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Abstract
In this study, a new informative prior is developed for the scale parameter of the

mixture of Laplace distribution when data is censored and can be used to model various real
world problems. The basic proposal is to merge both informative and non-informative priors for
improvement of prior information. There are many real world problems in which investigator has
different opinion than prior information e.g. one doctor provides information that the harmfulness
of medicine is 20% and another chemist observes the chemical combination of medicine and
thinks that medicine is harmful 30% due to one element, so if we combine both doctor and
chemist opinion as a prior our analysis will improve. An inclusive simulation scheme including a
large number of parameter is followed to highlight properties and behavior of the estimates in
terms of sample size, censoring rate and proportion of the component of the mixture. A simulated
mixture data with censored observations is generated by probabilistic mixing for computational
purposes. Elegant closed form expressions for the Bayes estimators and their posterior risk are
derived for the censored sample as well as for the complete sample. Some interesting comparison
and properties of the estimates are observed and presented. The complete sample expressions for
ML estimates and for their variances are derived and also the components of the information
matrix are constructed as well. The Elicitation of hyper-parameters of mixture through prior
predictive approach and a real-life mixture data example has also been discussed. The Bayes
estimates are evaluated under squared error loss function and precautionary loss function.

Keywords: Censored Sampling; Inverse Transformation Method; Squared Error Loss Function
(SELF); Precautionary Loss Function; Hyperparameters; Prior Elicitation; Fixed Test
Termination Time; Mixture Distribution; Posterior Risk; Improved Informative Prior.
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1. Introduction
In the last few decades, there has been a growing interest in the construction of

flexible parametric classes of probability distributions in Bayesian as compared to
classical. The Laplace distribution is a popular topic in probability theory due to
simplicity of its characteristics function and density, curious phenomenon that a random
variable with only slight different characteristics function loses the simplicity of the
density function and other numerous attractive probabilistic features enjoyed by this
distribution. The application areas of the  Laplace distribution are wide ranging:
business firm growth, chemical physics, civil engineering, decision sciences,
distribution and velocity of money, dynamics of electricity prices, dynamics of
manufacturing companies, earth’s magnetic field, ecosystem respiration, electronics
and communications, financial data, geographical information systems, grain size

mailto:qau@hotmail.com


Journal of Reliability and Statistical Studies, December 2011, Vol. 4 (2)58

distribution, human heredity, information theory, management science, neuroscience,
pattern recognition, quality technology, stock returns and exchange rate changes,
vision, image and signal processing.

Censoring is an important feature of the lifetime data because most of times it
is not possible to continue the experiment until last observation in order to obtain a
complete data set, i.e. a data set with exact life times of all objects. There are three
types of censored observations, the left, the interval and the right censored
observations. A right censored observation may be of Type-I or Type-II. Censoring is
said to be of Type-I if the censoring time is fixed and the number of failures is random.
On the other hand in Type-II censoring the number of failures in the sample is
predetermined and so the time to complete the test is random. Romeu (2004) have
given an account of censoring.

Mixture distributions have been used in wide range of important practical
situations because these provide a powerful way to extend common parametric families
of distributions to fit datasets not adequately fit by single common parametric
distributions. In our daily life we often try to fit a life time model that tells us about
failure of system or fit a model on data that comes from failure of units (electronic
device, system components etc.). Mixture models have been used in the physical,
chemical, social science, biological and other fields. As examples, Kanji (1985)
described wind shear data using mixture distributions. In human exposure and risk
assessment, Burmaster (1998) used mixture of lognormal models to re-analyze data set
collected by the U.S. EPA for the concentration of Radon-222 in drinking water.

It needs to be mentioned here that Mixture of Laplace distribution has been
considered before in literature. For example, Aryal and Rao (2005) study different
characteristics of truncated from the left at zero skew-Laplace distribution and
reliability of this model is compared with a two parameter Gamma model. Balakrishnan
and Chandramouleeswaran (1996) present an estimator for the reliability function based
on the best linear unbiased estimators (BLUEs) for the location and scale parameters of
Laplace distribution based on Type-II censored samples, Bhowmick et al. (2006)
recognize that Laplace model as a long-tailed alternative to the normal distribution is
taken for  identifying differentially expressed genes in microarray experiments, and
provide an extension to asymmetric over or under-expression. Childs and Balakrishnan
(2000) consider the progressively type-II right censored sample for analysis of
Laplace distribution.

Mitianoudis and Stathaki (2005) explore the use of Laplacian mixture models
(LMMs) to address the overcomplete blind source separation problem in the case that
the source signals are very sparse. Rabbani and Vafadust (2008) use mixture of Laplace
distribution for image/video denoising new algorithm with local parameters in
multidimensional complex wavelet domain. Sabarinath and Anilkumar (2008) use the
concept of modeling for sunspot numbers by a modified binary mixture of Laplace
distribution function. Inusah and Kozubowski (2006) define a discrete analogue of the
Laplace distribution. Nadarajah (2009) uses the Laplace distribution random variables
with application to price indices. Kozubowski and Nadarajah (2010) motivated by
recent popularity of Laplace distribution, provide a comprehensive review of the known
Laplace distributions along with their properties and applications. Choi and Nadarajah
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(2009) derive the information matrix for a mixture of two Laplace distributions without
censoring involvement. Ali and Nadarajah (2007) drive the information matrices for
normal and Laplace mixtures. Nadarajah (2004) has a discussion about the reliability of
Laplace and related heavy tailed distributions while Scallan (1992) focuses on the
maximum likelihood estimation for the Normal / Laplace mixture for wind shear data.

