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Abstract
In this paper, a hybrid group acceptance sampling plan is developed for a truncated life

test when the lifetime of an item follows log-logistic distribution. The minimum number of
testers and acceptance number are determined when the consumer’s risk and the test termination
time and group size are specified. The operating characteristic values according to various quality
levels are found and the minimum ratios of the true average life to the specified life at the
specified producer’s risk are obtained. The results are explained with examples.
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1. Introduction
 An acceptance sampling plan is a scheme that establishes the minimum sample
size to be used for testing. This becomes particularly important if the quality of product
is defined by its lifetime. Often, it is implicitly assumed when designing a sampling
plan that only a single item is put in a tester. However, in practice testers
accommodating a multiple number of items at a time are used because testing time and
cost can be saved by testing items simultaneously. The items in a tester can be regarded
as a group and the number of items in a group is called the group size. An acceptance
sampling plan based on such groups of items is called a group acceptance sampling
plan (GASP). The method of determining the minimum number of items for a
predetermined number of groups is called as hybrid group acceptance sampling plan
(HGASP). The minimum number of items in each group is very important to save the
time and cost. Moreover, if the group size (r) is very large then taking a decision very
difficult. This HGASP we fix group size (r) in our hands and also HGASP more useful
than ordinary GASP, instead of fixing the group size (r), we can fix the number of
groups at our convenience. If the HGASP is used in conjunction with truncated life
tests, it is called a HGASP based on truncated life test assuming that the lifetime of
product follows a certain probability distribution. For such a type of test, the
determination of the sample size is equivalent to determine the number of testers. This
type of testers is frequently used in sudden death testing. The sudden death tests are
discussed by Pascual and Meeker (1998) and Vlcek et al. (2003). Recently, Jun et al.
(2006) proposed the sudden death test under the assumption that the lifetime of items
follows the Weibull distribution with known shape parameter. They developed the
single and double group acceptance sampling plans in sudden death testing. More
recently, Aslam and Jun (2009) for inverse Rayleigh and log-logistic distributions,
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Srinivasa Rao (2009) for generalized exponential distribution and Srinivasa Rao (2010)
for Marshall-Olkin extended Lomax distribution are proposed the group acceptance
sampling plan based on truncated life test.

 Acceptance sampling based on truncated life tests having single-item group for
a variety of distributions were discussed by Epstein (1954), Sobel and Tischendrof
(1959), Goode and Kao (1961), Gupta and Groll (1961), Gupta (1962), Fertig and
Mann (1980), Kantam and Rosaiah (1998), Kantam et al. (2001), Baklizi (2003),
Baklizi and El Masri (2004), Rosaiah and Kantam (2005), Rosaiah et al. (2006, 2007,
2007), Tsai and Wu (2006), Balakrishnan et al. (2007), Aslam (2007), Aslam and
Shahbaz (2007), Aslam and Kantam (2008) and Srinivasa Rao et al. (2008, 2009).

 The purpose of this paper is to propose a HGASP based on truncated life tests
when the lifetime of a product follows the two-parameter log-logistic distribution. For
an excellent review of this distribution, the readers are referred to Johnson et al. (1995).
Let T be a lifetime that is distributed according to log-logistic distribution with two

parameters 0 and 1σ δ> > . The probability density function (p.d.f.) and cumulative
distribution function (c.d.f) of the two-parameter log-logistic distribution respectively,
are given by
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where σ  and δ are scale and shape parameters respectively. The median of this
distribution for 2δ =  is given by m = σ . The decision to acceptance of lot can be
related to a hypothesis testing. The null hypothesis is “lot median is greater than or
equal to a specified quantity” and the alternative hypothesis is “lot median is smaller
than a specified quantity.” On the basis of the observed number of failures in a sample,
if the null hypothesis has failed to reject, then the lot is accepted as a good lot, which
will ensure a certain quality of the products. It is important to note that a log-logistic
distribution is a skewed one, therefore it is preferable to use the median life to develop
acceptance plans rather than the mean life. Kantam et al. (2001) developed single
acceptance sampling plans based on the mean of the log-logistic distribution. In Section
2, we describe the proposed HGASP. The operating characteristics values in Section 3.
The results are explained with some examples in Section 4, and finally, some
conclusions are given in Section 5.

