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Abstract
Mathematical description of an examined system like a Multi-State System (MSS)

permits the analysis of this system reliability in more detail, because the MSS defines some
performance levels (more that only working and failure). A structure function is one of basic
definitions of MSS. But the structure function dimension increases critically depending on the
number of system components. Therefore the development of methods for examination and
quantification of such function is an actual problem in MSS reliability analysis. In this paper  a
method for the analysis of the MSS structure function with high dimension is proposed. This
method is based on initial representation of the MSS structure function by Multiple-Valued
Decision Diagram and is developed for calculation of the importance measures of the MSS.
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1. Introduction
There are two principal mathematical models in reliability analysis as shows in

Zio (2009). The Binary-State System (BSS) allows investigating two states as working
and failure for initial system. The Multi-State System (MSS) is a mathematical model
that is used for describing the system with some (more than two) levels of performance
(availability, reliability). Lisnianski and Levitin (2003) and Lisnianski et al. (2010)
presented a detailed analysis of MSS reliability estimation and quantification methods.
They considered a lot of examples of MSS application in reliability analysis of
information, manufacturing, production, power generation, transportation and other
systems.

The MSS performance level changes from zero to (M-1) and has M possible
values. Each of n system components can be in one of mi (i = 1, …, n) possible states:
from the complete failure (it is 0) to the perfect functioning (it is mi-1). A structure
function is one of typical representations of MSS and defines correlation of system
performance level depending on MSS components states [Lisnianski and Levitin, 2003;
Zaitseva, 2012]:

(x): {0, …, m1-1}…{0, …, mn-1}{0, …, M-1}, (1.1)

where xi is the i-th component state; x = (x1, …, xn) is vector of components states.

Every system component states xi is characterized by the probability of the
performance rate:

1,,0},{Pr,  mssxp iisi  (1.2)
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The MSS importance analysis is one of the directions for estimation of MSS
behavior against the system structure and components states. There are different
methods and algorithms for MSS importance analysis. Authors of the paper [Lisnianski
and Levitin, 2003; Levitin et al., 2003] have considered basic Importance measures
(IM) for system with two performance level and multi-state components and their
definitions by output performance measure. Ramirez-Marquez and Coit (2005) have
generalized this result for MSS and have proposed new type of IM that is named as
composite importance measures. Meng (2009) has presented a review of IMs. New
methods for importance analysis of MSS have been considered in [Zaitseva, 2012].
These methods based on mathematical tools of Multiple-Valued Logic (MVL).

The mathematical tools of MVL as Logical Differential Calculus for MSS
reliability analysis have been proposed in [Zaitseva and Levashenko, 2006].  The
authors have shown that the MSS structure function is interpreted as MVL function.
The Logical Differential Calculus is mathematical tool that permits the analysis of
changes in MVL function depending of changes of its variables. Therefore this tool can
be used to evaluate influence of every system component state change to MSS
performance level. The principal disadvantage of the Logical Differential Calculus
application in reliability analysis is the increase of computational complexity depending
on the number of system component. Miller and Drechsler (2002) have proposed
Multiple-Valued Decision Diagram (MDD) for such function representation and
analysis.

MDD is generalization of Binary Decision Diagram (BDD). BDD is widely
used in reliability analysis for BSS [Chang, 2004]. MDD is natural extension for MSS
analysis [Zaitseva and Levashenko, 2007; Xing and Dai, 2009]. On the other hand, the
MSS representation by MDD causes development of new algorithms for system
reliability analysis. We proposed new algorithms for IM calculation based on MDD by
Logical Differential Calculus.

2. Logic Differential Calculus in MSS reliability analysis
Logical Differential Calculus of MVL function includes different methods and

algorithms for estimation of influence of variable/variables value change to the function
value modification. Direct Partial Logic Derivatives (DPLD) are part of Logic
Differential Calculus and can be used for the analysis of dynamic properties of MVL
function or MSS structure function. These derivatives reflect the change in the value of
the underlying function when the variable value changes [Zaitseva, 2012]. DPLD with
respect to variable xi for MSS structure function (1) permits the analysis of the system

performance level change from j to j
~

 when the i-th component state changes from s to s~ .

