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Abstract: The present study deals with the classical and Bayesian analysis of re-modeled
stress-strength system reliability by considering Weibull distribution as the distribution of both
the stress and strength variables. The proposed re-modeled stress-strength system reliability is
defined as the probability that the system is capable to withstand the maximum operated stress at
its minimum strength i.e., P[U>V], where U=Min(X1, X2…Xm) and V=Max(Y1,Y2,……Yn). The
observations X1, X2…Xm and Y1,Y2,……Yn are the measurements on the strength and stress
variables at different time epochs. The goodness-of-fit of the two real data sets for the proposed
model is also demonstrated.
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1. Introduction
The stress-strength reliability model, R=P(X>Y), considers uncertainties about

the actual environmental stress to be encountered as well as the resistance bearing
properties of a component. Thus, the root of this model is that a component is always
subjected to variety of stresses during its life-time and whether or not the component
fails due to these stresses is just a matter of whether the resistance (strength) provided
by the component is greater than the load (stress) applied. Here, the random variables X
and Y respectively denote the strength and stress of the component. This stress-strength
reliability model can be applied to numerous specific engineering cases, military
problems and medical related problems of which clinical trials is one of the fastest
growing areas. Some practical situations in which stress-strength model can be applied
are as follows:
 “Break-even voltage (X) of a capacitor must exceed the voltage output (Y) of a
power supply for the proper functioning of the equipment.” [Krishnamoorthy,
Mukherjee and Guo, 2006].
 “If Y represents the diameter of a shaft and X represents the diameter of a
bearing that is mounted on the shaft, then the ‘R’ is the probability that the bearing fits
without interference.” [Nadarajah, 2005].

The field seems to have reached maturity as massive literature is devoted to
probabilistic problems associated with the assessment of P(X>Y) and its estimation but
the germ of this idea was originated in Birnbaum, 1956 and then Birnbaum and
McCarty, 1958 extended it. They studied the point and interval estimation procedures
of P(X>Y). By the late eighties, R=P[X>Y], a measure of system performance, was
estimated for most of the statistical distributions for the scenario when X and Y are
assumed to be independent of each other [Church and Harris, 1970; Kelley et al., 1976;
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Tong, 1977; Beg and Singh, 1979; Voinov, 1984; Awad and Gharraf, 1986]. Recently,
Baklizi and El-Masri, 2004 obtained the shrinkage estimator of R=P(X>Y) for two-
parameter exponential distribution when X and Y are considered to be independent
random variables. Further, Kundu and Gupta, 2005; Raqab and Kundu, 2005 and
Krishnamoorthy, Mukherjee, and Guo, 2006 obtained the estimates of stress-strength
reliability model for two-parameter generalized exponential, scaled Burr-type X and
two-parameter exponential distributions respectively. With the introduction of bivariate
distributions, it became possible to study inter-dependency between the stress and
strength variables. Estimators of P(X>Y) for bivariate exponential random vector
[Awad et al., 1981; Abu-Salih and Shamseldin, 1988; Jana and Roy, 1994], for
bivariate normal random vector [Mukherjee and Saran, 1985], for bivariate gamma
distribution [Nadarajah, 2005] have also been derived. In recent years, a few less
familiar distributions like Wienman exponential, bivariate Pareto, multivariate normal
and other are considered for drawing inferences on R=P(X>Y). Cramer and Kamps,
1997a and Cramer, 2001 estimated the component reliability considering the Wienman
exponential distribution for stress and strength variables whereas Singh, 1981; Gupta
and Gupta, 1990 considered multivariate normal distribution for obtaining the estimates
for P(X>Y) and for drawing the inference on the same. In addition to the above studies,
Bayesian analysis of stress-strength reliability model for normally distributed variables
[Weerahandi and Johnson, 1992], for Burr-type X distribution [Ahmad, Fakhry and
Jaheen, 1997; Kim and Chung, 2006] have also been conducted.