2. The Hybrid Group Acceptance Sampling Plan (HGASP)

 Let m  represent the true median life of a product and 0m  denote the specified
median life of an item, under the assumption that the lifetime of an item follows log-
logistic distributions. A product is considered as good and accepted for consumer’s use

if the sample information supports the hypothesis 0 0:H m m≥ . On the other hand, the
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lot of the product is rejected. In acceptance sampling schemes, this hypothesis is tested
based on the number of failures from a sample in a pre-fixed time. If the number of
failures exceeds the action limit c we reject the lot. We will accept the lot if there is

enough evidence that 0m m≥  at certain level of consumer’s risk. Otherwise, we reject
the lot. Let us propose the following HGASP based on the truncated life test:

1. Determine the number of testers, r and assign the r items to each predefined g,
groups, the required sample size for a lot is n= r g.

2. Pre-fix the acceptance number, c for each group and the experiment time 0t .
3. Accept the lot if at most c  failures occur in each of all groups.
4. Terminate the experiment if more than c failures occur in any group and reject

the lot.
 The proposed sampling plan is an extension of the ordinary sampling plan
available in literature such as in Kantam et al. (2001), for r =1.  We are interested in
determining the number of tester’s r, required for log-logistic distributions and various
values of acceptance number c, whereas the number of groups g, and the termination

time 0t are assumed to be specified. Since it is convenient to set the termination time as

a multiple of the specified value 0 0m σ=  of the median, we will consider 0 0t aσ= for a
given constant a (termination ratio).

 The probability ( α ) of rejecting a good lot is called the producer’s risk,
whereas the probability ( β ) of accepting a bad lot is known as the consumer’s risk.
The parameter value r of the proposed sampling plan is determined for ensuring the
consumer's risk β . Often, the consumer's risk β  is expressed by the consumer's

confidence level. If the confidence level is p∗
, then the consumer's risk will

be 1 pβ ∗= − . We will determine the number of tester’s r in the proposed sampling
plan so that the consumer's risk does not exceed a given value β . If the lot size is large
enough, we can use the binomial distribution to develop the HGASP. According to the
HGASP the lot of products is accepted only if there are at most c failures observed in

each of the g, groups. The HGASP is characterized by the three parameters 0( , , )n c t σ .
The lot acceptance probability is
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where p is the probability that an item in a tester fails before the termination time

0 0t aσ= . The probability p for the log-logistic distributions with 2δ =  is given by
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 The minimum number of testers required can be determined by considering
the consumer’s risk when the true median life equals the specified median life

( 0σ σ= ) through the following inequality:

0( )L p β≤                                                                                                                       (5)

where 0p is the failure probability at 0σ σ= , and it is given by
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 Table 1 shows for the pre-fix consumer’s risk, number of groups, acceptance
number and truncation time to obtain the minimum testers. The minimum number of
testers required for the proposed sampling plan in case of the log-logistic distributions
for the special case 2δ = are calculated and displayed in Table 2. The used values of
the consumer's risk, the group size, the acceptance number and the time multiplier are
given in Table 1.

Table 1: Consumer’s risk ( β ), truncated time (a), group size (g) and acceptance
number (c)

                                  <<<<<  Table 2  around  here >>>>>

3. Operating Characteristics
 The probability of acceptance can be regarded as a function of the deviation of
specified median from the true median. This function is called operating characteristic
(OC) function of the sampling plan. Once the minimum number of testers is obtained,
one may be interested to find the probability of acceptance of a lot when the quality (or
reliability) of the product is good enough. As mentioned earlier, the product is

considered to be good if 0σ σ>  or 0
1σ

σ >
. For 2δ =  the probabilities of acceptance

are displayed in Table 3 based on (3) for various values of the median ratios 0σ σ ,
producer's risks β , and time multiplier a that are given in Table 1. From Table 3 we
see that OC values increase more quickly as the median ratio increases. For example,
when β = 0.25, g=4, c=2 and a= 0.7, the number of testers required is r=6. However, if

the true median lifetime is twice the specified median lifetime ( 0 2σ σ = ) the
producer’s risk is approximatelyα =1- 0.9218=0.0782, while α is 0.002 when the true
value of median is 4 times the specified one.

