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Abstract
The present study deals with the stochastic analysis of a real existing industrial system

model of a central air-condition (AC) system. The system consists of three different subsystems
namely- Air Blower, Compressor, water pump. All these subsystems are arranged in series
network. Transition probabilities as well as the recurrence relations for various reliability and
cost effective measures are developed. Failure time distributions of all the subsystems are taken
as exponential whereas repair time distributions are general. By using regenerative point
technique we have obtained various measures of system effectiveness such as –Reliability,
MTSF, Availability, Busy period of repairman and Net expected profit. The results are also
drawn in a particular case when repair time distributions are assumed as exponentials.
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1. Introduction
The reliability of hypothetical models have been analyzed widely by various

authors including Gupta and Goel (1990), Gupta et al. (1994), Gupta and Chaudhary
(1994). They obtained cost benefit analysis and various measures of system
effectiveness by using different techniques. But sometimes the hypothetical models are
not accurately reflected with the real existing systems. Few authors considered the real
existing system models like Gupta and Shivakar (2003) analyzed a stochastic model of
cloth weaving system, Gupta and Kumar (2007) studied a distillery plant system and
obtained profit function and reliability characteristics. Arora et al. (2000), Kumar et al.
(1996) also worked with real existing industrial systems with different techniques. The
present study is devoted to the stochastic analysis of real existing industrial AC system
model. The system is of a complex type, reparable engineering system installed in
majority of office buildings, scientific laboratories, industrial and commercial
complexes etc. The AC system consists of three main subsystems that are: (i) Air
Blower, (ii) Compressor and (iii) Water pump. These sub systems are arranged in a
series configuration and the system failure occurs if any one of the subsystem fails.

2. System Discription
The AC system consist three main subsystems that are: Air blower, compressor

and water pump. Out of three subsystems two subsystems (compress and water-pump)
have their cold standby units. Air Blower is working as single (without redundancy) as
it is too much expensive. A single repairman is always available with the system to
repair the failed unit and operate the cold standby unit with the help of a switching
device which is always perfect and instantaneous whenever required. The service
discipline of the repair man is FCFS (first come first serve).
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2.1 Roll of Subsystems

Air Blower (B): Air blower sucks the hot air from air-conditioning rooms and blows it
into the condenser to cool down with the help of FREON gas that present inside the
condenser.

Compressor (C): The main work of compressor is to suck high-temperature-low-
pressure (HT-LP) super heated vapour form FREON gas from air-blower to compressor
and compress it into high-pressure liquid form gas with the help of pistons and pass to
water condenser to cool and convert in to the form of low-temperature-high-pressure
super cool compressed liquid gas.
Water Pump (Wp): The main function of water pump is to pump cold water from
cooling tower to water condenser in order to chill FREON gas to maintain low
temperature.

2.2   Notations and States of The System

b c w,  ,   : Constant failure rates of blower, compressor and water

pump.

b c wG ( ),G ( ),G ( )   : c.d.f. of repair time of blower, compressor and water

pump.

ijq : p.d.f. of transition time from state iS  to jS .

ijp : †steady state direct transition probability from state iS

to jS , such that ij ijp q (u)du
iZ (t) : Probability that system sojourns in state iS  up to time t.

i : Mean sojourn time in state iS .

*, ~ : symbols for Laplace and Laplace - Stieltjes transforms.

To write the various states of the system we define the following symbols:

o r woB /B /B : Blower is operative/under

repair/ waiting for operation.

o s r wr F woC /C /C /C /C /C : Compressor is operative/

standby/ under repair/wait
for repair/ failed/waiting for
operation.

o s r wr F woWp /Wp /Wp /Wp /Wp /Wp : Water pump is operative/

standby /under repair/waiting

†The limits of integration are 0 to ∞ whenever not mentioned.
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for repair/ failed/ waiting for
operation.

The possible states of the system are 0S to 14S in

which 0 1S ,  S , 2S , 4S , 7S are operative states and other are failed. Transition

diagram of the system model is shown in figure-1.

