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Abstract
The purpose of this article is to present optimal replacement policies for a cold standby

system consisting of two components and one repairman. By using the bivariate exponential
model of Freund (1961) for the life time of one component and the repair time of another
component, we developed methods for obtaining optimal number of down time in such a way
that the long run expected reward per unit time is maximized. The results are illustrated with the
help of numerical example and simulation study.
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1. Introduction
In this paper we find the optimal replacement policies for a cold standby

system based on number of down times of the first component. The cold standby
system consisting of two components, one repairman and repair rate of one component
may depend on failure rate of another component. This type of dependency can occur in
practical circumstances, when there is load or pressure on repairman. To explain such
interdependency of two components we have used the bivarite exponential model of
Freund. The rest of this paper is organized as follows. We give brief introduction of
bivariate exponential model of Freund (1961) in Section 2. We propose replacement
policy for two identical components, mathematical formulation for long run expected
reward per unit time, a numerical example and simulation study in Section 3.
Replacement policy with component-1 has priority in use, mathematical formulation for
long run expected reward per unit time, a numerical example and simulation study have
discussed in Section 4. Finally some concluding remarks.

 In order to decrease the operating cost of a repairable system, different
replacement policies have been developed. Barlow and Hunter (1960) used elementary
renewal theory to obtain optimum policies. Nakagawa and Osaki (1975) assumed that
both the working time and repair time of priority component have general distribution
while working time and repair time of the non priority component have an exponential
distribution. They obtained some reliability indices of the system using Markov renewal
theory. Brown and Proschan (1983), Block, et al. (1985), Kijima (1989) proposed and
studied many repair/replacement policies based on working age, number of repairs,
repair cost and their combinations. Lam (1988), Zhang and Wang (2006, 2007), Zhang
et al. (2007) used geometric process approach to obtain optimal policies. Rattihalli and
Hanagal (2009) used bivariate exponential model of Freund (1961) to obtain optimal
replacement policy based on length of down times. Hanagal and Kanade (2010a)
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proposed replacement policy based on number of down times (or shutdown) of the
repairable system. Hanagal and Kanade (2010b) also proposed optimal replacement
policy based on number of down times with priority in use when the lifetime and repair
time are independent. All these policies are widely used to avoid unscheduled failure
and larger production losses. The important reason for this attempt is that these policies
can be applied to a variety of areas such as military, industry etc. Practically, majority
of industrial systems are composed of several units and there are some types of
dependency between units. In other words, the failure time of one component may
depend on repair time of other component. So there is need to design replacement
policy for such situation.

2. Bivariate exponential model of Freund (1961)
Let ,1 2X X  denote lifetimes of the two components which are identically,

independently and exponentially distributed with failure rate  and ,1 2Y Y  denote repair
times of the components which are identically, independently and exponentially
distributed with repair rate . The interdependence of the components is such that the
failure of a component increases the repair rate of the other component  to ’ due to
load or pressure and also when one component is in cold standby the failure rate of
other component remains same  = ’. Here the interdependence is due to the failure of
a component when the other component is under repair. Here the repairman will have
more load or pressure because he is repairing one component and another component is
waiting for repair and his repair rate will increase. The p.d.f. of bivariate exponential
model of Freund (1961) with parameter (  ,  , ’) is given by,

' '( , ) 'exp( ' ( ') ),i i i if x y y xαβ β α β β= − − + − '0 ii yx <<
                             = 'exp( ),i ix yαβ α β− − ii xy << '0                   (2.1)
where  , ,  >0, i =1,2.

3. Proposed Replacement Policy
 We study a two identical components system with following assumptions,

1. Initially both the components are new. The first component is in working state
while the second component is in cold standby state.

2. The repairman repairs the component-1 as soon as it fails. At the same time
standby component-2 begins to work. If one component fails while other
component is still under repair it must wait for repair and system breaks down.
A possible course of the system is shown in Figure 1.

3. The replacement policy used here is based on the number of the down times k
of the first component. Renewal occurs when the number of down times of the
first component of the system reaches k.

4. The time interval between completion of the (j-1)th repair and completion of
the jth repair of the component i is called jth cycle of the component i, i = 1, 2; j
= 1, 2, 3;  The time interval between two successive system replacements
is called a renewal cycle.
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5. ( ) ( ),i iX Yj j  are respectively working time and repair time of component i in the

jth cycle  i = 1, 2; j = 1, 2,  3 .and ( )( ) ( '),i i
j jX Y  have bivariate exponential model

of Freund  (1961), =1,2.

6. C , C , C , C0 w0 p0 d are initial cost, reward cost, repair cost and down time cost of

the system respectively. The component in the system does not produce
working reward during cold standby.