 The producer may be interested in enhancing the quality level of the product
so that the acceptance probability should be greater than a specified level. At the

β 0.25  0.10  0.05  0.01
a 0.7    0.8    1.0    1.2   1.5   2.0
g 2  3   4   5   6   7   8   9   10
c 0  1   2   3   4   5   6   7   8
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producer’s risk α  the minimum ratio 0σ σ can be obtained by satisfying the following
inequality:
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where p is given by (4) and r is chosen at the consumer’s risk β  when 0 1σ σ = .

Table 4 shows the minimum ratio of 0σ σ  for log-logistic distributions with 2δ =  at
the producer’s risk of α  = 0.05 under the plan parameters given in Table 1. Table 4
shows that for fixed values of g and c, the median ratio increased as the termination
ratio increased. For example, when β  =0.25, r=6 g=4, c=2 and a=0.7, for obtaining a
producer’s risk α =0.05 increase the true value σ  of median to 2.20 times the

specified value 0σ is required.

4. Tables And Examples
 The design parameters of HGASP are found at the various values of the
consumer’s risk and the test termination time multiplier in Table 2. It should be noted
that if one needs the minimum sample size, it can be obtained by n r g= × .  Table 2
indicates that, as the test termination time multiplier a increases, the number of testers r
decrease, i.e., a smaller number of testers is needed, if the test termination time
multiplier increases at a fixed number of groups. For an example, from Table 2, if
β =0.10, g=4, c=2 and a  changes from 0.7 to 0.8, the required values of design
parameters of HGASP have been changed from r =8 to r =7. However, this trend is not
monotonic since it depends on the acceptance number as well. The probability of
acceptance for the lot at the median ratio corresponding to the producer’s risk is also
given in Table 3.  Finally, Table 4 presents the minimum ratios of true median to the
specified median for the acceptance of a lot with producer's risk α = 0.05 for given
parameter values.

 Suppose that the lifetime of a product follows the log-logistic distributions
with 2δ = . It is desired to design a HGASP to test if the median is greater than 1,000
hours based on a testing time of 700 hours and using 4 groups. It is assumed that c=2
and β =0.10. This leads to the termination multiplier a =0.700. From Table 2 the
minimum number of testers required is r =8. Thus, we will draw a random sample of
size 32 items and allocate 8 items to each of 4 groups to put on test for 700 hours. This
indicates that a total of 32 products are needed and that 8 items are allocated to each of
4 testers. We will accept the lot if no more than 2 failure occurs before 700 hours in
each of 4 groups. We truncate the experiment as soon as the 3rd failure occurs before the
700th hours. For this proposed sampling plan the probability of acceptance is 0.8223
when the true mean is 2,000 hours. This shows that, if the true median life is 2 times of
1000 hours, the producer’s risk is 0.1777. If we need the ratio corresponding to the
producer’s risk of 0.05, we can obtain it from Table 4. For example, when β =0.10,

r=8, g=4, c=2, a= 0.700, the ratios of 0σ σ is 2.63.
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5. Conclusion
 In this paper, a hybrid group acceptance sampling plan from the truncated life
test was proposed, the number of testers and the acceptance number was determined for
log-logistic distributions with 2δ =  when the consumer’s risk ( β ) and the other plan
parameters are specified. It can be observed that the minimum number of testers
required is decreases as test termination time multiplier increases and also the operating
characteristics values increases more rapidly as the quality improves. This HGASP can
be used when a multiple number of items at a time are adopted for a life test and it
would be beneficial in terms of test time and cost because a group of items will be
tested simultaneously.
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Table 2: Minimum number of testers (r) and acceptance number (c) for the
proposed plan for the log-logistic distributions with 2δ = .

