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Abstract
The present paper deals with the configurational modeling and stochastic analysis of a

complex reparable system model based on cold-drink making system.  The considered system
consists of a number of sub-systems of varying nature.  The stochastic analysis of the considered
system model is carried out by using regenerative point technique under the assumption that all
failure rates are constant and repair rates are general. In the present system model, the concept of
common cause failure is also incorporated.  The expressions for several systems characteristics
such as reliability, MTSF, steady state availability, busy period and expected profit have been
obtained.  MTSF and profit function have also been widely studied through graphs taking repair
time distributions as exponential.
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1. Introduction and System Description
In the field of reliability various hypothetical redundant system models have

been analyzed under different sets of assumptions.  Practical usefulness of
configurational modeling and stochastic analysis exists in realistic industrial modeling.
The stochastic analysis of realistic industrial systems is very helpful for system
managers, system engineers and researchers for present and future strategies.  But, a
very few work related to realistic modeling [1-6] have been seen in the literature.
Considering the importance of realistic modeling, the purpose of the present paper is to
develop and analyze an industrial system model based on cold-drink making system
situated at Muzaffarnagar in U.P., India.

Cold-drink making system is a complex type reparable engineering system
consists of seven subsystems/units.  The working of the system plant is as follows: -
First of all hardness of water is removed by mixing lime and bleaching powder in hard
water.  Hence, the hard water from water supply unit (WS) changes in soft water.  Now,
the soft water is passed through ammonium compressor unit (NH) to make it chill.  A
fixed amount of sugar and flavor is mixed with the chilled water.  After that mixed
chilled water comes in carbonator unit (CO) where carbon dioxide gas (CO2) is mixed
with it. This prepared solution is filled by filter unit (F) into bottles, coming from
bottling unit (B).  Finally, filled bottles are sealed by crimping machine unit (CM). The
electricity unit provides the electricity to the plant (E).

2. Assumptions
(i) Failure and repair are stochastically independent.
(ii) A single repair facility is always present to repair a failed subsystem/unit.  Priority
in repair to the units WS, NH, CO, F, B and CM is given over the unit E.
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(iii) Each unit of the system has two modes normal (N) and total failure (F).
(iv) System/unit failure occurs either due to normal failure or due to common cause
failure. Common cause failure is defined as any instance multiple unit or component
fails due to a single cause.
(v) Each repaired unit is as good as new.
(vi) All the failure time distributions are taken as exponential whereas repair time
distributions are taken as general.

In the light of above assumptions and using the regenerative point technique,
the following measures of system effectiveness are obtained.
(i) Transition probabilities and sojourn times in different states.
(ii) Reliability and mean time to system failure (MTSF).
(iii) Pointwise and steady state availabilities of the system.
(iv) Expected busy period of the repair facility during (0, t).
(v) Net expected profit incurred in (0, t) and in steady state.

The nature of MTSF and profit function is studied in the light of graph in a
particular case taking repair time distributions as exponential.

3. Notations for States of the System
i : constant failure rates of the units  WS/NH/CO/F/B and CM,

respectively  for  i = 1, 2, 3, 4, 5, 6.
 : constant failure rate of the unit E.
 : common cause failure rate of the system when it is either in state S0

or S1.

i ig ( ),G ( )  : pdf and cdf of repair time of the units WS/NH/CO/F/B and CM,

respectively for i = 1, 2, 3, 4, 5, 6.
h( ), H( )  : pdf and cdf of repair time of the system in failed state S15 due to

common cause failure.
k( ), K( )  : pdf and cdf of repair time of the unit E.

3.1 Symbols for States of the System
Eo/Eg/Es/Ewr : Unit E is operative/good/stand by/under repair/waiting for
repair.
Bo/Bg/Br : Unit B is operative/good/under repair.
Fo/Fg/Fr : Unit F is operative/good/under repair
WSo/WSg/WSr : Unit WS is operative/good/under repair.
NHo/NHg/NHr : Unit NH is operative/good/under repair.
COo/COg/COr : Unit CO is operative/good/under repair.
CMo/CMg/CMr : Unit CM is operative/good/under repair.

Using these symbols the various states of the system model are shown in Fig. 1,
where the states S0 and S1 are up states and rest of the states are failed.
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4. Transition Probabilities and Sojourn Times
All the entrance epochs except at S2 are regenerative. So, E = (S0, S1, S3,… ,S15).