7. The reward cost of the component decreases geometrically after every failure
(repair) of the components. So we replace the reward cost for the component:

8. 10,......;2,1;2,1(j)C 0
1-j

w <<=== ajiCa w

9. The repair cost of the component increases geometrically after every
failure(repair) of the components. So we replace the repair cost for the
component:

10. .1,......;2,1;2,1b(j)C 0
1-j

p bjiC p <===

 In Figure 1, a graphical representation of a renewal cycle is given. It consists of a
sequence of working periods, repair periods, cold standby periods and down time of the two
components.

Figure 1: A possible course of the system

Mathematical Formulation
Under this policy it is assumed that, the replacement of the system occurs

when the number of down times of the first component reaches a predetermined
number k. Here we derived mathematical expression for long run reward. According to
Renewal reward theorem [Ross, 1996], the long run reward per unit time C(k) is
obtained as follows,
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C(k) = the expected reward incurred in a renewal cycle
the expected length of a renewal cycle

 Let the random variable R be the number of cycles in a renewal cycles until
the kth down time occur due to failure of component-1. Therefore k-1 down times are
included in the length of renewal cycle. k  -  1 down times occur for the component-1
and K2 down times occur for the component-2. Here the system starts with component-
1 and following are the number of working times for each component.
Component-1: R + 1 working times
Component-2: R working times

 In a similar manner one can write how many repair times occur in a renewal
cycle for each component. The following are the number of repair times for each
component.
Component-1: R repair times
Component-2: R repair times

 In each cycle there are one working time, one repair time and either one cold
standby or down time or both. There is no down time or cold standby in the first cycle
for the component-1. If there are R cycles, then the number of repairs will be R. Now
we classify the number of repair as 1) Repairs followed by standby 2) Repairs preceded
by downtime. Now the total number of repairs R is the sum of number of repairs
followed by standby (Si) and the number of repairs preceded by down times (Ki ) for the
component-i, i = 1, 2 and K1 = k(fixed). We can express R for each component in terms
of random variable S1, S2 and K2 in the following way as,
Component-1: R = S1 + k -1
Component-2: R = S2 + K2

Additional Assumptions
Here S1 takes the values 1, 2, 3, . and and so on. Look at the Figure 1. S1

cannot take value zero. When the system starts with component-1, the system will not
break down after the failure of component-1 because of standby component-2. There
will be at least one repair without down time. Therefore S1  1. But S2 can take values
0, 1, 2, ….  and so on. S2 can take value zero when the component-2 is failed while the
component-1 still under repair. The random variables S1 and S2 are discrete random
variables. The possible choice of these random variables, S1 and S2 are truncated
negative binomial, TNB(k, p) truncated at zero and negative binomial, NB(K2, p)
respectively where p is the probability of the occurrence of down time and K2 1. The
random variable K2 is number of down times in the component-2 which takes values
1,2, ... and so on. The possible choice for K2 is truncated Poisson, TP( ) truncated at
zero. The expression for p is

βα
α
+

=>=>= + )()(
)2()1()1()2(

1 jjjj XYPXYPp
                                 (3.1)

Let L be the length of the renewal cycle,
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where I(.) is the indicator function and the third term and fourth terms in Eqn (3.2) are
the length of waiting for repair (down time) of the first and second components
respectively.

The total reward incurred in the renewal cycle is given by,
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The following expected values   are used for evaluating E(L) and E(C)
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Using the above expected values in (3.4), expected length E(L) of the renewal cycle is
given by,
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By using the assumptions (7) and (8), we obtain the expected reward incurred in a
renewal cycle as,
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where q = 1 - p.

The long run expected reward per unit time, CT (k) incurred in a renewal cycle is the
ratio of two expectations E(C) and E(L),

E(L)
E(C)C(k) =

                                                 ( 3.7)
 To obtain optimal number of down times plot a graph of C(k) Vs k and choose k for
which C(k) is maximum.

Examples
 Here we consider following parameters to illustrate our theoretical result and
for simulation study. In a simulation study, working times ( ( )iX j ) and repair times

( ( )iY j )  are generated from bivariate exponential distributions with failure rates for given

set of parameter values as follows. The number of down times (k = 1) is obtained when
(2) (1)

1Y Xj j> +  , j = 1, 2 . Multiply (0.99) to the reward cost for every cycle (geometrically

decreasing) and multiply (1.01) to the repair cost for every cycle (geometrically
increasing). Obtain the total reward cost incurred in a renewal cycle and length of
renewal cycle. Repeat this procedure 1000 times and take the mean of 1000 total
reward costs and mean of 1000 lengths of renewal cycle and take the ratio which gives
CS(k) based on simulation study. Repeat this procedure for k = 2, 3, ..20.

A  b ’ * C0 Cw0 Cp0 Cd

.99 1.01 .5 1 2 10 400 50 5 1
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Table 1: Results obtained from theory and simulation

Figure 2: A plot of C(k) against k

 From the Table 1 and Figure 2 it is clear that optimal reward occurs at k = 7
for both theoretical and simulation study.