a
β g  c

0.7 0.8 1.0 1.2 1.5  2.0
0.25 2 0 2 2 1 1 1 1
0.25 3 1 4 4 3 3 2 2
0.25 4 2 6 5 4 4 3 3
0.25 5 3 8 7 6 5 5 4
0.25 6 4 11 9 7 6 6 5
0.25 7 5 13 11 9 8 7 6
0.25 8 6 15 13 10 9 8 7
0.25 9 7 17 15 12 10 9 8
0.25 10 8 19 17 13 12 10 9
0.10 2 0 3 3 2 2 1 1
0.10 3 1 6 5 4 3 3 2
0.10 4 2 8 7 5 4 4 3
0.10 5 3 10 8 7 6 5 4
0.10 6 4 12 10 8 7 6 5
0.10 7 5 14 12 10 8 7 7
0.10 8 6 17 14 11 10 9 8
0.10 9 7 19 16 13 11 10 9
0.10 10 8 21 18 14 13 11 10
0.05 2 0 4 4 3 2 2 1
0.05 3 1 6 5 4 3 3 2
0.05 4 2 9 7 6 5 4 4
0.05 5 3 11 9 7 6 5 5
0.05 6 4 13 11 9 7 6 6
0.05 7 5 15 13 10 9 8 7
0.05 8 6 18 15 12 10 9 8
0.05 9 7 20 17 13 12 10 9
0.05 10 8 22 19 15 13 11 10
0.01 2 0 6 5 4 3 2 2
0.01 3 1 8 7 5 4 4 3
0.01 4 2 10 9 7 6 5 4
0.01 5 3 13 11 8 7 6 5
0.01 6 4 15 13 10 8 7 6
0.01 7 5 17 14 11 10 8 7
0.01 8 6 19 16 13 11 9 8
0.01 9 7 22 18 15 12 11 9
0.01 10 8 24 20 16 14 12 10
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Table 3: Operating characteristics values of the hybrid group sampling plan
with g=4 and c =2 for log-logistic distributions with 2δ = .