In all the above studies, the authors considered that the system is operable only
when its strength exceeds the stress encountering at the time of operation. However, it
is observed especially in military and medical sciences that the system’s designers,
reliability practitioners and experts in medical field seek to assign high probability to
the event that the system/unit remains operable at its minimum strength encountering
maximum stress at that time epoch. For example- in the defence combats, the warfare
equipments should have very high reliability in order to perform its intended function
of defence and attack satisfactorily. Similarly, another interesting example could be of
stress fracture from the orthopedic surgery.  Bones are flexible tissues capable of repair,
and regeneration in response to both mechanical stresses and environmental strains or
deformations.  In normal conditions, bones are gifted to keep up with the necessary
fixations without manifesting clinically significant injuries. However, whenever a
bone’s minimal reparative and adaptive ability (strength) is exceeded by chronic
overstress, damage can begin to accumulate and fracture occurs.

Thus, to meet the above objective, it seems logical to re-modeled the stress-
strength reliability as P [U>V], where U=Min(X1, X2…Xm) and V=Max
(Y1,Y2,……Yn). The observations X1, X2…Xm and Y1,Y2,……Yn are the measurements
on the strength and stress variables at different time epochs. Thus, the proposed re-
modeled stress-strength system reliability is defined as the probability that the system is
capable to withstand the maximum operated stress at its minimum strength.

Further, it is commonly observed that the failure rates of the components vary
with time. Hence, it is reasonable and more pragmatic to assume Weibull distribution as
the failure time distribution of the components/units. It is one of the most extensively
used distribution in reliability theory as its analysis provides the information needed for
classifying the failure types, scheduling preventive maintenance and scheduling
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inspection. Also, Weibull distribution can characterize verity of data because of its
shape parameter.

In view of the above, the present study deals with the analysis of re-modeled
stress-strength system reliability by considering Weibull distribution as the distribution
of both the stress and strength variables. The assumptions are given in section 2. The
expression for the re-modeled system reliability is derived in section 3. In section 4.1,
we obtain maximum likelihood estimate of the re-modeled system reliability. Further,
since, the life-testing experiments are very time consuming as such the parameters
involved in the stress and strength distributions are assumed to be random variables.
Therefore, re-modeled system reliability is also analyzed in Bayesian setup. The
Markov Chain Monte Carlo (MCMC) technique such as Gibbs sampler has been
utilized for this purpose. At the end, we demonstrate the goodness-of-fit of the two real
data sets for the proposed model.

2. Statistical Assumptions
For developing the stress-strength reliability model, it is assumed that:

(i)  The strength variable X is distributed with p.d.f.

11 1 x
1 1 1 1f (x, , ) x e , x 0, 0, 0

                                         (1)

(ii)  The stress variable Y is distributed with p.d.f.

22 1 y
2 2 2 2f (y, , ) y e , y 0, 0, 0

           (2)

(iii) In view of (i), the p.d.f. of the random variable ‘U’ will be
11 1 m u

1 1 1 1g (u, , ) m u e , u 0, 0, 0
             (3)

(iv) In view of (ii), the p.d.f. of the random variable ‘V’ will be

2 22 1 v v n 1
2 2 2 2g (v, , ) n v e (1 e ) , v 0, 0, 0

                (4)

(v) The parameters 1and   involved in (1) to be random variables with respective

prior p.d.f.'s as

0 1000
1 0 0

0

h ( ) e ;( , , ) 0
 

 
      


 (5)

1
1 1 1 11

2 1 1 1 1 1
1

h ( ) e ; ( , , ) 0


   
      


(6)

(vi) The parameters 2and   involved in (2) to be random variables with respective

prior
      p.d.f.'s as

2 1222
4 2 2

2

h ( ) e ;( , , ) 0
 




      


(7)
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3
3 32 13

3 2 2 2 3 3
3

h ( ) e ;( , , ) 0


  
      

 (8)

3. Re-modeled Stress-Strength System Reliability
The re-modeled stress-strength system reliability can be obtained as

R P[U V] 

(n 1)
1 2 2

2
2

1(m v v ) vn e v 1 e dv
0

            
  

                                                                                                                                 (9)

When 1 2   , then equation (9) becomes,

m
R n B(n, 1)


 


(10)

Here, it is notable that reliability function given in (10) comes out to be independent of
the common shape parameter .