Let T0 ( 0), T1, T2, ... denote the  instants  at which the system enters into any state
SK E and let Xn be the state visited at instant Tn+, i.e. just after the transition at Tn.
Then {Xn, Tn} is a Markov renewal process with state E.

The steady state transition probabilities of the system model are as follows:
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It is clear that

01 0,15 0,i+2p + p  + p  = 1,
(2)

10 1,15 1,i+811p + p  + p p  = 1,

4.1 Mean Sojourn Time
Mean sojourn time K  is state SK is defined as the expected time for which the

system stays in state SK, before transiting to any other state. Let KX denotes the

sojourn time in state SK, then the mean sojourn time in state SK is given by

 
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5. Reliability and MTSF
Let the random variable TK be the time to system failure when the system

initially starts from state SK  E, then the reliability of the system is given by

K KR (t) = P [T >t]
By probabilistic arguments we have the following relations:
R0(t) =  Z0(t) + q01(t)  R1(t)
R1(t) =  Z1(t) + q10(t)  R0(t) (1-2)

where ( )t ( )ti i
0 1Z (t) = e ,           Z (t) = [1 K(t)] e   

Taking Laplace Transform (L.T) of relations (1-2) and simplifying for
*
0R (s), we obtain,

* * *
* 0 01 1
0 * *

01 10

Z q Z
R (s) =

1 q q




(3)

Using the usual formula, the MTSF is given by,

* 0 01 1
0 0

s 0 01 10

p
E(T ) = lim  R (s) =

1 p p

  


(4)

The limit of integration is 0 to  whenever it is not mentioned.

6. Availability Analysis
From the theory of regenerative process, the pointwise availabilities of the

system are seen to satisfy the following recursion relations:
A0(t) = Z0(t) + q01(t)  A1(t) + q0,15(t)  A15(t) + q0,i+2(t)  Ai+2(t)
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A1(t) =  Z1(t) + q10(t)  A0(t) +
(2)
11q (t)   A1(t) +q1,15(t)   A15(t)

               + q1,i+8(t)  Ai+8(t)
Ai+2(t) = qi+2,0  A0(t)
Ai+7(t) = qi+8,1 (t)  A1(t)
A13(t) = q15,0(t)  A0(t) (5-9)

Taking L.T. of equations (5-9) and solving for *
0A (s), we have,

*
0 2 2A (s) N (s) D (s) (10)

where,

 (2)* * * * *
2 i 8,1 0 01 111N (s) 1 q q  Z q Z    (11)

   *(2) * * * * * *
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 * * * *
01 10 1,15 15,0q q q q  (12)

For brevity, the argument 's' is omitted from *
ijq (s)  and *

iZ (s) .  Now the steady state

availability is given by,

0 2 2A  N D (13)

where,

 2 10 1,15 0 01 1N p p  p     (14)

   2 ) 0 01 1 12 12 i 2 i 2 i 8 i 810 1,15
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(15)
7. Busy Period Analysis

Let BK(t) be the probability that the repair facility is busy in repair of the failed
unit at time t when system initially starts from state SK E.

Using elementary probabilistic arguments in respect to the above definition of
BK(t), we have the following relations -
B0(t) = q01 (t)  B1(t) + q0,15 (t)  B15(t) + q0,i+2 (t)   Bi+2 (t)

B1(t) = 1Z1(t) + q01(t)   B0(t) +
(2)
11q (t)  B1(t) + q1,15 (t)  B15(t)

+ q1,i+8 (t)   Bi+8 (t)
Bi+2(t) = i+2 Zi+2(t) + qi+2,0 (t)  B0(t)
Bi+7(t) = i+8 Zi+8(t) + qi+8,1 (t)   B1(t)
B13(t) = 15 Z15 (t) + q15,0 (t)  B0(t) (16-20)
where,

Zi+2 (t) = 1Gi (t) = Zi+8 (t)
Z15(t) =  1

Taking L.T. of the relations (16-20) and then after substituting, we get,
*
0 2B (s) = N(s)/D (s) (21)

where,
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D2(s) is the same as in availability analysis.