3.  Transition Probabilities and Sojourn Times
(a) The direct or one step steady state transition probabilities are as follows -

The steady state transition probabilities can be obtained by using the results,

01 01t
p   lim  Q (t)




 = b c w( )u
c e du      = c

b c w


  

=



c ,

Where,   b c w
Similarly,

02p 



w , 03p 




b , 10p  c G ( ) , 15p
    


b c 1  G ( )

,

16p
    


c c 1  G ( )

, 20p  w G ( ) , 27p
    


c w 1  G ( )

,

28p
    


b w 1  G ( )

, 29p
    


w w 1  G ( )

,

30p b dG (u)  1  , 42p  c G ( ) , 4,10p
    


w c 1  G ( )

,

4,11p
    


b c 1  G ( )

, 4,12p
    


c c 1  G ( )

,

51p b dG (u)  1  , 71p  w G ( ) ,

7,13p
    


b w 1  G ( )

, 7,12p
    


c w 1  G ( )

,

7,14p
    


w w 1  G ( )

, 82p b dG (u)  1  ,

10, 4p w dG (u)  1 
Similarly,

11, 4p   1, 12,7p   1, 13,7p   1, (6)
11p

    


c c 1  G ( )
= 16p
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(4)
12p  

  
( )v

w c  ve dG (v) , (4)
1,10p  

  
( )v2

w c ve G (v)dv

(4)
1,11p  

   
( )v

b w c ve G (v)dv ,

(4)
1,12p  

   
( )v

c w c  ve G (v)dv

(7)
21p  

  
( )v

c w  ve dG (v) , (7)
2,13p  

   
( )v

b c w  ve G (v)dv

(7)
2,12p  

  
( )v2

c w  ve G (v)dv ,

(7)
2,14p  

   
( )v

c w w  ve G (v)dv

(12)
47p   

 
  ( )vc

c  1  e dG (v) = 4,12p ,

(14)
74p      

  
( )vw

w  1  e dG (v) = 7,14p

(9)
22p      

  
( )vw

w  1  e dG (v) = 29p

(7 ,14)
24p

       
  


( )w( )w

c w w2
w e(1  e )     dG (w)

( )( )
= (7)

2,14p

(4,12)
17p

       
  


( )w( )w

c w c2
w e(1  e )     dG (w)

( )( )
= (4)

1,12p

Hence, we observe that

01 02 03p p p   1  
(6) (4) (4,12) (4) (4)

10 11 12 15 17 1,10 1,11p p p p p p p  1      
(7) (9) (7 ,14) (7) (7)

20 21 22 24 28 2,13 2,12p p p p p p p   1      
(12)

42 47 4,10 4,11p p p p   1   
(14)

71 74 7,13 7,12p p p p   1   

30p 51p 82p 10, 4p 11, 4p 13,7p 12,7p  1
(1-6)

3.1 Mean Sojourn Times

If iT  is the sojourn time in state iS , then mean sojourn time in state iS  is given

by,
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i
 i= P( T  > t) dt

Therefore, the mean sojourn times for various states are as follows:

0 b c w( )ue du    
b c w

1

  

,

1 b c w( )u
c e G (u)du    

2 b c w( )u
w e G (u)du     ,

3 b G (u)du  = 5 = 8 = 11 = 13

4 b c w( )u
c e G (u)du     , 6 c G (u)du  = 12

7
b c w( )u

w e G (u)du     , 9 w G (u)du  = 10 = 14
                    (7-14)

4. Analysis of Results

4.1 Reliability and MTSF
Let Ri (t) be the probability that the system is operative during (0, t) given that

at t=0 it starts from state iS E . By simple probabilistic arguments the value of

0R (t) in terms of its Laplace transforms is given by

1
0

1

N (s)
R (s) =

D (s)
 (15)

Where,

1N (s) =     (7) (4) (7)
0 21 12 1 14 4 01 21 02Z 1  q q   Z +q Z q  q q         

  (4)
2 27 7 01 12 02Z q Z q q  q        (16)

1D (s) =    (7) (4) (7) (4)
21 12 10 01 21 02 20 01 12 021  q q q q q q  + q q q q          

(17)
Taking the inverse Laplace Transform of (15), one may get the reliability of

the system when initially system starts from state 0S .