In this article, a population of certain objects is assumed to be composed of
two subgroups mixed together in an unknown proportion. The random observations
taken from this population are supposed to be characterized by one of the two distinct
unknown members of a Laplace distribution. So two-component mixture of the Laplace
distribution is recommended to model this population. Right censoring is considered
and the observations greater than the fixed cut off censor value, T, are taken as
censored ones. The inverse transformation method of simulation, the probabilistic
mixing and the computations involved are conducted in Minitab 12.0, Mathematica 6.0,
and Maple 13.0.

The Laplace mixture model is defined in Section 2 and its likelihood is
developed in Section 3. In Section 4 loss functions are defined. In Section 5 and 6, the
expressions for the Bayes estimates, posterior risk and predictive intervals are derived.
Method of Elicitation of hyper-parameter for the mixture of Laplace distribution via
prior predictive approach is discussed in Section 7. Limiting expressions of these
estimates and their posterior risk are derived in Section 8. Simulation study is
performed in Section 9, and a real life data is used in Section 10 for the evaluation of
Bayes estimates. Some concluding remarks and further research proposal are given in
Section 11.

2. The Population and the Model
A finite mixture distribution with two component densities of specified

parametric form and with unknown mixing weights p (q=1-p) is defined as follows:

1 2( ) ( ) (1 ) ( ), 0 1. (1)f x pf x p f x p    

The following Laplace distribution is assumed for both components of the mixture with
considering location parameter zero:

1
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So the mixture model (1) takes the following form:
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where A= 1 =10, 2 =15,p=0.30, B= 1 =15, 1 =15,p=0.40 and C= 1 =20,

2 =40,p=0.60,  =20
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Fig. 1
When we consider the location parameter values, the graph is like bimodal distribution
(Fig.1). The corresponding mixture distribution function is given as:

1 21 2

1 1( ) ( ) ( ) 1 e 1 e .
2 2

x x
F x pF x qF x p q

   
   
   
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 
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3. Sampling
Suppose n  units from the above mixture model are employed to a life testing

experiment with a fixed test termination time T . Let the test be conducted and it is
observed that out of n , r units failed until the test termination time T is over and the
remaining -n r  units are still functioning. As described in Mendenhall and Hader
(1958), in many real life situations only the failed objects can easily be identified as
member of either subpopulation 1 or subpopulation 2. An engineer, for example, may
identify a failed electronic object as a member of the first or the second subpopulation
based on the cause of its failure. So depending upon the cause of failure, it may be
observed that 1r and 2r failures are from the first and the second subpopulation,

respectively. Obviously the remaining ‘n-r’ censored objects provide no information
about the subpopulation to which they belong, and 1 2r r r  is the number of

uncensored observations. Let we define, ijx  as the failure time of the jth unit belonging

to the ith subpopulation, where 1 21,2,3,..., ,  1,2,  0 ,j jj ri i x x T    .

3.1 The Likelihood Function
The likelihood function for the above condition defined data is

       
1 2 -
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rr
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where  1 2
, ,....., , , ,.....,11 12 1 21 22 2x x x x x xr rx  are the observed failure times for the

non-censored observations.
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After a little sort of simplifications, the (2) can be represented as:
1 2

2 2

1 2
1 2

1 2

1 2

0

1 2

1 1

( ) ( ) 1 1( , , | )

1 1( )

(2)
j j

n r

m

r r

j j

r r
n r n r m r mL p p q
m

x n r m T x mT

e e

   

 





 

    
              

   
   
   
   

    

      

x

The generalized form of above equation can be written as:
1 2

-
1 1 1 2 2 2 k

1 1 1

( , ) {  ( )} { p  ( )} { p  ( )} {(1- ( )) }
krr r

n r
j j k kj

j j j

L p p f x f x f x F T
  

   λ x 

11 2

1 2

1 21 1 2 2
1 2

1 2 1 2

1 2

1 2
11 1

1 1 1
 ...

, ,...,

...

( , | )

11 1 ( )( )

m
n r

jj j

m

H mm m
m

i m m

rr r m

m
jj j

rr rr m r m r m
p p p

n rL m m m

x m Tx m T x m T

e e e

  

 



 

              
                       

   
   
   

    

 

      

λ p x 






Here ‘m’ denotes the components i.e. m1 means first component; m2 2
nd component and

so on where k
n rH  denotes the number of distinct terms in the expansion of the

multinomial
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as

discussed in Chuan-Chong and Mhee-Meng (1992). Maximum Likelihood Estimates of

λ  and of p  are obtained by solving the system of 2 1m nonlinear equations. But in

this paper we will present only for two component mixture estimators and in similar
way can be extended to ‘m’ component.

4. Loss Functions
The Bayes estimators are evaluated under squared error loss function (SELF)

and precautionary loss function (PLF). The squared error loss function (SELF)

 2* *
1 ( ),L L      was used by proposed by Legendre (1805) and Gauss (1810)

to develop least square theory. This is symmetrical loss function that assigns equal
losses to overestimation and underestimation and it is often used because it does not
lead to extensive numerical computation. Norstrom (1996) introduced an alternative



Journal of Reliability and Statistical Studies, December 2011, Vol. 4 (2)62

asymmetric precautionary loss function, and also presented a general class of
precautionary loss functions as a special case which is defined as

2

2

( )
( , )

d
L L d

d

 
  , Bayes estimator using this loss function is

* 2( | )d E  x and  2
| ( , ) 2 ( | ) ( | )E L d E E    x x x is posterior risk.

According to him these loss functions approach infinitely near the origin to prevent
underestimation, thus giving conservative estimators, especially when underestimation
may lead to serious consequence. Taking expectation of each parameter with respect to
its marginal distributions gives the Bayes estimator of the parameters.