0σ σ
β r  a

2 4 6 8 10 12

0.25 6 0.7 0.9218 0.9980 0.9998 1.0000 1.0000 1.0000

0.25 5 0.8 0.9182 0.9979 0.9998 1.0000 1.0000 1.0000

0.25 4 1.0 0.8956 0.9969 0.9997 0.9999 1.0000 1.0000

0.25 4 1.2 0.7825 0.9916 0.9991 0.9998 1.0000 1.0000

0.25 3 1.5 0.8260 0.9925 0.9992 0.9998 1.0000 1.0000

0.25 3 2.0 0.5862 0.9684 0.9960 0.9992 0.9998 0.9999

0.10 8 0.7 0.8223 0.9948 0.9995 0.9999 1.0000 1.0000

0.10 7 0.8 0.7819 0.9929 0.9993 0.9999 1.0000 1.0000

0.10 5 1.0 0.7877 0.9926 0.9992 0.9999 1.0000 1.0000

0.10 4 1.2 0.7825 0.9916 0.9991 0.9998 1.0000 1.0000

0.10 4 1.5 0.5566 0.9731 0.9969 0.9994 0.9998 0.9999

0.10 3 2.0 0.5862 0.9684 0.9960 0.9992 0.9998 0.9999

0.05 9 0.7 0.7612 0.9923 0.9992 0.9999 1.0000 1.0000

0.05 7 0.8 0.7819 0.9929 0.9993 0.9999 1.0000 1.0000

0.05 6 1.0 0.6594 0.9858 0.9985 0.9997 0.9999 1.0000

0.05 5 1.2 0.6007 0.9803 0.9979 0.9996 0.9999 1.0000

0.05 4 1.5 0.5566 0.9731 0.9969 0.9994 0.9998 0.9999

0.05 4 2.0 0.2234 0.8956 0.9853 0.9969 0.9991 0.9997

0.01 10 0.7 0.6955 0.9893 0.9989 0.9998 0.9999 1.0000

0.01 9 0.8 0.6105 0.9840 0.9983 0.9997 0.9999 1.0000

0.01 7 1.0 0.5269 0.9764 0.9975 0.9995 0.9999 1.0000

0.01 6 1.2 0.4234 0.9633 0.9958 0.9992 0.9998 0.9999

0.01 5 1.5 0.3149 0.9396 0.9926 0.9985 0.9996 0.9999

0.01 4 2.0 0.2234 0.8956 0.9853 0.9969 0.9991 0.9997
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Table 4: Minimum ratio of the values of true median and specified median for the
producer’s risk of α = 0.05 in the case of log-logistic distributions with 2δ = .

a
 g  c 0.7 0.8 1.0 1.2 1.5 2.0

0.25 2 0 6.16 7.04 6.21 7.45 9.31 12.42
0.25 3 1 2.90 3.32 3.46 4.15 3.89 5.17
0.25 4 2 2.20 2.22 2.36 2.82 2.72 3.62
0.25 5 3 1.88 1.96 2.18 2.24 2.80 2.93
0.25 6 4 1.82 1.80 1.84 1.91 2.38 2.53
0.25 7 5 1.67 1.70 1.80 1.94 2.11 2.26
0.25 8 6 1.57 1.62 1.62 1.75 1.91 2.06
0.25 9 7 1.50 1.56 1.62 1.61 1.76 1.91
0.25 10 8 1.43 1.51 1.49 1.65 1.64 1.79
0.10 2 0 7.56 8.63 8.81 10.57 9.31 12.42
0.10 3 1 3.67 3.78 4.15 4.15 5.20 5.17
0.10 4 2 2.63 2.76 2.77 2.82 3.53 3.62
0.10 5 3 2.18 2.15 2.45 2.62 2.80 2.93
0.10 6 4 1.93 1.94 2.06 2.21 2.38 2.53
0.10 7 5 1.76 1.81 1.97 1.94 2.11 2.81
0.10 8 6 1.71 1.71 1.77 1.95 2.19 2.54
0.10 9 7 1.62 1.64 1.73 1.78 2.01 2.34
0.10 10 8 1.54 1.58 1.60 1.79 1.87 2.18
0.05 2 0 8.73 9.98 10.80 10.57 13.22 12.42
0.05 3 1 3.67 3.78 4.15 4.15 5.20 5.17
0.05 4 2 2.82 2.76 3.14 3.33 3.53 4.71
0.05 5 3 2.31 2.33 2.45 2.62 2.80 3.74
0.05 6 4 2.03 2.08 2.26 2.21 2.38 3.18
0.05 7 5 1.84 1.91 1.97 2.17 2.43 2.81
0.05 8 6 1.78 1.80 1.90 1.95 2.19 2.54
0.05 9 7 1.67 1.71 1.73 1.94 2.01 2.34
0.05 10 8 1.59 1.64 1.70 1.79 1.87 2.18
0.01 2 0 10.70 11.16 12.47 12.95 13.22 17.62
0.01 3 1 4.29 4.57 4.74 4.97 6.23 6.95
0.01 4 2 2.99 3.23 3.46 3.78 4.17 4.71
0.01 5 3 2.55 2.64 2.69 2.94 3.27 3.74
0.01 6 4 2.22 2.32 2.43 2.47 2.76 3.18
0.01 7 5 2.00 2.01 2.12 2.36 2.43 2.81
0.01 8 6 1.84 1.88 2.02 2.12 2.19 2.54
0.01 9 7 1.78 1.78 1.95 1.94 2.23 2.34
0.01 10 8 1.69 1.70 1.80 1.92 2.07 2.18


