ˆ ja : Set

( ) ( )ˆ ˆ

1

ˆ ˆ
( ) ( 1) ( 1), 1, , .

ˆ ˆ
i l

i
X X

i
l

b n i e e i n
  

  

      

If i is the smallest natural number satisfying the inequalities

1 , ,i j i j n
j

b E b E b
k   

then for 1, , 1j k 

( )

1
ˆ

( )
1

ˆˆ1ˆ ˆln 1 ( 1) / ( 1) , max( , ).ˆˆ ˆ
l

i
X

j n k n
l

j
a b e n i a X

k
  

 





               


For such choices of intervals we have /j ke E k  for any j.

Example: This example is taken from the book of Bagdonavicius et al. (2010).
n = 120 electronic devices were observed for time   = 5.54 (years). The number of
failures is   =113:

1.7440, 1.9172, 2.1461, 2.3079, 2.3753, 2.3858, 2.4147, 2.5404, 2.6205, 2.6471,
2.8370, 2.8373, 2.8766, 2.9888, 3.0720, 3.1586, 3.1730, 3.2132, 3.2323, 3.3492,
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3.3507, 3.3514, 3.3625, 3.3802, 3.3855, 3.4012, 3.4382, 3.4438, 3.4684, 3.5019,
3.5110, 3.5297, 3.5363, 3.5587, 3.5846, 3.5992, 3.6540, 3.6574, 3.6674, 3.7062,
3.7157, 3.7288, 3.7502, 3.7823, 3.8848, 3.8902, 3.9113, 3.9468, 3.9551, 3.9728,
3.9787, 3.9903, 4.0078, 4.0646, 4.1301, 4.1427, 4.2300, 4.2312, 4.2525, 4.2581,
4.2885, 4.2919, 4.2970, 4.3666, 4.3918, 4.4365, 4.4919, 4.4932, 4.5388, 4.5826,
4.5992, 4.6001, 4.6324, 4.6400, 4.7164, 4.7300, 4.7881, 4.7969, 4.8009, 4.8351,
4.8406, 4.8532, 4.8619, 4.8635, 4.8679, 4.8858, 4.8928, 4.9466, 4.9846, 5.0008,
5.0144, 5.0517, 5.0898, 5.0929, 5.0951, 5.1023, 5.1219, 5.1223, 5.1710, 5.1766,
5.1816, 5.2441, 5.2546, 5.3353, 5.4291, 5.4360, 5.4633, 5.4842, 5.4860, 5.4903,
5.5199, 5.5232, 5.5335.

Suppose the failure times have a Gompertz distribution. The maximum likelihood

estimators of Gompertz model are: ˆ 0.0051  , ˆ 1.1586  . We take 10 intervals i.e.

k=10. Further results to calculate 2
nY  are shown below:

22 22 2
ˆ ˆ16.7779, 0.0141, 0.3737.i g W   

The matrix G is degenerate, so 1 9r k   . The value of the test statistic is
2 2 15.1130 9.8867 24.9997nY X Q     and the p-value 2

9{ 24.9997}P   =
0.0053. So from the result we can say that failure times don't follow the Gompertz
distribution.

Figure 4: The failure rate of electronic devices

Suppose that the failure times follow a Weibull model. The maximum

likelihood estimators of the Weibull model are: ˆ 4.6078  , ˆ 4.9554  . We take 10

intervals i.e. k=10. Further results to calculate 2
nY  are shown below:

J 1 2 3 4 5 6 7 8 9 10

ˆ ja 2.70 3.33 3.74 4.07 4.34 4.57 4.78 5.00 5.25 5.54

jU 10 9 23 12 9 6 7 13 13 11

je 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3
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22 22 2
ˆ ˆ0.0618, 0.0027, 0.0545.i g W   

The matrix G is degenerate, so r=k-1=9. The value of test statistic is
2 2 9.2692 1.0845 10.3536nY X Q     and the p-value 2

9{ 10.3536}P    = 0.3226.

So from the result we have no reason to reject that the failure times follow the Weibull
distribution. In the same way we can apply the test for Makeham model.

Here the Weibull model gives the better fit which is expected since the data
refer to technical devices and according to Gavrilov and Gavrilova (2001) technical
devices fail according to the Weibull law.  Also from Figure 4 one can observe the
behavior of the Gompertz model, according to which in later times the failure rate
increases very fast.

5. Non-Parametric Estimation of the Survival Function with Data from the
Table of Mortality

If there is no information about the model, one can estimate the survival
function by using a non-parametric estimation method. In the case of right censored
individual sample (5), it is easy to use the well known Kaplan-Meier estimation method
for estimating the survival function St and consequently the distribution function 1 tS
of the failure times.

One can estimate the survival function St from the grouped data, for example
from the table of mortality with censoring in the following way.

Suppose we observe n0 individuals and the time scale is divided in k intervals

0 1 1 2 1 1[ , [,[ , [,...,[ , [,...,[ , [.j j k ka a a a a a a a  (9)

Consider the jth interval 1[ , [, 1,...,j j jI a a j k  , 0 0a  , ka   .

We observe jd - the number of deaths in the interval jI , 1,...,j k , jc - the

number of individuals censored in the interval jI , 1,...,j k ,  and jn - the number of

individuals at risk (not died and not censored) at time ja , (the number of individuals

who enter in the 1jI  -th interval). So

1 .j j j jn n d c       (10)

Let jr - the number of individuals at death risk in the interval jI . If all censoring is at

the start of the interval jI , then 1 .j j jr n c  If all censored are at the end of the

interval jI , then 1j jr n  . But the censoring times are unknown. Therefore we

suppose that the censored data are uniformly distributed in the interval jI  and hence

we take

J 1 2 3 4 5 6 7 8 9 10

ˆ ja 2.89 3.36 3.70 3.98 4.24 4.47 4.68 4.90 5.16 5.54

jU 13 9 17 12 7 8 8 13 11 15

je 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3



Journal of Reliability and Statistical Studies, April 2012, Vol. 5 (S)48

1 / 2.j j jr n c  (11)

Let us denote by

1
1

{ }
{ | } ,

{ }
j

j j j
j

T a
q T a T a

T a



   



P
P

P

the conditional probability of being alive at ja  given that it was alive at 1ja  , and

hence

1 1 2
1

{ } · { } · { } .
j

j j j j j j i
i

T a q T a q q T a q  


      P P P 

So we have

1

{ } .
j

j j i
i

S T a q


  P

Similarly

11 |j j j jp q T a T a       P

is the conditional probability of death in the interval jI  given that it was alive at 1ja  .

So we can write

1

(1 ).
j

j i
i

S p


  (12)

The number of deaths id  in the interval iI  follows approximately binomial law with

parameters ir  and ip , so i i id r pE  and the probability ip  is estimated by ˆ / .i i ip d r
So the survival function ( )j jS S t  is estimated by

1 1 1

ˆ ˆ(1 ) 1 1 .
/ 2

j j j
i i

j i
i i ii i i

d d
S p

r n c  

   
        

   
   (13)

This is the analog of Kaplan-Meier estimator for grouped data and it is also called
product limit estimator.
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