5. Bayes Estimators assuming Jeffreys Inverse Gamma as a proposed
Informative Priors

In case of an informative prior, the use of prior information is equivalent to
adding a number of observations to a given sample size, and therefore leads to a decline
of the posterior risk of the Bayes estimates. Bansal (2007) discussed a method to
evaluate the significance of a prior information in terms of the number of additional
observations supposed to be added to a given sample size. There are many real world
situations in which we have two types of information and we can call them prior
information e.g. in medicine an experiment is conducted for its effectiveness but at the
same time we know from expert that due to some specific ingredient, medicine will be
effective this level. So now we have two types of information one is within data or
experiment and other relevant information based on expert opinion.  If we ignore any
type of available information, our analysis will be distorted. Similar example can be
found in other fields like reliability analysis of electric components etc. In view of
above example we will use the new improved informative prior which is Jeffreys
Inverse Gamma prior for analysis. Haq (2009) introduced this idea for normal
distribution.

5.1 The Jeffreys Inverse Gamma prior
Since Jeffreys prior for ( , ) 1 /1 2 1 2f     , now suppose

1 1 1~ ( , )JInvGamma a b , 2 ~JInvGamma 2 2( , )a b and ~ (0,1).p U

Assuming independence, we have a joint prior
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
, which is combined with the likelihood function given in (3) to get a joint

posterior distribution of 1 , 2 and p. The marginal distribution of each parameter is

obtained by integrating out the nuisance parameters.

5.2 Bayes Estimators using the Jeffreys Inverse Gamma Prior
The expectation of each parameter with respect to its marginal distributions

gives the Bayes estimators of the parameter. The joint posterior distribution is
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5.3 The Posterior Risk of the Bayes Estimators using the Jeffreys Inverse
Gamma Prior

Under SELF posterior risk is equivalent to variance. The variances of the
Bayes estimators of 1 , 2 and p using the Jeffreys Inverse Gamma prior are given as
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respectively. Similarly Bayes Estimators and Posterior Risk can be found under
precautionary loss function using above equations.

5.4 Predictive distribution
The posterior distributions of the parameters 1 , 2 and p given the data,

likelihood and prior are recapitulate to have Bayes estimates of the parameters. The
predictive distribution contains the information about the independent future random
observation given preceding observations. Bolstad (2004) and Bansal (2007) have
given a great detailed discussion about the posterior predictive distribution.

5.5 Predictive distribution intervals using the Jeffreys Inverse Gamma
prior

The posterior predictive distribution of the future observation y= ( 1)nx   is

1
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x , y    is

the joint posterior distribution obtained by incorporating the Inverse Gamma prior with
the likelihood given by equation (3).

The posterior predictive distribution of the future observation “y” is
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where
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A (1-α) 100% Bayesian interval (L, U) can be obtained by solving the following two
equations simultaneously
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These posterior predictive intervals can be evaluated for a number of
combinations of the hyper-parameters which help us to determine a range of hyper-
parameters that may lead to informative Bayes estimates having smaller posterior risk
than the non-informative Bayes estimates. Saleem and Aslam (2008) used predictive
intervals for the Rayleigh mixture to discuss precision of Bayes estimates in terms of
hyper-parameters. If a trend in terms of the hyper-parameters is observed for the
narrower predictive intervals, then a sort of objectivity may be added to prior
information provided by a number of experts. Since, we are using an elicitation method
as defined in Section (7), so we need not to solve these intervals.

6. Bayesian Analysis using Inverse Gamma Informative Prior
Suppose 1 3 3 2 4 4~ ( , ) , ~ ( , ) ~ (0,1).InvGamma a b InvGamma a b and p U  Assuming

independence, we have a joint prior
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, which is

combined with the likelihood function given in (3) to get a joint posterior distribution
of 1 , 2 and p. The marginal distribution of each parameter is obtained by integrating

out the nuisance parameters.

6.1 Posterior Distribution using Inverse Gamma Prior
The joint posterior distribution of 1 , 2 and ‘p’ is as following
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The marginal distribution of each parameter is obtained by integrating out the nuisance
parameters
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Where G, H, I, J, E and K are defined as



Journal of Reliability and Statistical Studies, December 2011, Vol. 4 (2)66

3 4 3 4

1 2

1 21 2
1 1

, , ( ) ,
r r

j j
j j

G r a H r a I x n r m T b J x mT b
 

             ,

2 2( 1, 1)M n r m r m      and   
0

/
n r

G H

m

K
n r

E GH I J
m






 

 
 



6.2 Bayes Estimators using Inverse Gamma Prior
The expectation of each parameter with respect to its marginal distributions

gives the Bayes estimators of the parameter. The Bayes estimators of 1 , 2 and p

assuming the Inverse Gamma prior are given as follow
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respectively.

6.3 Posterior Risk of the Bayes Estimators using the Inverse Gamma Prior
The posterior risk of the Bayes estimators of 1 , 2 and p using the Inverse

Gamma prior are given as
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6.4 Predictive Distribution and Intervals using the Inverse Gamma Prior
The posterior predictive distribution of the future observation y= ( 1)nx   is
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y   

is the joint posterior distribution obtained by incorporating the Inverse Gamma prior
with the likelihood given by equation (3).
The posterior predictive distribution of the future observation “y” is
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A (1-α) 100% Bayesian interval (L, U) can be obtained by solving the following two
equations simultaneously
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respectively.

7. Elicitation
Elicitation is the process/technique of taking out the expert knowledge about

some unknown quantity of interest, or the probability of some future event, which can
then be used to supplement any numerical data that we may have. If the expert in
question does not have a statistical background, as often happens, translating their
beliefs into a statistical form suitable for use in our analyses can be a challenging task
as described Dey (2007).

