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Abstract
In repairable redundant systems the failed units can either be repaired or replaced by

identical standby to reduce the system down time. The failed units are inspected for
repair/replacement. In this paper, two stochastic models for 2(k)-out-of-3(n) redundant system of
identical units with repair and inspection are examined stochastically. The system is considered
in up-state only if 2(k)-out-of-3(n) units are operative in both the models. Normally, the server
either attends the system promptly or may take some time, after failure. The system is studied
under an operational restriction on the inspection i.e. in case when system has only one unit in
operational mode the server has to attend the system for inspection. Semi-Markov processes and
Regenerative point technique is adopted to obtain the expressions for measures of system
effectiveness such as transition probabilities, mean sojourn times, mean time to system failure,
steady state availabilities, busy periods, expected number of visits etc. Cost-analysis is also
carried out for the system models.

Key words: Stochastic modeling, performance analysis, operational restriction, arbitrary
distribution, re-generative point, semi-Markov process.

1. Introduction
Redundancy techniques are widely used to improve system performance in

terms of reliability and availability. Among various redundancy techniques standby is
the simplest and commonly accepted one. In general there are three types of standby;
cold, warm and hot standby. Hot standby implies that the redundant (spare) unit or
component has same failure rate as when it is in operation mode where as in case of
cold standby the failure rate of the redundant unit or component is zero and it can’t fail
in standby mode. Between hot and cold there is an intermediate case known as warm
standby. In this case the failure rate of redundant unit lies in between that of hot and
cold standby.

In order to reduce the down time redundancy is necessary. In literature, many
researchers have been discussed the reliability and availability of standby systems in
detail by considering different cases and strategies such as by considering weather
conditions [2], replacement policy with spares [3], random appearance-disappearance
time of service facility [4], preventively maintained identical units [5], general
distributions [6], correlated failures and repair [7], multiple critical errors [8], dissimilar
unit system with perfect or imperfect switch [9], complex standbys (coldwarm,
warmcold etc) [10]. Further, Yadvalli et al. [11] dealt with asymptotic confidence
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limits for the steady state availability of a two-unit parallel system with preparation
time for the repair facility. Edmond et al. [12] carried out reliability analysis of a
renewable multiple cold standby system. Some recent related and extended text is
reported in [13-15].

In this paper two probabilistic models of a 2(k)-out-of-3(n) cold standby
system are examined stochastically. Such systems found applications in various fields
including the process industry, power plants, airline companies, medical diagnosis,
network design and many more. For such a system when an operating unit fails the
standby unit becomes operative and the system works if at least 2(k)-out-of-3(n) units
are in operative mode. In model I, server attends the system promptly whenever needed
and first inspects the failed unit to see the practicability of its repair. If repair of the unit
is not practicable, it is replaced by new one so that unnecessary expanses on repair can
be avoided. In real life, it is not always possible for the server to attend the system
swiftly when required may because of his pre-occupation. In such a situation server
may be allowed to take some time to reach the system. But it is urgently required that
the server must arrive at the system promptly in case of urgent situation. In model II,
the server takes some time to arrive at the system when 2(k)-out-of-3(n) units are
operative. While in case when the system has only one unit in operational mode the
server has to attend the system swiftly for inspection due to operational restriction
imposed on it, so that the down time of the system may be reduced. The switches are
perfect and instantaneous. Failure time follows negative exponential distribution while
repair and inspection times follow arbitrary distributions. All the random variables are
mutually independent and un-correlated. The expressions for various measures of
system performances such as transition probabilities, sojourn times, MTSF, availability,
busy period of server, expected number of visits and profit function are drawn for
steady state.

2. Notations
No Units in normal mode and operative

Units in normal mode but not working

              Si                           ith transition state

Cs Unit in normal mode and cold standby

a/b Probability that repair is useful / not useful

 Constant failure rate of an operative unit.

qij(t) / Qij(t) pdf / cdf of first passage time from a regenerative

state i to a regenerative state j or to a failed state

without visiting any other regenerative state in (0,t].

qij.kr(t)/Qij.kr(t) pdf / cdf of first passage time from a regenerative

state i to regenerative state j or to a failed state j

visiting states k, r once in (0,t].

h(t)/H(t) pdf / cdf of inspection time



Stochastic Modeling and Performance… 87

w(t)/W(t) pdf /cdf of waiting time of the server to arrive at the

system.

g(t)/G(t) pdf / cdf of repair time of the server.

Fwi/FwI/Fui/FuI Unit is completely failed and waiting for inspection /

waiting for inspection continuously from previous

state/ under inspection / under continuous inspection

from previous state.

               Fuii                      Failed unit under immediate/ urgent inspection.

Fur/ FUR Unit is completely failed and under repair / under

repair continuously from previous state.

pij/ pij.kr Probability of transition from regenerative state i to a

regenerative state j without visiting

any other state in (0,t] / visiting state k,r once in (0,t]

 i.e.