In particular case, when repair time distributions are also exponential, by using
the matlab software we obtained the values of reliability of the system for different
values of mission time and the curves are drawn in figure-2.

The mean time to system failure (MTSF) can be obtained by using the well
known formula –

0 0E(T ) = R (t) dt = 1
0s 0 1

N (0)
lim  R (s) =

D (0)




Now using the results  ij ij i iq (0) = p      and      Z 0  =   we get
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1N (0)  =     (7) (4) (7)
0 21 12 1 14 4 01 21 021  p p   +p p  p p     

  (4)
2 27 7 01 12 02p p p  p     (18)

1D (0)  =    (7) (4) (7) (4)
21 12 10 01 21 02 20 01 12 021  p p p p p p  + p p p p   

(19)
4.2 Availability Analysis

Let iA (t) be the probability that the system is up (operative) at epoch‘t’, when

initially the system starts from state iS  E . Using the technique of the Laplace

transform the value of 0A (t)  in terms of its L.T., i.e. 
0A (s) (20)

Now, the steady state probability that the system will be operative is given by,



0 0s 0
A  = lim  s A (s) 2 2= N /D (21)

Where,

         2 0 0 1 1 2 2 3 3 4 4N U U U U U (22)

 D2 =

 (4)
0 0 1 1 2 2 03 0 3 4 4 15 2 5 1,10 1U U n U n p U n U n p U n p U      

    (4) (7)
4,10 3 8 1,11 1 4,11 3 9 2,13 2 7,13 4 10p U n p U p U n p U p U n    

 (7)
2,12 2 7,12 4 11p U p U n  (23)

Where

       (6) (9) (12) (14) (14) (12)
0 11 15 22 28 42 47 71 74 74 47U 1 p p 1 p p p p p p p p       



    (7 ,14) (14) (14) (7) (7)
42 24 71 74 74 2,13 2,12p p p p p p p    



   (7) (4) (12) (14) (14) (12)
21 12 42 47 71 74 74 47p p p p p p p p   


   (4) (4) (14) (14) (4,12)
42 1,10 1,11 71 74 74 17p p p p p p p    



   (4) (7 ,14) (12) (12) (7) (7)
71 12 24 47 42 47 2,13 2,12p p p p p p p p   


      (9) (4) (4) (12) (4,12) (12)
22 28 1,10 1,11 47 17 42 471 p p p p p p p p     

   (4) (4) (7) (7) (7 ,14) (4,12)
42 1,10 1,11 2,13 2,12 24 17p p p p p p p    


(14) (12) (7) (9)

1 42 71 42 74 47 71 01 02 21 01 22 01 28U p p p p p p p p p p p p p           
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   (7 ,14) (14) (14) (7) (7)
01 42 24 71 74 74 2,13 2,12p p p p p p p p     

  (7 ,14) (12) (12) (7) (7)
02 71 24 47 42 47 2,13 2,12p p p p p p p p     

 (14) (12) (4) (6)
2 42 71 42 74 47 71 01 12 02 15 11U p p p p p p p p p 1 p p          

  (4) (4) (14) (14) (4,12)
01 42 1,10 1,11 71 74 74 17p p p p p p p p     

   (4) (4) (12) (4,12) (12)
02 71 1,10 1,11 47 17 42 47p p p p p p p p     

     (7 ,14) (14) (14) (7) (7) (6) (4)
3 24 71 74 74 2,13 2,12 02 15 11 01 12U p p p p p p p 1 p p p p            

  (4) (4) (14) (14) (4,12) (4) (7)
1,10 1,11 71 74 74 17 01 12 02 21p p p p p p p p p p         

  (4) (4) (7) (7) (7 ,14) (4,12)
02 71 1,10 1,11 2,13 2,12 24 17p p p p p p p p     

    (7 ,14) (12) (12) (7) (7) (4) (6)
4 24 47 42 47 2,13 2,12 01 12 02 15 11U p p p p p p p p p 1 p p            

     (12) (4) (4) (4,12) (12) (7) (9)
47 1,10 1,11 17 42 47 02 21 01 22 28p p p p p p p p p 1 p p            

  (4) (4) (7) (7) (7 ,14) (4,12)
01 42 1,10 1,11 2,13 2,12 24 17p p p p p p p p     

The expected up time of the system during (0, t) is given by,
t

up 0
0

(t) = A (u) du (24)

4.3 Busy Period Analysis

Let c
iB (t) , B

iB (t)  and Wp
iB (t) be the probabilities that the system is under

repair at epoch t, when the system initially starts from regenerative state iS  E . Using

elementary probabilistic arguments the value of c
0B (t) , B

0B (t)  and Wp
0B (t) can be

obtained in terms of their Laplace transforms i.e. c
0B (s) , B

0B (s) and Wp
0B (s) .