Prior elicitation is an important component of Bayesian statistics and yet to be
invented.  In any statistical analysis there will typically be some form of background
knowledge available in addition to data at hand.  For example, suppose we are
investigating the average lifetime of a component. We can do tests on a sample of
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components to learn about their average lifetime, but the designer/engineer of the
component may have their own expectations about its performance. There are various
methods available in literature (for detail see Berger (1985), Kadane, et al. (1980),
Garthwaite and Dickey (1992), Al-Awadhi and Garthwaite (1998), Oakley and
O’Hagan (2005), Kass and Greenhouse (1989), Klir and Wierman (1999), Cooke
(1991) and Rowe (1992), Ayyub (2001), Leόn et al. (2003), Gaioni (2008) , Gajewsk et
al. (2007), O’Hagan et al. (2006) and Jenkinson (2005)).

7.1 Hyperparameter Elicitation
Hyperparameter elicitation from the prior g( ) directly is conceptually

difficult task because we first have to identify prior distribution and then its parameters.
The harmony of opinion among researchers is now to elicit expert knowledge about
hyperparameters from observable quantities only. This superior approach is achievable
by specifying summary features of the prior predictive density (mass)

function ( ) ( | ) ( )f x f x g d  



  , which describes the probability distribution of the

random variables X without conditioning on the parameters ( )g  , yet is still a function
of the unknown hyperparameters. The moments (mean, variance . . .) have
unreasonable summary features of f(x), as they are based on the non-trivial concept of
mathematical expectation. The mode (most likely value) is perhaps the obvious
summary feature, though ambiguity arises if the maximum is at endpoint. Furthermore,
the mode's extensions to relative likelihoods are not usually amenable for analysis.
Perhaps the best summary features are quantiles or cumulative probabilities. In
principle, both tertiles would suffice when there are two hyperparameters to be
determined, whereas the quartiles would be needed to determine three hyperparameters.

To determine (elicit) a prior density, Aslam (2003) develops some new
methods base on the prior predictive distribution. In his paper, he uses prior predictive
probabilities, predictive mode and confidence level for elicitating the hyperparameters.
The method for elicitation of hyperparameters is developed by following the ideas of
Chaloner and Duncan (1983); Kadane (1980); Kadane et al. (1980) and Winkler (1980).
Using the beta-binomial as a predictive distribution and comparing it with the expert’s
assessment of this distribution, he selects those hyperparameters that make the
difference between elicited and observed probabilities very closely. The following
method of elicitation is used in this study for determining hyper-parameters of
informative prior.

7.2 Method of Elicitation through Prior Predictive Probabilities
Infact prior predictive remove the uncertainty in parameter (s) to reveal a

distribution for the data point only. We suppose that prior predictive probabilities
satisfy the laws of probability because this law ensure the expert would be consistent in
eliciting the probabilities and some inconsistencies may arise which are not very
serious. A function  1 2,a a  is defined in such a way that the hyperparameters

1 2a and a  are to be chosen by minimizing this function
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, where  12p n  denote the prior predictive
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probabilities characterized by the hyperparameters 1a  and 2a  and  120p n  denote the

elicited prior predictive probabilities. If the prior predictive distribution is symmetrical

then the hyperparameters 1a  and 2a  are equal (say =c), so above equation

becomes      
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, where  12p n  and  120p n are the

symmetrical prior predictive probabilities characterized by the hyperparameters c  and
the elicited prior predictive probabilities respectively. Solving the above equations
simultaneously by applying ‘PROC SYSLIN’ of the SAS package for eliciting the
requires hyperparameters. We have taken prior probabilities ‘0.01 and 0.09’ and initial
values of hyperparameters a1=1, a2=1, b1=1, b2=2 and data points by looping concept
from ‘1 to 200’ because distribution is symmetric and continuous.

7.2.1 Elicitation through Prior Predictive Probabilities when prior is
Jeffreys Inverse Gamma

The equation of prior predictive using the Jeffreys Inverse Gamma prior,
where ‘y’ be future observation,
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7.2.2 Elicitation of Hyper-parameters of Inverse Gamma prior
The equation of prior predictive using the Inverse Gamma prior is:

   

   

1
1 13 43 4

1 1 2 23 4 00 0 0

1 13 4
3 4

1 2
1 1 2 2

1( ) ( )1( ) exp exp2

1 1exp exp

k k
a a

k

a a

y yb b p qf y
a a k

b b d d dp






 

                                    

       
       
       
       

     

 

   

    
Which simplifies that
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 
 

 
 

3 4
3 3 4 4
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3 4
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a a
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 
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 
 
 
  

   
 

(9)

7.3 Elicitation of hyperparameters of Jeffreys Inverse Gamma Prior
By using the method of elicitation defined above we get the following

hyperparameters values 1 10.269735, 0.00003712a b  and 2 21.015421 , 3.302469a b  .

8. Limiting Expressions for Complete Data Set
Assuming T   , the entire observations that are incorporated in our study are

uncensored, and thus ’r’ tends to ‘n’, 1r tends to unknown 1n and 2r tends to unknown 2n .

As a result, the quantity of information enclosed in sample is increasing, which
accordingly results in the decline of the Posterior Risk of the estimates. The expressions
for the complete sample ML and Bayes estimates and their Posterior Risk are simplified
as given in Table 1-2. The off diagonal terms of the information matrix vanish as can be
seen from the second-order derivatives of the log likelihood function given in Equations
(8) - (13). This obviously results in a diagonal information matrix, which can
contentedly be inverted by simply inverting the terms on the main diagonal. Further,
this shows the linear independence of the ML estimates.