4. Estimation of the Parameters and System Reliability
4.1 Classical Estimation

Let
11 2 nU (U , U ,....., U )


and

21 2 nV (V ,V ,.....,V )


be the random

samples of sizes 1n  and 2n respectively drawn from the distributions in (3) and (4),

then the combined likelihood function of U


 and V


 is given by

1

2

1
1

1n 11 1
1 2, 1

2
2

22 2n 22 2
2

n
m un i1n n i 1L(u, v/ , , ) m u ei

i 1
n

(n 1)vn ni v1n n i 1 in v e 1 ei
i 1 i 1

   
          

 


                     

 

                                                                                      (11)

The log likelihood function is
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1

1 1 1 1 1

1
1

2 2 2 2

22 2 2
2

2

n
log L n log m n log n log ( 1) log ui

i 1
n

m u n log n n log n logi
i 1

n n n vi( 1) log v v (n 1) log[1 e ]i i
i 1 i 1 i 1


       
 
        



 
         

   

(12)

The simultaneous MLE’s 1, 2 1, 2
ˆ ˆ ˆ ˆ( , , ) of ( , , )        will be the solutions of

the following equations:

1n
1

i
i 1

nlog L 1m u


 
  

 
(13)

1 1n n
1

i ii
i 1 i 11 1

nlog L 1log u m ( u log u )
 

 
    

 
(14)

2 2

2
i

2
i

n n
2

i ii
i 1 i 12 2

n 2v
ii

i 1 v

nlog L 2log v ( v logv )

1 2(n 1) e v log v

1 e


 



 

 
      

 
         
  
   

(15)

2 2
i

2
i

n n 2v2 2
i i

i 1 i 1 v

nlog L 12v (n 1) e v

1 e




  

 
             
  
   

(16)

The equations (13), (14), (15) and (16) can be solved for ˆ , 1, 2,
ˆ ˆ ˆand   by

using any numerical iterative procedure. Now, using invariance property of the MLE’s,
the MLE of the re-modeled system reliability R becomes
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(n 1)

1 2 2
2

2

ˆ ˆ ˆˆˆ ˆ ˆ1(m v v ) vˆ ˆR̂ n e v 1 e dv
0


              
                  (17)

Further, the asymptotic sampling distribution of  ̂   is  1
4N 0,   ;

1 2( , , , )      .  is the Fisher’s information matrix having elements as the
expectations of the negative second partial derivatives of log-likelihood function with

respect to the parameters. The asymptotic distribution of R̂  is N(0, ' 1A A ) where

'

1 2

R R R R
A ( , , , )

   


   
.
4.2 Bayes Estimation

Here, we propose Bayesian estimation procedure by assuming the parameters
of the strength and stress distributions as random variables. The prior distributions

of 1, 2, and    are considered as 0 0Gamma( , )  1 1Gamma( , ), 

2 2Gamma( , )  and 3 3Gamma( , )  with respective p.d.fs as given in equations

(5), (6), (7) and (8) respectively.
Using likelihood function in (11) and prior distributions in (5), (6), (7) and (8),

the joint posterior distribution of 1, 2, ,  and     given the sample is

1 2, 1 2, 1 2 1 3 2 4( , , | u, v) L(u, v / , , ) h ( ) h ( )h ( ) h ( )             
   

For implementing Gibbs sampling procedure, we utilize the following full conditional

posterior distributions of 1, 2, and    :

1
1

0
1 0

1 1 2,

n
( m u )in 1 i 1( u, v, , ) e


   

        
 

1
1

1 0 0

n
~ G(n ,   m u )i

i=1


    (18)

1 1

1
1

1 11(n 1) 1
2 1 2, 1

n
( m u )n i1 i 1( u, v, , ) u ei

i 1

 


     

        
 

         (19)
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2
2

2 3

n

3 2 i2n 1 2 i 1
3 2 1, 2

22

( v )n 1
( u, v, , ) v ei

i 1
(n 1)

n vi1 e
i 1



  


     

      
 
            

 
(20)

(21)

Gibbs algorithm
1. Generate   from 1 1 2( u, , , )    


as given in (18).