Now, if E
0B (t), WS NH CO F B CM

0 0 0 0 0 0B (t),  B (t),  B (t),  B (t),  B (t)andB (t),
be the probabilities that the system is under repair due to the failure of the unit E, WS,
NH, CO, F, B and CM, respectively,  when system initially starts from state S0.  Also,

let C
0B (t) be the probability that system is under repair at epoch t, due to common

cause failure, when system initially starts from state S0.  The separate values of these
probabilities in terms of  their L.T.  can be obtained from (21) by substituting (1 = 1,

i+8 = i+2 = 15 = 0)  for E
0B (t) , (3 = 9 = 1, rest 's are zero) for ws

0B (t),  (4= 10

= 1, rest 's are zero) for NH
0B (t),  (5= 11 = 1, rest 's are zero) for CO

0B (t),  (6=

12 = 1, rest 's are zero) for F
0B (t),  (7 = 13 = 1, rest 's are zero) for CM

0B (t),  (8=

14 = 1, rest 's are zero)  for B
0B (t)  and (15 =  1, rest 's are zero) for C

0B (t) .  In a

long run, the probability that the repair facility will be busy in repair of failed unit E, is
given by

E E
0 0 4 2

t
B  = lim B (t) = N D


(23)

where,
N4 = p011+p01p1,i+7i+7 (24)

Similarly, other steady state probabilities can be obtained as follows:
C WS NH
0 3 2 0 5 2 0 6 2B N D ,          B N D ,                B N D ,  
CO F B
0 7 2 0 8 2 0 9 2B N D ,       B N D ,         B N D ,     and  
CM
0 10 2B N D (25-31)

where,
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8. Profit Function Analysis

The net expected profit incurred by the system during (0, t) is given by
P (t) = Expected total revenue during (0, t)  Expected total expenditure during (0, t)

        = E WS NH CO
0 up 1 b 2 b 3 b 4 bC  (t) C  (t) C  (t) C  (t) C  (t)        
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F B CM C
5 up 6 b 7 b 8 bC  (t) C  (t) C  (t) C  (t)        (34)

where C0 is the revenue per unit up time by the system and C1, C2, C3, C4, C5, C6 and C7

are the cost per unit down time when the system is under repair due to the failure of
units E, WS, NH, CO, F, B and CM respectively.  Also C8 be the cost per unit down
time when the system is under repair due to common cause.
Also,

t
* *

up 0 up 0
0

(t) A (u)du s.t. (s)  A (s) / s    (35)

In similar way
E WS NH CO F B CM C
b b b b b b b b(t),  (t),  (t),  (t),  (t),  (t),  (t) and (t)        Can be

defined.
Now, the expected profit per unit time in steady state is given by

2 *

t s 0
P lim  P(t)/t  = lim  s P (s)

 


    = E WS NH CO F
0 0 1 0 2 0 3 0 4 0 5 0C A C B C B C B C B C B    

B CM C
6 0 7 0 8 0C B C B C B   (36)

9. Particular Case
When all the repair time distributions are taken as exponential as

ti
i ig (t) =  ;
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Now, the changes are as follows:
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10. Graphical Analysis
For more concrete study of the system behaviour, we plot curves for MTSF and

profit function w.r.t. failure rate of ammonium compressor unit (2). Fig. 2 shows the
variation in MTSF w.r.t. 2 for different values of  = 0.001, 0.003 and 0.005 when
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other parameters are kept fixed as 1 = 3 = 4 = 5 = 6 = 0.002,  = 0.02 and  = 0.01.
From graph it is observed that the MTSF decreases as 2 increases.  The rate of
decrement is rapid initially and uniformly decreases for large values of 2

.  Also, when
we increase the value of  then the MTSF decreases.

Fig. 3. Shows the changes in profit function w.r.t. 2  for different values of 
and  while the other parameters are kept fixed as 1 = 3 = 4 = 5 = 6 = 0.002,  =
0.001,  = 0.02, 1= 2 = 3 = 4 = 5 = 6 = 0.025, C0 = 1200, C1 = 100, C2 120, C3 =
125, C4 = 110, C5 = 80, C6 = 110, C7 = 75, C8 = 200.  From graph we observe that the
profit decreases as 2 increases and it is also observed that the values of profit curves
tend to increase as we increase the values of repair rates and .
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