Parameters BE (Inverse Gamma) BE (Jeffreys Inverse Gamma)

1
 

 

1
1 3

1

1 3 1

n

j
j

X b

n a

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 
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j
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




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X b
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
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 

 

 
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2 2
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2 2
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j

X b

n a






P 1 1
2

n

n




1 1
2

n

n




Table 1: The limiting expressions for the Bayes Estimators as T  
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Parameters
Variance of Bayes estimators

(Inverse Gamma)
Variance of Bayes estimators

(Jeffreys Inverse Gamma)
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1 1
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n n

 
 

   1 1
1

1 1
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n n
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Table 2: The limiting expressions for the Variance (Posterior Risk) of the Bayes Estimators as
T  

9. Simulation Study
A simulation study was carried out in order to scrutinize the performance of

the Bayes estimators and the impact of small and large sample size and different
censoring rate in the fit of the model. Samples of size n=25, 50, 100, 200, 300, 500 and
1000 were generated from the two component mixture of the laplace distribution
(location parameter considering zero) with parameters, 1 , 2 and p such

that  ,1 2         0.5,1 , 2,2.5 , 3,4 and  0.30,0.40,0.60p  .

Probabilistic mixing is used here to generate the mixture data. For each
observation a random number ‘u’ was generated from the uniform on (0, 1) distribution.
If ‘u<p’, the observation was taken randomly from 1F (the Laplace distribution with

parameter 1 ) and if ‘u>p’, the observation was taken randomly from 2F  (the Laplace

distribution with parameter 2 ).

Right censoring was carried out using a fixed censoring time T. All
observations that are greater than T were declared as censored ones. Different fixed
censoring times T are chosen in order to evaluate the impact of censoring rate on
estimates. The choice of the censoring time, in each case, was made in such a way that
the censoring rate in resulting sample was to be approximately 15% to 30%. For each of
the combinations of parameters, sample size, censoring rate, 5000 samples were
generated using a routine Minitab. In each case, only failures were identified to be a
member of either subpopulation-1 or subpopulation-2 of the mixture. For each of the
5000 samples, the Bayes estimates were computed using Mathematica 6.0 and the
average of the 5000 estimate is presented in Tables 3-8.
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Prior IGP JIGP
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

n T=1, λ1=0.5, λ2=1.0

25
0.594600

(0.144168)
1.125320

(0.144495)
0.348853

(0.011704)
0.497680

(0.084770)
1.060400

(0.114392)
0.337015

(0.010950)

100
0.566313

(0.046469)
1.030610

(0.035173)
0.318277

(0.004072)
0.521467

(0.038074)
1.022540

(0.032572)
0.311763

(0.003815)

500
0.515868

(0.008064)
1.002900

(0.006592)
0.305206

(0.000816)
0.506033

(0.007535)
1.002040

(0.006436)
0.303588

(0.000791)

1000
0.512492

(0.003881)
0.997859

(0.003220)
0.302700

(0.000400)
0.507508

(0.003741)
0.997463

(0.003177)
0.301875

(0.000393)
λ1, λ2 T=6, λ1=3.0, λ2=4.0

n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

25
3.869540

(5.496760)
3.989808

(1.788972)
0.361430

(0.011695)
3.185710

(3.581152)
3.972995

(1.507573)
0.352324

(0.011488)

100
3.440090

(1.452681)
4.097440

(0.534585)
0.319976

(0.003697)
3.206120

(1.259895)
4.077720

(0.506900)
0.315034

(0.003598)

500
3.099652

(0.252159)
3.994830

(0.097285)
0.305399

(0.000746)
3.049834

(0.241551)
4.079429

(0.095572)
0.304181

(0.000735)

1000
3.071440

(0.124264)
4.031734

(0.050000)
0.302518

(0.000371)
3.045835

(0.121257)
4.031389

(0.049484)
0.301878

(0.000369)

Table 3:  BE and PR using IGP, JIGP under SELF when p=0.30.

Prior IGP JIGP
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

n T=1, λ1=0.5, λ2=1.0
25 0.506015

(0.069183)
1.090880

(0.154711)
0.418679

(0.011578)
0.495236

(0.047288)
1.024150

(0.116697)
0.410525

(0.011146)
100 0.522184

(0.024946)
1.024400

(0.041975)
0.412723

(0.004194)
0.497127

(0.022160)
1.012680

(0.038679)
0.408487

(0.004070)
500 0.510100

(0.005489)
0.999371

(0.008549)
0.403654

(0.000943)
0.504201

(0.005294)
0.997907

(0.008359)
0.402498

(0.000930)
1000 0.505287

(0.002658)
1.002289

(0.004249)
0.401991

(0.000466)
0.502319

(0.002607)
1.001568

(0.004199)
0.401402

(0.000462)
λ1, λ2 T=6, λ1=3.0, λ2=4.0

n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)
25 3.209540

(2.428853)
3.990822

(1.662848)
0.427006

(0.011145)
2.988555

(1.876001)
4.130386

(1.285309)
0.425601

(0.011113)
100 3.129700

(0.731678)
3.981479

(0.548577)
0.412906

(0.003690)
3.038690

(0.696683)
4.073035

(0.519189)
0.412097

(0.003701)
500 3.066413

(0.166978)
3.996993

(0.129186)
0.403773

(0.000843)
3.045358

(0.155401)
4.039576

(0.127866)
0.403446

(0.000845)
1000 3.039902

(0.083620)
3.997885

(0.065208)
0.402313

(0.000426)
3.029078

(0.083187)
4.049799

(0.064866)
0.402129

(0.000426)