Now, the steady state probabilities wpc B
0 0 0B , B  and B  that in the long run, the

probability that the repair facility will be busy in the repairing of failed compressor,
blower room and water pump respectively are given by,
So that,

c
0 3 2B   N /D , B

0 4 2B   N /D and Wp
0 5 2B   N /D              (25-27)

Where,
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       (7)
3 1 14 4,12 12 14 4 16 6 1 2,12 12 2N   + p p + p + p U p U

 4 4,12 12 3 7,12 12 4p U p U     

          (4) (7)
4 03 3 0 15 5 1,11 11 1 28 8 2,13 13 2N   p U p + p U p + p U

4,11 11 3 7,13 13 4p U p U   

       (4)
5 1,10 10 1 2 27 7 27 7,14 14 29 9 2N   p U + p + p p + p U

 4,10 10 3 7 7,14 14 4p U + p U    

and 2D is the same as in last section.

Now, the expected busy period of the repair facility in the repair of
compressor, blower room and water pump during (0, t) is given by

t
c c
b 0

0

(t)  B (u) du   ,

t
B B
b 0

0

(t)  B (u) du   and

t
Wp Wp
b 0

0

(t)  B (u) du  
(28-30)

4.4 Cost Benefit Analysis
We are now in a position to obtain the profit function by considering mean up

time of the system during (0, t) and expected busy period of the repair facility during (0,
t). Let us suppose,

0K = revenue per unit up time

1K = payment to repair facility per unit time when repair facility is busy in

the repair of compressor.

2K = payment to repair facility per unit time when repair facility is busy in

the repair of blower room.

3K = payment to repair facility per unit time when repair facility is busy in

the repair of water pump.

The expected profit incurred by the system during (0, t) is given by,
P(t) = Expected total revenue in (0, t) – Expected total repair cost in (0, t)

 = wpc B
0 up 1 b 2 b 3 bK (t)  K (t)  K (t)  K (t)       (31)

The expected profit per unit time in a steady state is given by,

P = wpc B
0 0 1 0 2 0 3 0K A  K B  K B  K B            (32)

Where,
wpc B

0 0 0 0A ,  B ,  B , and B  has been already defined.
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5. Particular Case
In this section, if we consider the case when all repair time distribution are

also exponential i.e.

ct
cG (t)  1  e  , bt

bG (t)  1  e   , wt
wG (t)  1  e  

Then the steady state transition probabilities will be,

10p c

b c w c



    42p , 15p b

b c w c



    4,11p

Similarly we can find others.

6. Graphical Representation
For more concrete study of the behavior of the characteristics obtained under

study in above particular case, we plot the curves for reliability and MTSF, for different

values of  b and c while the other parameters are kept fixed as:

w = 0.001, b = 0.04, c = 0.05, w = 0.08,

0K = 4000, 1K =100, 2K = 150, 3K = 50

In Fig.-2, curves represents the graph of reliability with respect to time for

different values of  b  taken as  b =.04, .05 and .06. when c =.002. It is observed

that the reliability decreases as b  increases.

In Fig. 3 and Fig. 4, curves represent the graphs of MTSF and profit function
with respect to b  for different values of c = 0.002, 0.005 and 0.008. It is observed

that the MTSF decreases as b increases. Also, with an increase in c , the MTSF

decreases. Further, we observe that the rate of decrement in MTSF is rapid initially and
tends to vanish as b  becomes large. From Figure-4 it is obvious that the profit

decreases with the increase in with b .Further with an increase in c there is a

decrease in profit with a constant rate.
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