2. Generate 1  from the density 2 1 2( u, v, , , )    
 

as given in (19).

3. Generate 2  from the density 3 2 1( u, v, , , )    
 

as given in (20).

4. Generate   from the density 4 1 2( u, v, , , )    
 

as given in (21).

5. Repeat steps 1-4, M times. For eliminate the effects of the starting values, we

record the sequence of 1 2( , , , )       after N burn-in iterations i.e

N 1 N 2 M( , ,......., )    .

 6. Put these generated values of    in the expression of R in (9).

7. The Bayes estimates *  and *R  of the parameters and re-modeled system
reliability and corresponding posteriors variances are taken as the means and variances
of the generated values of   and R respectively.

  8. Let (N 1) (N 2) (M)....        and (N 1) (N 2) (M)R R .... R   

denote respectively the ordered values of N 1 N 2 M, ,.....,    , and

N 1 N 2 MR , R ,....., R   . Then, following Chen and Shao [1998], the 100(1  ) %

HPD intervals for   and R respectively are
 N j N j (1 )(M N)* *,          

   

 
  
 
 

 and

 N j N j (1 )(M N)* *R ,R          
   

 
 
 
 

 Where, * *i and j  are chosen so that

2 2

2
2

2 22(n 1)
4 1, 2

n
(n 1)( v )ni vi 1 i( /, u, v, , ) e 1 e

i 1

 

                  
 
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       N jN j (1 )(M N)N j (M N) [(1 )(M N)N j (1 )(M N) N j* * min                    
   

    

       and

       N jN j (1 )(M N)N j (M N) [(1 )(M N)N j (1 )(M N) N j* *R R min R R                    
   

  

Here, it is notable that the sampling from the posterior distributions in (19),
(20) and (21) is not easy as they cannot be simplified to the well known distributions.
Therefore, following Metropolis-Hastings algorithm has been used to

generate 1 2, and   .

Metropolis-Hastings algorithm
1. Start with any value 0t  satisfying target density  0f t 0 .

2. Using current t value, generate a proposal point (t_prop) from the proposal density

 1 2q t , t =  1 2P t t i.e., the probability of returning a value of 2t given a previous

value of 1t . We assume proposal densities for the distributions as  jU 0,a ; j 1, 2,3

respectively. The values of ja  have been set according to the corresponding assumed

values of 1 2, and   .

3. Calculate the ratio at the proposal point (t_prop) and current  i 1t  as:

   
   

i 1

i 1 i 1

f t _ prop q t _ prop, t
log

f t q t , t _ prop


 

 
   

  
4. Generate U from uniform on (0,1) and take Z=log U.
5. If Z   , accept the move i.e., t_prop and set 0t =t_prop and return to step-1.

Otherwise reject it and return to step-2.
 6. Repeat above procedure M times.

5. A Simulation Study
For analyzing the respective values of 1R P[U V]   in respect of m, n and

involved parameters, we assume 1 2=0.2, 2, 3, 2       . Values for

R P[U V]  for varying ‘m’ and ‘n’ have been summarized in Table-1.
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Table 1: Values of R P[U V]   for varying m and n

    n
m

                         n

       1     2     3    4

 1 .8950 .8582 .8368 .8221

 2 .8055 .7407 .7042 .6795

 3 .7287 .6426 .5956 .5644

m

 4 .6623 .5604 .5062 .4711

Here, it is observed that the re-modeled system reliability decreases as m and n
increases. Now, for comparing the performances of the MLEs and Bayesian estimates

of the parameters and reliability function, we generated samples of sizes 1n  and 2n
from the distributions given in (3) and (4) for the above set of values of the parameters
and these samples information is used to obtain the estimates for varying combinations
of m and n. Table-2 and Table-3 include the estimates of the parameters and reliability
function R  along with their variances/posterior variances and confidence/HPD
intervals along with their widths. In Table-2 and Table-3, the entries in {}, () and []
respectively represent variances/posterior variances, confidence/HPD intervals and
widths of the intervals.