Table 4:  BE and PR using IGP, JIGP under SELF when p=0.40.
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Prior IGP JIGP
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

n T=1, λ1=0.5, λ2=1.0
25 0.519843

(0.039855)
1.720150

(0.524384)
0.598498

(0.011987)
0.496693

(0.033953)
1.303910

(0.321169)
0.598265

(0.012202)
100 0.501135

(0.011761)
1.152220

(0.087609)
0.595366

(0.004038)
0.490275

(0.011754)
1.080660

(0.074224)
0.596181

(0.004143)
500 0.499959

(0.002957)
1.026796

(0.017115)
0.600263

(0.001006)
0.498254

(0.002994)
1.013279

(0.016654)
0.600675

(0.001021)
1000 0.500676

(0.001559)
1.009212

(0.008614)
0.600032

(0.000507)
0.499852

(0.001570)
1.002541

(0.008511)
0.600255

(0.000530)
λ1, λ2 T=6, λ1=3.0, λ2=4.0

n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)
25 2.990113

(1.153275)
4.775470

(4.249685)
0.597983

(0.011083)
2.988830

(1.159995)
3.973453

(2.229191)
0.599758

(0.011156)
100 2.996903

(0.362921)
4.256700

(1.159805)
0.595338

(0.003651)
3.053910

(0.381154)
3.997765

(0.979646)
0.606027

(0.003632)
500 3.010219

(0.088868)
4.074771

(0.260261)
0.598862

(0.000871)
3.037340

(0.090126)
3.996125

(0.253647)
0.601903

(0.000875)
1000 3.003780

(0.045920)
4.025923

(0.131870)
0.598994

(0.000450)
3.018258

(0.046432)
3.996795

(0.130533)
0.600596

(0.000450)

    Table 5:  BE and PR using IGP, JIGP under SELF when p=0.60.

Prior IGP JIGP
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

n T=1, λ1=0.5, λ2=1.0

25
0.705491
(0.221781)

1.187788
(0.124936)

0.365243
(0.032779)

0.576589
(0.157819)

1.113032
(0.105264)

0.352887
(0.031744)

100
0.605953

(0.079281)
1.047535

(0.033850)
0.324611

(0.012668)
0.556778

(0.070622)
1.038345

(0.031609)
0.317822
(0.12119)

500
0.523626

(0.015515)
1.006181

(0.006562)
0.306540

(0.002668)
0.513424

(0.014782)
1.005246

(0.006413)
0.304888

(0.002599)

1000
0.516264

(0.007545)
0.999471

(0.003224)
0.303360

(0.001320)
0.511180

(0.007345)
0.999054

(0.003182)
0.302525

(0.001300)
λ1, λ2 T=6, λ1=3.0, λ2=4.0

n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

25
4.524389

(1.309699)
4.208033

(0.436449)
0.377262

(0.031664)
3.705388

(1.039356)
4.158396

(0.370803)
0.368266

(0.031885)

100
3.645120

(0.410060)
4.162163

(0.129446)
0.325702

(0.011451)
3.396925

(0.381610)
4.139408

(0.123376)
0.320693

(0.011319)

500
3.140064

(0.080824)
4.006988

(0.024316)
0.306618

(0.002438)
3.089181

(0.078694)
4.091126

(0.023394)
0.305387

(0.002411)

1000
3.091603

(0.040325)
4.037930

(0.012392)
0.303130

(0.001225)
3.065676

(0.039681)
4.037522

(0.012265)
0.302488

(0.001221)

Table 6:  BE and PR using IGP, JIGP under 2L  when p=0.30.
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Prior IGP JIGP
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

n T=1, λ1=0.5, λ2=1.0
25 0.570293

(0.128556)
1.159625

(0.137490)
0.432285

(0.027211)
0.540876

(0.091279)
1.079620

(0.110941)
0.423883

(0.026716)
100 0.545547

(0.046727)
1.044687

(0.040573)
0.417773

(0.010099)
0.518937

(0.043619)
1.031600

(0.037841)
0.413439

(0.009903)
500 0.515452

(0.010704)
1.003639

(0.008536)
0.404820

(0.002333)
0.509424

(0.010446)
1.002086

(0.008359)
0.403652

(0.002307)
1000 0.507910

(0.005247)
1.004406

(0.004235)
0.402570

(0.001158)
0.504907

(0.005176)
1.003662

(0.004188)
0.401977

(0.001150)
λ1, λ2 T=6, λ1=3.0, λ2=4.0

n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)
25 3.567912

(0.716745)
4.193985

(0.406325)
0.439863

(0.025713)
3.287470

(0.597831)
4.283153

(0.305533)
0.438462

(0.025723)
100 3.244488

(0.229575)
4.049784

(0.136610)
0.417350

(0.008888)
3.151241

(0.225102)
4.136279

(0.126488)
0.416563

(0.008932)
500 3.093520

(0.054214)
4.013121

(0.032256)
0.404815

(0.002085)
3.070766

(0.050817)
4.055372

(0.031591)
0.404492

(0.002092)
1000 33.053625

(0.027446)
4.006032

(0.016294)
0.402842

(0.001058)
3.042778

(0.027401)
4.057799

(0.016001)
0.402658

(0.001059)

Table 7:  BE and PR using IGP, JIGP under 2L  when p=0.40.