                    * /               Laplace / Laplace-Stiltje’s transform.

3. Transition states
The following are the possible transition states of the system.

For model-I

The states S0, S1, S3 are regenerative states while states S2, S4, S5 are failed and non-
regenerative states.
For model-II

The states S0, S1, S2, S3, S4 are regenerative states while states S5, S6, S7 are non-
regenerative as well as failed states. S4 is regenerative but failed.

4. Transition probabilities
Simple probabilistic considerations yield the following expressions for the

non-zero elements
(4.1)

For model-I
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(4.2)

It can be easily verified that

For model-II

(4.3)

It can be easily verified that

5. Sojourn times
The unconditional mean time taken by the system to transit to any regenerative

state Si when it (time) is counted from epoch of entrance into that state, is given by
(5.1)

The mean Sojourn time in the state Si is given by
T denotes the time to system failure.  (5.2)

Using these, we have following expressions for mean sojourn times
For model-I

(5.3)

For model-II

(5.4)

6. MTSF Analysis
On the basis of arguments used for regenerative processes, we obtain the

expressions for cdf ( ) of first passage times from regenerative state i to a failed
states

(6.1)

Solving above recursive differential- difference equations (6.1) for
using Laplace and Laplace-Stiltje’s transforms and letting t i.e. s0 we get in the
long run the expected time for which the system is in operation before it completely
fails as

   (6.2)

(6.3)
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(6.4)

7. Availability analysis

7.1 Steady state availability
Let  be the probability that the system is in up-state at instant t given that

the system entered regenerative state i at t=0.The recursive relations giving
point-wise availability  are given as

(7.1.1)

 represents the probability that the system is up initially in regenerative
state , is up at time t without passing through any other regenerative state or returning
to itself through one or more non-regenerative states i.e. either it continues to remain in
regenerative state  or in a non-regenerative state including itself.

(7.1.2)

(7.1.3)

Solving above recursive relations (7.1.1) for  by using Laplace transform
and letting t i.e. s0 we get the asymptotic availability of the system models as

(7.1.5)
7.2 Interval availability

The probability that the system is available for use in interval [0,t] is given by

(7.2.1)

Expected up time in (0,t] is

(7.2.2)

Expected downtime in (0,t] is
(7.2.3)

Above values can be obtained numerically by using the concept of Laplace transform.
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8. Busy Period Analysis
8.1 Expected busy period of server in long run

Let  be the probability that the server is busy at an instant time t given
that the system entered the regenerative-state i at t=0.Then recursive relations for

are given as
(8.1.1)

(8.1.2)

(8.1.3)

represents the probability that the server is busy in state  up to time t
without making any transition to any other regenerative state or returning to the same
via one or more non-regenerative states.
Solving above recursive relations (8.1.1) for  by using Laplace transform and
letting t i.e. s0 we get, asymptotically, the time for which the system is under
repair as

(8.1.4)

(8.1.5)

(8.1.6)

8.2 Expected busy period in (0,t]
The expected busy period in (0,t] is given by

(8.2.1)

Numerical values of these time periods can be obtained for particular values of t.

9. Expected Number of Visits by the Server
Let  denotes the expected number of visits by the server in (0,t], given

that the system entered the regenerative state i at t=0. The recursive relations of
are given as
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(9.1)
Solving above differential- difference equations (9.1) for  using Laplace

and Laplace- Stiltje’s transforms, and letting t i.e. s0 we get, asymptotically, the
expected number of visits per unit time of the server as

(9.2)
(9.3)

10. Expected number of restrictive visits by the server
Let  denote the expected number of restrictive visits by the server in (0,t],

given that the system entered the regenerative state i at t=0, for model-II.
The recursive relations of  are given as

(10.1)

Solving above differential- difference equations (10.1) for  using Laplace
and Laplace- Stiltje’s transforms, and letting t i.e. s0 we get, asymptotically, the
expected number of visits per unit time of the server as

(10.2)

(10.3)

11. Cost Analysis

11.1 The expected profit gained in (0, t]

Profit= total revenue in (0,t]- total expenditure incurred in (0, t] i.e.
(11.1.1)

Where k1= Revenue per unit up time for the system
k2= Cost per unit time for which the system is under repair
 k3= Cost per visit by the server
k4= Cost per restrictive visit by the server in model-II

11.2 Expected profit per unit time in steady state is given by

for i=1,2 (11.2.1)

(Note: for i=1,  ) (11.2.2)

Summary
A 2(k)-out-of-3(n) cold standby system of identical units with arbitrary

distribution of repair and inspection under operational restrictions is studied in this
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paper. Expressions for various system performance characteristics are drawn by using
semi-Markov processes and re-generative point technique. By using these expressions,
the analytical as well numerical solutions of measures of performance can be obtained
for some specific systems in transient and steady states. The models developed in this
paper are sufficiently applicable, with corresponding minor or major modifications, to
many industrial or real systems such as power plant, communication system, and waste-
water treatment plant etc.
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