DPLD for the MSS structure function has some specifics, because the structure
function (1.1) of coherent MSS has the following assumptions: (a) the structure function
is monotone; (b) all components are independent and relevant to the system.
Assumptions (a) and (b) cause gradual changes of the function value depending on the
same variable change and system reliability doesn’t change by leaps and bounds.
Therefore the DPLD for the coherent MSS performance level reduction is defined as:
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where (si, x) = (x1, …, xi-1, si, xi+1, …, xn); ((s-1)i, x) = (x1,…, xi-1, (s-1)i, xi+1,…, xn);
si  {1, …, mi-1} and j {1, …, M-1}.

DPLD (2.1) allows discovering the boundary system state for which change of
the i-th system component state from s to s-1 causes modification of the MSS
performance level from j to j-1.

Example
Consider the MSS of three component (n=3) in Fig.1. The structure function of

this MSS is

(x) = AND(OR(x1, x2), x3) (2.2)

and values of this function are in truth-table in Fig.1, where m1 = m2 = 2, m3 =4, M = 3.

The MSS structure function
x3

x1 x2

0 1 2 3

0  0
0  1
1  0
1  1

0
0
0
0

0
1
1
1

0
1
1
2

0
1
1
2

x1

x3

x2

Figure 1: The MSS example for n = 3, M = 3 and m = (2, 2, 4)

The influence of the third variable failure to the MSS performance can be
analysed by DPLDs (10)/x3(10) (failure) and (21)/x3(10)
(performance level decrease). Consider the first of these derivatives. This derivative has
three nonzero values for variables vector x = (x1 x2 x3): (1 1 10), (0 1 10) and (1 0
10). Therefore the failure of the third component cause the system breakdown for
working state of the first and the second components or working state one of them. The
system isn’t functioning if the first and the second component are failed and failure of
the third component hasn’t influence to the system performance level change.

3. Multiple-Valued Decision Diagram for the MSS structure function
The structure function representation by MDD has been considered in

[Zaitseva, 2012]. Miller and Drechsler (2002) defined MDD as a directed acyclic graph
for MVL-function representation. For the structure function (1.1) this graph has M sink
nodes, labelled from 0 to (M-1), representing M corresponding constant from 0 to (M-1).
Each non-sink node is labelled with a structure function variable xi and has mi outgoing
edges (Fig.2). The first (left) of edges is labelled by “0” and agrees with component fail.
The mi-th last outgoing edge is labelled “mi -1” edge and presents the perfect operation
state of system component.
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Figure 2: Interpretation of component state in MDD

Sink nodes of the MDD correspond to performance levels of the MSS. In this
case the non-sink node outgoing edges are interpreted as component states. The
probabilistic interpretation of the MSS assumes that every edge from variable xi with
labelled si is marked by the i-th component stat probability

isip ,  (Fig. 2). Rules for MSS

measures calculation based on MDD are trivial and are presented in [Zaitseva, 2012].
The probability of the MSS state is such measure.

Lisnianski and Levitin (2003) have been defined the probability of the MSS
state as probability that the system reliability is equal to the performance level j:

R(j) = Pr{(x) = j}, j = 0, …, M-1 (3.1)

Note, the MSS unreliability is defined as F = R(0).

Calculation of measures (3.1) based on the MDD consists of analysis of paths
from top non-sink node to the sink node “j”. Therefore the MDD is divided into M sub-
diagrams that have one sink node and include paths to this node from top non-sink node
of the MDD. Every edge from variable xi with labelled si is marked by the i-th
component stat probability

isip ,  [Zaitseva, 2012].