Prior IGP JIGP
λ1, λ2 E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

n T=1, λ1=0.5, λ2=1.0
25 0.556859

(0.074032)
1.866360

(0.292420)
0.608430

(0.019864)
0.529771

(0.066155)
1.421742

(0.235664)
0.608377

(0.020225)
100 0.512735

(0.023200)
1.189630

(0.074820)
0.598747

(0.006763)
0.502119

(0.023688)
1.114473

(0.067626)
0.599645

(0.006929)
500 0.502907

(0.005897)
1.035097

(0.016601)
0.601100

(0.001675)
0.501249

(0.005991)
1.021464

(0.016369)
0.601524

(0.001698)
1000 0.502230

(0.003109)
1.013471

(0.008517)
0.600454

(0.000845)
0.501420

(0.003136)
1.006777

(0.008471)
0.600696

(0.000883)
λ1, λ2 T=6, λ1=3.0, λ2=4.0

n E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)
25 3.177113

(0.374001)
5.201423

(1.889445)
0.598396

(0.000827)
3.176964

(0.376268)
4.244705

(0.542504)
0.608987

(0.018459)
100 3.056853

(0.119899)
4.390820

(0.268240)
0.598796

(0.006117)
3.115689

(0.123558)
4.118467

(0.241404)
0.609016

(0.005978)
500 3.024944

(0.029450)
4.106582

(0.063623)
0.599589

(0.001453)
3.052140

(0.029600)
4.027736

(0.063223)
0.602629

(0.001453)
1000 3.011414

(0.015268)
4.042267

(0.032689)
0.599369

(0.000751)
3.025940

(0.015364)
3.998428
(0003265)

0.600970
(0.000749)

Table 8:  BE and PR using IGP, JIGP under 2L when p=0.60.
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It is instantaneous from Table 3-8, that the posterior risk of the estimates
reduces as the sample size increases. As a result of censoring, the  parameter and
proportion parameter is over or under-estimated when 1 2  and proportion

parameter in few cases is under-estimated. When we make comparison between
informative priors, we see that 1  as well as proportion is under-estimated in some cases

but talking in terms of posterior risk one can easily see that Jeffreys-Inverse Gamma
informative prior has smaller posterior risk than Inverse Gamma informative prior. The
quality of Bayes (Jeffreys Inverse Gamma and Inverse Gamma) depends upon the
quality of prior information. The hyper-parameters can be considered as outcomes of
the prior information. The informative Bayes estimates may turn out to be the most
efficient, provided that useful prior information and consequently, the appropriate
hyper-parameter value are available. With the increment of sample size our posterior
risk are also reduced. For using large degree of censoring we can see that our posterior
risk are reduced for large parameters value. It is to be noted here that ‘T’ failure time
may be in days, seconds, years or months depending upon situation under study.

10.  Real Life Application
Solar activity prediction is nowadays a topic of great interest in the scientific

community because the emission of solar particles and electromagnetic radiations
affects not only telecommunication systems, electric power transmission lines, long-
term climate variations, weather, and other ionosphere parameters but also space
activities concerning operations of low-Earth-orbiting satellites. The yearly averaged
sunspot numbers are taken from the data available at the NOAA Website
(ftp://ftp.ngdc.noaa.gov/STP/SOLARDATA/SUNSPOTNUBERS/) from the year 1749
to 2008.
Data description as follows
Variable        N     Mean   Median  Tr Mean    StDev  SE Mean Min      Max       Q1       Q3
Sunspot       260    53.14    43.95  49.76 43.45 2.69 0.00   260.20    16.30    77.65

The division of data using different mixing proportion and T=50 minutes as
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JIG IGBE
E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

0.30 66.328328
(547.8318)

57.075954
(94.56082)

0.303658
(0.0053)

71.288099
(581.3665)

56.317492
(96.1258)

0.314234
(0.0052)

0.375 79.965755
(416.6888)

50.748247
(108.3146)

0.403599
(0.0057)

79.480973
(438.5733)

50.760257
(106.7806)

0.407383
(0.0054)

0.40 47.670545
(224.0768)

60.207503
(102.2374)

0.384504
(0.0045)

50.327143
(243.0507)

59.572086
(105.0853)

0.373065
(0.0046)

0.60 66.140057
(136.7402)

50.522844
(215.8391)

0.627000
(0.0047)

65.947835
(138.2687)

52.695842
(224.4549)

0.620670
(0.0048)

Table 9: BEs and PR using JIG and IG under 1L

JIG IGBE
E( λ1|x) E( λ2|x) E( p|x) E( λ1|x) E( λ2|x) E( p|x)

0.30 70.336896
(8.017135)

57.898405
(1.644903)

0.312232
(0.017149)

75.255296
(7.934393)

57.164550
(1.694115)

0.322433
(0.016398)

0.375 82.530060
(5.128609)

51.804431
(2.112368)

0.410592
(0.013981)

82.193664
(5.425381)

51.801392
(2.082271)

0.413943
(0.013120)

0.40 49.965565
(4.590040)

61.050641
(1.686276)

0.390354
(0.011700)

52.686545
(4.718803)

60.447652
(1.751133)

0.379151
(0.012172)

0.60 67.165819
(2.051525)

52.615557
(4.185426)

0.630790
(0.007580)

66.987952
(2.080233)

54.784183
(4.176682)

0.624476
(0.007612)

Table 10: BEs and PR using JIG and IG under 2L

From the abovesaid examples, one can infer that Jeffreys-Inverse Gamma
prior results are better than Inverse Gamma prior, although there are very few cases in
which Inverse Gamma is better like mixing proportion parameter against p=0.30 and
0.375 but overall Jeffreys-Inverse Gamma results are stable. Using large mixing
component parameter, results are more accurate than smaller mixing component
parameter.

10.1 Graphical representation of Marginal Posterior distributions using
various Priors

Figures 2-5 show the Graphical representation of marginal posterior
of 1 , 2 and p . The graphical representation is well-matched with our numerical values.