6. Concluding Remarks
From table-2 and 3, it is observed that:

For fixed n and varying m:
 For all the parameters and re-modeled reliability function, Bayes estimates
perform well as compared to the MLE’s as they have lesser variances that of MLE’s.
 Also, HPD intervals are more conservative as compared to the confidence
intervals.
 Though, both the methods (ML and Bayes) are either over-estimating or
under-estimating the actual re-modeled stress-strength system reliability. But
preferences to be given to Bayes method of estimation as they are more consistent than
MLEs.
For fixed m and varying n:
 For varying n, trends in estimating the parameters and re-modeled reliability
function are exactly the same as observed in case of varying m.

7. Real Data Analysis
In this section, we present a data analysis of the strength data reported by

Badar and Priest (1982). The data represent the strength data measured in GPA, for
single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were tested
under tension at gauge lengths of 1, 10, 20 and 50 mm. Impregnated tows of 1000
fibers were tested at gauge lengths of 20, 50, 150 and 300 mm. For illustrative
purpose, we consider the data sets consisting the single fibers of 20 mm (Data Set 1)
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and 10 mm (Data Set 2 belongs to stress measurements) in gauge lengths with sample
sizes 67 and 63 respectively. Data sets are presented below:
Data set 1: (belongs to strength measurements)
U= [.312,  .314, .479, .552, .7, .803, .861, .865, .944, .958, .966, .997, 1.006, 1.021,
1.055, 1.063, 1.098, 1.14, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.359,
1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566,
1.570, 1.586, 1.629, 1.633,1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809,
1.818, 1.821, 1.848, 1.880, 1.954,2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433,
2.585, 2.585]
Data set 2: (belongs to stress measurements)
V=[.101, .332, .403, .428, .457, .550, .561, .596, .597, .645, .654, .674, .718, .722, .725,
.732,.775, .814, .816, .818, .824, .859, .875, .938, .940,1.056,1.117, 1.128, 1.137, 1.137,
1.177, 1.196, 1.230 ,1.325, 1.339, 1.345, 1.420, 1.423, 1.435, 1.443, 1.464, 1.472,
1.494, 1.532, 1.546,1.577, 1.608, 1.635, 1.693,  1.701, 1.737, 1.754, 1.762, 1.828,
2.052, 2.071, 2.086, 2.171,2.224,2.227, 2.425, 2.595, 3.22]

Using the above data sets, Firstly, we obtain the MLEs of the parameters and
re-modeled system reliability R for varying values of m and n. The values of the MLEs
along with their variances and 95% confidence intervals are reported in Table-4. In
Table-4, the values in the brackets {}, () and [] respectively represent the variances,
confidence intervals and P-value of the corresponding K-S distance. K-S1 and K-S2
stand for Kolmogorov-Smirnov distances for data set 1 and 2 respectively. Secondly,
for testing the goodness-of-fit of the data sets for the proposed model, we consider the
following three methods:
 Kolmogorov-Smirnov (K-S) distance between the fitted and the empirical
distribution functions.
 The P-P plots of fitted and empirical distribution functions.
 The plots of fitted verses empirical distribution functions.
Kolmogorov-Smirnov (K-S) distances between the fitted and the empirical distribution
functions for data sets 1 and 2 for varying m and n with corresponding P-values are
summarized in Table-4. The P-P plots of fitted and empirical distribution functions and
the plots of fitted verses empirical distribution functions are also drawn in Fig.-1 to
Fig.-16. In all these figures, the left pairs of the plots are of data set-1 whereas the right
pairs of the plots belong to the data set-2.