Example
The MDD for the MSS structure function (2.2) is in Fig. 3. The MSS state

probabilities (3.1) are calculated by analysis of sub-diagrams in Fig.4. The component
state probabilities are in Table 1. According to the sub-diagrams and probabilities in
Table 1 MSS state probabilities are:

R(1) = p1,1 p2,1 p3,1 + (p3,1 + p3,2 + p3,3)(p1,0 p2,1 + p1,1 p2,0) = 0.416

R(2) = p1,1 p2,1 (p3,2 + p3,3) = 0.448

F = p1,0 p2,0 + p3,0 (p1,0 p2,1 + p1,1) = 0.136

Table 1: MSS Component State Probability

StatesComponent
0 1 2 3

x1 0.2 0.8
x2 0.2 0.8
x3 0.1 0.2 0.2 0.5

Non-sink node of a MDD Non-sink node with component state
probabilities

pi,0 pi,1 pi,m
i
-1

0 xi

1

mi-1 0 xi

1

mi-1
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Figure 3: MDD for the MSS structure function (2.2)

Figure 4: Calculation of the MSS state probabilities R(j) by MDD

4. Importance Measures for MSS
There are some IM for MSS estimation.  We consider in this paper IM that can

be calculated by DPLD [Zaitseva, 2012]: Structural Importance (SI), Criticality
Importance (CI), Birnbaum importance (BI), Fussell-Vesely importance (FVI),
Component Dynamic Reliability Indices (CDRI) and Dynamic Integrated Reliability
Indices (DIRI).
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The SI takes into account the topological specifics of the system. It is used for
analyzing such systems, which are in designs or we don’t know the entire structure of
the system. SI of the MSS for the i-th component state s is the probability of this system
performance level j decrement if the component state changes from si to si-1 depending
on topological properties of system:
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where js

i

,  is number of system states when the change component state from s to s-1

results the system performance level decrement and this number is calculated as numbers
of nonzero values of DPLDs (2.1).

The modified SI represent of the i-th system component state change influence
to MSS performance level decrement for boundary system state. In terms of DPLD (2.1)
modified SI is determined as [Zaitseva, 2012]:
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i
i  is number of system states when (si, x) = j (it is computed by the structure

function of the MSS (1.1)).

Modified SI IMS is the probability of MSS performance decrement depending on
the i-th component state change and boundary system states. A system component with
maximal value of the SI measure (IS and IMS) has most influence to MSS and this
component failure causes high possibility of MSS failure.

Birnbaum Importance (BI) of a given component is defined as the probability
that such component is critical to MSS functioning. The mathematical and logical
generalization of this measure for MSS has some interpretations. Definition of BI for
MSS in terms of Logical Differential Calculus can be interpreted as rate at which the
MSS fails as the i-th system component state decreases:

 )1(/)1(Pr)|(  ssxjjjsI iiB   

BI measures (4.3) depend on the structure of the system and states of the other
components, but is independent of the actual state of the i-th component.

Consider the definition of Criticality Importance (CI) that is the probability that
the i-th system component is relevant to MSS performance decrement if it has failed or
has diminished state. For MSS this measure can be defined as probability of the MSS
performance reduces if the state of the i-th system component has changed from s to s-1:
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where pi,s-1 is probability of the i-th system component state s-1 (1.2) and R(j) is MSS
probability state (3.1).

The CI measure (4.4) correct BI for unreliability or lower state of the i-th
component relative. This measure is useful, if the component has high BI and low
probability of investigated state with respect of MSS performance decrement. In this
case the i-th component CI is low.

CDRI indicates the influence of the i-th component state change to MSS
performance level change [Zaitseva and Levashenko, 2006]. This definition of CDRI is
similar to definition of modified SI, but CDRIs for MSS failure take into consideration
two probabilities: (a) the probability of MSS failure provided that the i-th component
state is reduced and (b) the probability of inoperative component state:

1,)|()|(  siiMSiCDRI pjsIjsI  


where )|( jsI iMS is the modified SI (4.2); sip , is probability of component (1.2).

DIRI is the probability of MSS performance level decrement that caused by the
one of system components state deterioration. DIRI allows estimate probability of MSS
failure caused by some system component (one of n):
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The IM (4.1) – (4.6) are defined based on the DPLD (2.1). Therefore the

algorithms for calculation of the DPLD by MDD are principal part for quantification of
the MSS that is represented by MDD. There aren’t established algorithms for calculation
DPLD by the MDD. Changqian and Chenghua (2009) proposed an algorithm for the
Partial Derivative calculation by the BDD. But this algorithm doesn’t permit the DPLD
calculation based on MDD. Therefore we propose new algorithms below for THE
calculation for DPLD based on MDD for the following MSS importance analysis.