4. Priority in Use
In this section we studied two dissimilar components and one repairman.

Assume that component-1 has priority in use. We consider a replacement policy based
on the number of down times of component-1 by using bivariate exponential model of
Freund. The p.d.f. of bivariate exponential model of Freund(1961) with parameter

' '( , , , , , )1 1 2 2 1 2α β α β β β is given by,

k  CT(k) Cs(k) k CT(k) Cs(k)
1 32.4975 14.9215 11 34.0432 33.9856

2 33.081 27.4098 12 33.8496 33.6197

3 33.5669 31.6898 13 33.6275 33.2141

4 33.935 33.5795 14 33.3815 32.825

5 34.1872 34.5283 15 33.1155 32.4151

6 34.3368 34.8395 16 32.8327 31.9973

7 34.3996 34.8742 17 32.5359 31.5705

8 34.3902 34.7777 18 32.2273 31.1398

9 34.3211 34.5539 19 31.9089 30.69

10 34.2027 34.2782 20 31.5824 30.2486
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' ' '
' ' ' ' ' '( , ) exp( ( ) ),i i i i i i i i i if x y y xα β β α β β= − − + − '0 ii yx <<
     = ),exp( ''' iiiiii yx βαβα −− ii xy << '0

(4.1)

where ', , ' 0, ' 1,2' .i i ii iα β β > ≠ =

 Along with the original model assumptions in Section 3, we need some extra
assumptions as follows which are similar to the assumptions made by Hanagal and
Kanade (2010b).

1. The  component-1 has priority in use.

2. The repairman repairs the component-1 as soon as it fails. At the same time
standby component-2 begins to work. As soon as the repair of the component-
1 is over the component-2 will be replaced by component-1 and the system
starts working even though component-2 has not failed because component-1
has high reliability as compared to component-2. This we call `shift' of
component. If one component fails while other component is still under repair
it must wait for repair and the system breaks down. A possible course of the
system is shown in Figure 3.

3. Whenever there is no down time due to replacement of component-1 and non
failure of the component-2, the lifetime of component-2 is right censored at

(1)Yj .
In this case reward cost of component-2 is not geometrically decreasing

and the repair time is zero for the component-2 and standby time is zero for
the component-1. Here for the component-2, no repair takes place unless there
is a down time. Similarly for the component-1, cold standby never occurs
because it has priority in use.

4. Here (1)X j  and (2)Yj ( (2)X j  and (1)Yj )  have bivariate exponential model of

Freund.

Additional Assumptions
 The possible choice of these random variables, S1 and S2 are truncated negative
binomial, TNB(k, p1) truncated at zero and negative binomial, NB(K2,  p2) respectively
where pi is the probability of the occurrence of down time due to the failure of
component-i, i = 1, 2. The distribution of K2 is same as stated in the first model
(identical components case). The expressions for pi are,
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Figure 3: A possible course of the system

Mathematical Formulation
 L and C denote  the length and total reward of the renewal cycle.
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 Using the above expected values given in Eqns (4.4) E(L) and E(C) of the
renewal cycle are given by,
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 The long run expected reward per unit time CT (k) obtained by using E(C) and E(L).

Examples
              Here we consider following parameters to illustrate our results and simulation
study is also based on 1000 s and C’s as explained in earlier section.

a b 1 1’ 2 2’ * C0 Cw0 Cp0 Cd

.99 1.01 .4 .8 1 1.5 1 1.5 10 400 50 5  1
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Table 2: Results obtained from theory and simulation

Figure 4: A plot of C(k) against k

 From the Table 2 and Figure 4 it is clear that optimal reward occurs at k = 8
and k = 7 for both theoretical and simulation study respectively.
Remarks
Ø The difference in the values of C(k) of these two methods is due to the

additional assumptions for the distributions of S1,  S2 and K2 when calculating
E(L) and E(C) and these additional assumptions are not needed to obtain
optimal k based on simulated study.

Ø One can have more examples for different set of parameters values in the
proposed models. The procedure is same and will not differ if we take
different set of parameters values. The expected reward cost per unit time C(k)

k CT(k) Cs(k) k CT(k) Cs(k)
1 24.6879 10.8912 11 32.4583 26.4153

2 27.8623 20.9666 12 32.1806 26.1899
3 29.9853 24.3246 13 31.8647 25.9354

4 31.3404 25.9203 14 31.5194 25.6609
5 32.1679 26.5305 15 31.1519 25.3982

6 32.6379 26.7927 16 30.7674 25.1151
7 32.8627 26.8917 17 30.37 24.831

8 32.9158 26.8819 18 29.963 24.5392
9 32.8457 26.737 19 29.549 24.2555

10 32.6855 26.6037 20 29.1302 24.0005
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depends on a, b, the statistical parameter values, economic characteristics
(initial cost, reward cost, repair cost, down time cost). Any change in these
values will change C(k). We have carried out this exercise by taking different
parameter set of values but as an illustration we present results only for one set
of parameter values.
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