The P-values of the K-S differences show that both the considered data sets fit
well to the proposed model for all considered combinations of the measurements m and
n. The P-P plots and plots of fitted verses empirical distribution functions have also
provided the same evidences.
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Table 2: MLE’s and Bayes estimates along with their variances / posterior variances and confidence /
HPD intervals for fixed n and varying m

Actual m 1, n 4 
m 2, n 4 

MLE’s Bayes MLE’s Bayes

0.2

.1802{.0023}

(.0859,.2746)
[.1887]

.1913{.0016}

(.1137,.2623)
[.1486]

.1952{.0016}

(.1154,.2751)
[.1597]

.1978{.0012}

(.1307,.2656)
[.1349]

1 2  2.0622{.0465}

(1.6391,2.4852)
[.8461]

2.0314{.0287}

(1.7197,2.3054)
[.5857]

2.0433{.0553}

(1.5821,2.5045)
[.9924]

2.0321{.0357}

(1.6122,2.3644)
[.7522]

2 3  3.2424{.1145}

(2.5791,3.9057)
[1.3266]

3.1128{.0635}

(2.6518,3.6523)
[1.0005]

3.4367{.1267}

(2.7391,4.1344)
[1.3953]

3.2166{.0672}

(2.7636,3.7169)
[.9533]

2 1.8582{.0232}

(1.5594,2.1570)
[.5976]

1.9632{.0191}

(1.6956,2.2192)
[.5236]

1.9258{.0245}

(1.6190,2.2326)
[.6136]

1.9748{.0194}

(1.7167,2.2405)
[.5238]

Actual
R .8221 .6795

Estimated
R

.8312{.0055}

(.6849,.9774)
[..[.2925]

.8279{.0011}

(.7678..8902)
[.1224]

.6799{.0053}

(.5369,.8229)
[.2860]

.6808{.0021}

(.5925,.7709)
[.1784]

Actual m 3, n 4 
m 4, n 4 

MLE’s Bayes MLE’s Bayes

0.2

.1640{.0009}

(.1032,.2250)
[.1218]

.1841{.0008}

(.1250,.2364)
[.1114]

.1937{.0009}

(.1328,.2546)
[.1218]

.1950{.0008}

(.1469,.2593)
[.1124]

1 2  2.2381{.0834}

(2.0463,3.1784)
[1.1321]

2.1057{.0452}

(1.9331,2.7858)

[.8527]

2.0326{.0498}

(1.5952,2.4701)
[.8749]

2.0127{.0319}

(1.6952,2.4080)
[.7128]

2 3  3.3020{.1157}

(2.6352,3.9688)
[1.3356]

3.1380{.0587}

(2.6401,3.5742)
[.9341]

3.1096{.1005}

(2.4881,3.7311)
[1.2430]

3.0656{.0603}

(2.6300,3.5371)
[.9071]

2 1.7982{.0220}

(1.5069,2.0895)
[.5826]

1.9634{.0213}

(1.6888,2.2404)
[.5516]

2.0022{.0260}

(1.6857,2.3188)
[.6331]

2.0022{.0186}

(1.7495,2.2453)
[.4958]

Actual
R .5644 .4711

Estimated
R

.5991{.0044}

(.4745,.7413)
[.2668]

.5882{.0024}

(.4947,.6824)
[.1877]

.4817{.0037}

(.3614,.6021)
[.2407]

.4784{.0027}

(.3748,.5746)
[.1998]
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Table 3: MLE’s and Bayes estimates along with their variances / posterior variances and
confidence / HPD intervals for fixed m and varying n

Actual m 4, n 1 
m 4, n 2 

MLE’s Bayes MLE’s Bayes

0.2

.2167{.0011}
(.1556,.2824)
[.1268]

.2138{.0009}
(.1556,.2762)
[.1206]

.2278{.0012}
(.1596,.2960)
[.1364]

.2302{.0010}
(.1737,.3002)
[.1265]

1 2  1.9152{.0477}
(1.4870,2.3434)
[.8564]

1.9393{.0326}
(1.6227,2.3301)
[.7074]

2.3292{.0651}
(1.8288,2.8297)
[1.0009]

2.2178{.0419}
(1.8663,2.6011)
[.7348]

2 3  2.9371{.1025}
(1.4974,2.6872)
[1.1898]

2.9395{.0599}
(2.4809,3.4343)
[.9534]

3.0992{.1091}
(2.4517,3.7467)
[1.2950]