5. MSS Importance Analysis
We proposed two algorithms for DPLD calculation based on the MSS structure

function representation by MDD. One of them analyses the MDD from the top non-sink
node to sink node. This algorithm is named “from top to down” and the other algorithm
“from down to top” which is based on the inverse analysis – from sink node to the top
non-sink node. These algorithms permits to determine nonzero values of DPLD (2.1)
and the variables vectors x = (x1 … si(s-1)i … xn) for these nonzero values. The vector
corresponds to path between the top non-sink node and sink node. Therefore the two
types of paths are considered that satisfy the conditions as:

(si, x) = j      and ((s-1)i, x) = j-1 (5.1)
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The algorithm “from top to down” is started from analysis of the top non-sink
node of the MSS and this analysis “comes down” to the sink node “j” or “j-1” and edge
of variable xi is defined as “s” or “s-1” accordingly. The algorithm proceeding
recursively for fixed value of the variable xi and different values of other variables. The
algorithm takes into account the next rules:

(1) The sub-diagram from the top non-sink node to the sink node “j” or “j-1” is
formed for following analysis. All paths from the top non-sink node to the sink
node are considered and respective variables vectors are determined and they
are added to the set for condition (5.1).

(2) The left emanating edge for the current non-sink node is included in the current
path if the current node doesn’t agree with analyzable variable xi for DPLD
(2.1). The next emanating edge from left to right is considered if the left edge
has been analysed. If the current non-sink node has the examined edges only,
analysis of the current path comes back to previous non-sink node.

(3) The current non-sink node supposes inclusion of the emanating edge with label
“s” or “s-1” if the current node corresponds with analyzable variable for DPLD
(2.1). If this non-sink node hasn’t the emanating edge with label “s” or “s-1”,
analysis of the current path comes back to previous non-sink node.

(4) The variable xq (q = 1, …, n) is labelled as irrelevant (for example by “-1”) if it
is not in the current path. Value of this variable in the variables vector can be
defined from set {0, …, mq-1}.

(5) The algorithm stops if the all possible paths are examined and analyse is come
back to the top non-sink node and all of emanating edges of this node is
examined.

Example
Consider the calculation of the DPLD (10)/x1(10) by this algorithm

for the MSS structure function (2.2). The MDD of this is in Fig.3. The algorithm starts
form the definition of sub-diagram (rule (1)) for conditions: (x) = 1 and (x) = 0 that
are in Fig.4. The first examined non-sink node is node of the variable x1 that is agree
with variable of analysed DPLD (Fig.5). According to the algorithms rule (3) the value
of the variable x1 is defined as “1” and analysis goes to non-sink node of the variable x2

(it is step 1 in Fig.5). The variable x2 is analysed according to the algorithm rule (2). The
left edge with label “0” is considered and the x2 value is defined as x2 = 0 (the step 2).
The last non-sink node for variable analysed and according to the left outgoing edge we
have x3 = 1. Therefore the first of variables vector is x = (1 0 1) (the step 3). The analysis
comes back to the non-sink node of variable x3 on the step 4 because the sink node “1” is
reached. In this case we have x1 = 1 and x2 = 0. The value of the third variable is x3 = 2
because the left emanating edge was considered for previous variables vector and next of
edges has label “2” (the step 5). The second variables vector is x = (1 0 2). The third
vector x = (1 0 3) is calculated similarly on step 7. The calculation of the fourth variables
vector causes the analysis to return to the non-sink node x2 (step 8 and 9). This node has
two edges and edge with label “1” wasn’t examined. Therefore values of the variables x1

and x2 are x1 = 1 and x2 = 1 (step 10). The non-sink node x3 in current path has only one
edge therefore x3 = 1 and x = (1 1 1) (step 11). The analysis of the condition (11, x) = 1
is finished because all possible paths are examined according to the algorithm rule 5
(steps 12, 13) and we have the set of variables vectors:
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{x = (* 0 1), x = (* 0 2), x = (* 0 3), x = (* 1 1)}.