Jeffreys prior and Uniform prior behave approximately in the same way with the minor
difference. Similar conclusions can be drawn for Inverse Gamma and Jeffreys Inverse
Gamma priors.
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10.2 Testing of Hypothesis using the marginal posterior of Mixture
distribution

For Bayes Factor conclusion Jeffreys (1961) define the following rules.

i.
BF>1, 1H is supported.

ii.
0.5

10 1,BF
   Minimal evidence against 1H

.

iii.
1 0.5

10 10 ,BF
   Substantial evidence against 1H

.

iv.
2 1

10 10 ,BF
   Strong evidence against 1H

.

v.
2

10 ,BF
 Decisive evidence against 1H

.
Using abovesaid rules, from the Table 11 we can easily see some interesting

results. According to Jeffreys rule of Bayes Factor (BF), in case of 45.01  using IG or

JIG prior, we have strong evidence against 1H . Similarly in case of 75.01  using IG

and JIG  prior, we support 1H
.

For 45.02  we have decisive evidence and for 55.02 

we have substantial evidence against 1H . Similarly, in case of mixing component ‘p’,

we have decisive evidence against 1H
.

So on the basis of testing, we prefer to use JIG

as a prior information.
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Table 11: Hypothesis Testing

Null
Hypothesis

Alternative
Hypothesis

Posterior Probability Bayes Factor

1H 2H

Prior
Distribution  1P H  2P H B

IG 0.0431903 0.9568097 0.0451399
1 45.0  1 45.0  IP

JIG 0.0431726 0.9568274 0.0451206

IG 0.000121313 0.9998787 0.000121328
2 45.0  2 45.0  IP

JIG 0.000164619 0.9998354 0.000164646

IG 0 1 0
0.50p 0.50p  IP

JIG 0 1 0

IG 0.800588 0.199412 4.014743
1 75.0  1 75.0  IP

JIG 0.797352 0.202648 3.934665

IG 0.0775849 0.9224151 0.0841106
2 55.0  2 55.0  IP

JIG 0.107972 0.892028 0.1210410

IG 0.0000000012 0.9999999 0.0000000012
0.90p 0.90p  IP

JIG 0.0000000012 0.9999999 0.0000000012

11. Conclusion and Suggestions
A new technique has been introduced to merge the prior information before we

have data and with the information contained in data about the unknown parameter, in
order to make a new informative prior which performs better than other simple
informative and non-informative priors. Here failure time which is denoted by T
depends upon the situation under study, so if we consider genes in microarray
experiments data it can be in days etc. The simulation study has displayed some
interesting properties of the Bayes estimates. The posterior risks of the parameters
estimate seem to be quite large (small) for the relatively larger (smaller) values of the
parameters in case of Jeffreys-Inverse-Gamma prior but when we used Inverse Gamma
prior this theme is reverse. However, in each case the posterior risk of parameters are
reduced as the sample size increases in both loss functions.

Another interesting remark concerning the posterior risk of the estimates is
that increasing (decreasing) the proportion of the component in the mixture reduces
(increases) the posterior risk of the estimate of the corresponding parameter. The effect
of censoring on the estimates of parameters is in the form over-estimation. To be more
specific, larger degree of censoring results in large size of over-estimation. However, as
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we increase the sample size the effect of censoring reduces. On the other hand, in some
cases the proportion parameter is either under-estimated or over-estimated depending
upon the values of the parameters or censoring degree.

Particularly, the proportion parameter is over-estimated (some degree under-
estimated) whenever the parameter of the first subgroup is smaller (greater) than the
parameter of the second subgroup. Also, the extent of over or under-estimation is more
intensive for larger parameter values of the proportion parameter. Furthermore,
increasing the sample size reduces the posterior risk of the estimate of the proportion
parameter. The increase in proportion of a component in the mixture does not guaranty
the reduction in variance of estimate of the proportion parameter. Contrary, the
posterior risk of the estimate of population proportion is slightly increased for large
values of the proportion parameter. As a cut off censor value tends to infinity, the
complete sample expressions for the estimators and posterior risk are greatly simplified
which will cause further reducing as there is no more effect of censoring.

Both of the estimates of the second parameter are over or under-estimated
depending on the sample size but the size of under or over-estimation is greater in case
of Bayes (IG) but again with JIG decreased posterior risk. The Bayes (JIG) estimates
are much closer to the corresponding parameter value in case of second parameter. Also
both estimates of the mixing proportion parameter are over-estimated but the degree of
over-estimation is quite smaller in case of Bayes (JIG). The Bayes estimates with
proposed informative (Jeffreys-Inverse Gamma) prior seem to be more efficient than
existing noninformative (UP, JP which tables can be obtained from the corresponding
authors) informative (Inverse Gamma) counterparts with a few exceptions in terms of
under or over-estimation of Bayes estimate. The posterior risk of Jeffreys-Inverse
Gamma informative prior reduce than the Inverse Gamma informative prior and both
noninformative priors. One thing which can be commonly observed is that as we
increase sample size the posterior risk decreases and increasing the degree of censoring
does not guarantee that the risk will decrease. Also comparing noninformative priors,
we can see that Jeffreys prior have smaller posterior risk in both loss function, however
our risk increased using precautionary loss function but underestimation prevented.

In the real life examples, Jeffreys-Inverse Gamma prior posterior risk is less
than the Inverse Gamma prior. Also this study suggests that at least 50 or above sample
size is required for this type of mixture because for small sample size we can easily see
that degree of over-estimation is large and posterior risk (variances) of Bayes estimates
is also large.

In future this work can be extended using other informative priors based on
above idea and using mixture of truncated Laplace distribution, considering location
parameter and eliciting the hyperparameters of mixing component by taking Beta prior.
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