3.0313{.0613}
(2.5055,3.4911)
[.9856]

2 2.0932{.0921}
(1.4974,2.6872)
[1.1898]

1.3662{.0229}
(1.0991,1.4956)
[..3965]

1.9997{.0447}
(1.5852,2.4142)
[.8290]

1.5775{.0188}
(1.3310,1.8138)
[.4828]

Actual
R 0.6623 .5604

Estimated
R

.6466{.2602}
(0.5635,.8756 )
[.3121]

.5690{.0023}
(.4952,.6736)
[.1784]

.5317{.0283}
(.2011,.8616)
[.6605]

.4734{.0026}
(.3764,.5654)
[.1890]

Actual m 4, n 3 
m 4, n 4 

MLE’s Bayes MLE’s Bayes

0.2

.2545{.0014}
(.1803,.3286)
[.1483]

.2480{.0011}
(.1776,.3088)
[.1312]

.1937{.0009}
(.1328,.2546)
[.1218]

.1950{.0008}
(.1469,.2593)
[.1124]

1 2  1.9605{.0471}
(1.5350,2.3860)
[.8510]

1.9704{.0310}
(1.6421,2.3128)
[.6707]

2.0326{.0498}
(1.5952,2.4701)
[.8749]

2.0127{.0319}
(1.6952,2.4080)
[.7128]

2 3  3.0196{.1058}
(2.4540,3.7291)
[1.2751]

2.9616{0625}
(2.4658,3.4618)
[.9960]

3.1096{.1005}
2.4881,3.7311)
[1.2430]

3.0656{.0603}
(2.6300,3.5371)
[.9071]

2 2.3133{.0442}
(1.9012,2.7255)
[.8243]

1.8031{.0190}
(1.5137,2.0246)
[.5109]

2.0022{.0260}
(1.6857,2.3188)
[.6331]

2.0022{.0186}
(1.7495,2.2453)
[.4958]

Actual
R .5062 .4711

Estimated
R

.4547{.0107}
(.2513,.6582)
[.4069]

.4133{.0025}
(.3310,.5210)
[.1900]

.4817{.0037}
(.3614,.6021)
[.2407]

.4784{.0027}
(.3748,.5746)
[.1998]
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Table 4: MLE’s of the parameters and reliability function along with their variances and confidence
intervals, K-S test’s values with corresponding P-values for varying m and n ( For data set 1 & 2)

      n

m
N

 MLE’s             1      2        3       4

̂ 0.2057{.0021}
(.1140,.2973)

0.2057{.0021}
(.1140,.2973)

0.2057{.0021}
(.1140,.2973)

0.2057{.0021}
(.1140,.2973)

1̂
3.2499{.0979}
(2.6366,3.8632)

3.2499{.0979}
(2.6366,3.8632)

3.2499{.0979}
(2.6366,3.8632)

3.2499{.0979}
2.6366,3.8632)

2̂
2.1556{.0439}
(1.7446,2.5666)

1.4930{.0203}
(1.2136,1.7724)

1.2257{.0134}
(.9985,1.4529)

1.0741{.0101}
(.8762,1.2720)

̂ 0.4677{.0046}
(.3107,.6247)

0.9761{.0115}
(.7650,1.1871)

1.3325{.0139}
(1.1012,1.5638)

1.6022{.0152}
1.3604,1.8440)

1R̂
0.6126 0.6229 0.6273 0.6297

K-S1[p-value] 0.0524[.9921] 0.0524[.9921] 0.0524[.9921] 0.0524[.9921]

  m

 1

K-S2[p-value] 0.0693[.9230] 0.0806[.8075] 0.0894[.6957] 0.0940[.6334]

̂ 0.1028{.0005}
(.0569,.1487)

0.1028{.0005}
(.0569,.1487)

0.1028{.0005}
(.0569,.1487)

0.1028{.0005}
(.0569,.1487)

1̂
3.2499{.0981}
(2.6359,3.8640)

3.2499{.0981}
(2.6359,3.8640)

3.2499{.0981}
2.6359,3.8640)