Figure 5: Calculation of the DPLD by MDD

The set of the variables vector for condition (01, x) = 0 is calculated similarly
(Fig.5) and is:

{x = (* 0 0), x = (* 0 1), x = (* 0 2), x = (* 0 3), x = (* 1 0)}.

Three vectors in these sets are equal (Fig.5) therefore the set of the variables
vectors of the DPLD (10)/x 1(10) is:

{x = (10 0 1), x = (10 0 2), x = (10 0 3)}. (5.2)

According to (5.2) we have to calculate IM (4.1) – (4.6) for the MSS in Fig.1
with the structure function (2.2) for the first variable. The component state probabilities
for the calculation of this IM are in Table 1. The IMs for all components of this MSS are
in Table 2.
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Table 2: MSS Importance Measures

Importance MeasuresComponent

IS(1i|1) IMS(1i|1) IB(1i|1) IC(1i|1) ICDRI(1i|1) IDIRI(1|1)
x1 0.375 0.750 0.180 0.265 0.551 0.333
x2 0.375 0.750 0.180 0.265 0.551
x3 0.750 1 0.960 0.706 0.551

The algorithm “from down to top” begins the analysis from sink node “j” or “j-
1” to the top non-sink node of the MSS provided that edge of variable xi is defined as “s”
or “s-1” accordingly. The algorithm is recursive for fixed value of the variable xi and
different values of the other variables according to following rules:

(1) The sub-diagram from the top non-sink node to the sink node “j” or “j-1” is
formed for following analysis. All paths from the top non-sink node to the sink
node are considered and respective variables vectors are determined and they
are added to the set for condition (5.1).

(2) The analysis is started from left inflowing edge of sink node. The next
inflowing edge from left to right is considered if the left edge has been
examined. If the sink node has the examined edges only for some recursion,
analysis is ended.

(3) The left inflowing edge for the current non-sink node is included in the current
path, if the current node doesn’t agree with analyzable variable xi for DPLD
(2.1). The next inflowing edge from left to right is considered if the left edge
has been analysed. If the current non-sink node has the examined edges only,
analysis of the current path comes back to previous non-sink node or sink node.

(4) The current non-sink node supposes inclusion of the inflowing edge with label
“s” or “s-1” if the current node corresponds with analyzable variable for DPLD
(4). If this non-sink node hasn’t the emanating edge with label “s” or “s-1”,
analysis of the current path comes back to previous node.

(5) The variable xq (q = 1, …, n) is labelled as irrelevant (for example by “-1”) if it
is not in the current path. Value of this variable in the variables vector can be
defined from set {0, …, mq-1}.

The calculation of the DPLD nonzero values according to this algorithm is
similar to the algorithms “from top to down” and haven’t any specifics. The comparison
of these algorithms is considered below.

Testing the presented algorithms is performed on benchmarks, which are
available at the Benchmark Archives at CBL online:
http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth91/twolexamples/. This
benchmark has in the PLA – EXPRESSO format that is used for Boolean functions.
Therefore the tests carried out on BDD constructed on the basic of the benchmarks.
Tested result is shown in Table 3 with the number of nodes and variables. These
benchmarks used for two algorithms comparison, control and examination. Experiments
permit to estimate the computation complexity of the proposed algorithms (by the time
calculation, number of algorithms steps etc.) depending on number of function variables.
Computational complexity of the algorithm “from top to down” (Algorithm 1) and

http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth91/twolexamples/
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algorithm “from down and top” (Algorithm 2) is shown in Fig.6 depending of the
number of the function variables (diagram nodes).

Table 3: Benchmark characteristics

Benchmark Count of Nodes Count of Variables
5xp1 108 11
9sym 73 18
apex2 265 23

Bw 221 10
Clip 171 13
con1 27 7

misex1 88 9
misex2 173 13

o64 260 10
rd53 35 10
rd73 97 15
rd84 167 15
sao2 169 16
vg2 178 13
xor5 18 7

Figure 6: Comparison of algorithms computational complexity

Analysis of the data in Fig.6 shows that the two algorithms have similar
parameters. These algorithms can be used for IM (4.1) – (4.6) calculation equally.
Therefore principal algorithms for IM quantification based on DPLD have been
proposed in this paper.
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