3.2499{.0981}
2.6359,3.8640)

2̂
2.1556{.0439}
(1.7446,2.5666)

1.4930{.0203}
(1.2136,1.7724)

1.2257{.0134}
(.9985,1.4529)

1.0741{.0101}
(.8762,1.2720)

̂ .4677{.0046}
(.3107,.6247)

0.9761{.0115}
(.7650,1.1871)

1.3325{.0139}
1.1012,1.5638)

1.6022{.0152}
1.3604,1.8440)

1R̂
0.6126 0.6229 0.6273 0.6296

K-S1[p-value] 0.0523[.9924] 0.0523[.9924] 0.0523[.9924] 0.0523[.9924]

  2

K-S2[p-value] 0.0693[.9230] 0.0806[.8075] 0.0894[.6957] 0.0940[.6334]

̂ 0.0685{.0002}
(.0379,.0992)

0.0685{.0002}
(.0379,.0992)

0.0685{.0002}
(.0379,.0992)

0.0685{.0002}
(.0379,.0992)

1̂
3.2499{.0983}
(2.6351,3.8647)

3.2499{.0983}
(2.6351,3.8647)

3.2499{.0983}
2.6351,3.8647)

3.2499{.0983}
2.6351,3.8647)

2̂
2.1556{.0439}
(1.7446,2.5666)

1.4930{.0203}
(1.2136,1.7724

1.2257{.0134}
(.9985,1.4529)

1.0741{.0101}
(.8762,1.2720)

̂ 0.4677{.0046}
(.3107,.6247)

0.9761{.0115}
(.7650,1.1871)

1.3325{.0139}
1.1012,1.5638)

1.6022{.0152}
1.3604,1.8440)

1R̂
0.6126 0.6229 0.6273 0.6296

K-S1[p-value] 0.0521[.9927] 0.0521[.9927] 0.0521[.9927] 0.0521[.9927]

  3

K-S2[p-value] 0.0693[.9230] 0.0806[.8075] 0.0894[.6957] 0.0940[.6334]

̂ 0.0514{.0001}
(.0284,.0744)

0.0514{.0001}
(.0284,.0744)

0.0514{.0001}
(.0284,.0744)

0.0514{.0001}
(.0284,.0744)

1̂
3.2499{.0986}
(2.6344,3.8655)

3.2499{.0986}
(2.6344,3.8655)

3.2499{.0986}
2.6344,3.8655)

3.2499{.0986}
2.6344,3.8655)

2̂
2.1556{.0439}
(1.7446,2.5666)

1.4930{.0203}
(1.2136,1.7724

1.2257{.0134}
(.9985,1.4529)

1.0741{.0101}
(.8762,1.2720)

̂ 0.4677{.0046}
(.3107,.6247)

0.9761{.0115}
(.7650,1.1871)

1.3325{.0139}
1.1012,1.5638)

1.6022{.0152}
1.3604,1.8440)

1R̂
0.6126 0.6229 0.6273 0.6296

K-S1[p-value] 0.0523[.9924] 0.0523[.9924] 0.0523[.9924] 0.0523[.9924]

  4

K-S2[p-value] 0.0693[.9230] 0.0806[.8075] 0.0894[.6957] 0.0940[.6334]
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Fig-1: Plots for m=1 and n=1

Fig-2: Plots for m=1 and n=2
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Fig-3: Plots for m=1 and n=3

Fig-4: Plots for m=1 and n=4
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Fig-5: Plots for m=2 and n=1

Fig-6: Plots for m=2 and n=2
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Fig-7: Plots for m=2 and n=3

Fig-8: Plots for m=2 and n=4
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Fig-9: Plots for m=3 and n=1

Fig-10: Plots for m=3 and n=2



Inferential Analysis of the Re-Modeled … 21

Fig-11: Plots for m=3 and n=3

Fig-12: Plots for m=3 and n=4
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Fig-13: Plots for m=4 and n=1

Fig-14: Plots for m=4 and n=2
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Fig-15: Plots for m=4 and n=3

Fig-16: Plots for m=4 and n=4


