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Abstract
There are certain situations, for example, positively skewed distributions, where

geometric mean is more appropriate measure of location than the arithmetic mean as it gives
larger weight to smaller values than larger values of variables. It is specifically useful in
averaging ratios, percentages and rates of change in one period over the other. In this paper we
propose two different types of estimators for estimating population geometric mean of the
characteristic under study variable y,  one with and the other without using auxiliary information.
To investigate the properties of these estimators we obtain their Bias and Mean Square Errors
(MSE) along with the upper bounds for their mean square errors under certain realistic
assumptions. Empirical example is also given showing the relative efficiencies of the proposed
estimators.
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1. Introduction
In most of the survey sampling problems the parameter of interest is either the

total or the arithmetic mean of the characteristic under study as a measure of average or
central values. The per capita income, the average operational holding size, per capita
fuel wood consumption are some of the parameters which might give very misleading
conclusions for the populations due to high skewness of the variables in question. In
medical studies variables with normal and symmetrical distribution are very rare say for
example survival times. In such cases of distribution the arithmetic mean may not be
most appropriate measure of the average of the variables and it is preferable to use
either the median or the geometric mean. For positively skewed distribution, geometric
mean is a more appropriate measure of location than the mean as it gives larger weight
to smaller values than larger values of variables. Geometric Mean is specifically useful
in averaging ratios, percentages and rates of change in one period over the other. Also
use of central limit theorem is valid only when sampling distribution of statistics in use
is normal which is not in the case of highly skewed distributions and hence calculation
of confidence interval may not be easy task in such situations. Though the properties of
geometric mean have been studied empirically through simulations, bootstrapping and
other techniques, a lot of work remains to be done for studying theoretical properties of
geometric mean .

Considering a finite population of N unit, let (Yi , Xi ) , i = 1, 2, …. ,N  be the
values of  observation for the ith unit of the population according to the study variable y
and the auxiliary variable x respectively. Further let a simple random sample of size n
from this population is taken without replacement having sample values ( ),i iy x , i =
1,2…,n assuming without any loss of generality that first n units have been selected in
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the sample from N units of the population. Further we assume that no value is zero and
negative.

 The population geometric mean, the parameter of interest, is given by,

1/( ... )1 2
NG Y Y Ym N=                              (1.1)

The obvious choice for the estimator should be the sample geometric mean
given by,

1/( ... )1 2
nG g y y ym m n= =                    (1.2)

To study properties of gm  is not very easy task and hence to avoid the mathematical

complexities assuming deviation about mean to be less as compared to mean we may
consider the following estimators for population geometric mean
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 And for positively correlated variables y and x we may take
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whereas when y and x are negatively correlated we may take
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                                                                                 (1.5)

where ( 1) /n nα = −  or a suitably chosen scalar.
A generalized class of estimators of geometric mean may be taken as gc
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                                                                                  (1.6)

where α   and λ  are the characterizing scalars to be chosen suitably and determined by
minimizing mean square error ( )MSE gc .

Further let,
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2. Bias of the Estimator
0g
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−
= ⇒ = +

 so that ( ) ( ) 00 1E e E e= =                                                                         (2.1)

Assuming population size N to large be enough in comparison to sample size n, we may
ignore finite population correction factor (f.p.c) and get,
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nYSy
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                                                                                         (2.2)
 Since for large sample if deviations are small as compared with mean, we may use, for
mathematical simplicity, approximation formula for geometric mean as
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                                                                      (2.3)

 Then, 1 21
2

nG Y Cyn
− = −  

2
2
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α

= −

G Y k= −              where 2
2
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α

=                                               (2.4)

Now from equations (1.3) and (2.1), we have
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Now put 2
2
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α

=  and expanding ( ) 1
1 0e

−
+  in (2.5) we get,
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Taking expectation both the side we get, ( )0Bias g up to 1O
n
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                                                                     (2.7)

3. The Mean Square Error (MSE) of Estimator (
0g ).

The MSE of the proposed estimator is given by

( )2( )0 0MSE g E g G= −                                    (3.1)

Now from equation (2.6) we have up to 1O
n
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                                                                     Using equation (2.2)
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4. Upper Bound for MSE  of
0g

It is well known that G.M ≤  A.M which gives
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 Also , G Y k= −  ;      where 2
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Since the left hand side is less than unity, as 1& 0G G
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≤ >
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  Thus 0,k Y ∈                                                                                          (4.4)

 Further,
0Y k k+ =

⇒
0k k Y= −

⇒ 00k Y− ≥ 0k ≥Q  from (4.3)

⇒
0k Y≥                                                                                            (4.5)

Also
0k Y k Y Y≤ ⇒ − ≤                         from (4.4)

⇒ 20k Y≤                                                                                                 (4.6)

Combining (4.5) and (4.6) we get

, 20k Y Y ∈                                                                                             (4.7)

Substituting these limit of k and 0k we get from equation (3.2)
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Since the definition is positively skewed therefore we can write 03 >µ
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Further we may obtain from equation,
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If distribution is mesokurtic, β2 = 3

then,
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                                                          (4.10)

5. Bias of the Estimator
1g

Let, ( )12 2
x Xe x X e

X
−

= ⇒ = +   such that ( ) 02E e =                          (5.1)

Assuming population size large enough in comparison to sample size we may ignore
finite population correction factor (f.p.c) we obtain,
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from equation (1.4) we have,
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Substituting values of 2,y s and xy  from (1.5) and (5.1)
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6. The Mean Square Error (MSE) of Estimator
1g

The mean squaring error of the proposed estimator
1g  is given by squaring

equation (5.4) and taking expectation up to 1O
n
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 we get

( )2( )1 1MSE g E g G= −                                                  (6.1)
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                                                              (6.2)

7. Upper Bound for MSE of
1g

From (4.4) we have

0,k Y ∈         (7.1)

And from equation (4.7) we have

, 20k Y Y ∈                                                                                                      (7.2)

Also since it is well known that 0 . .G M A M≤ ≤ ,

therefore 0,G Y ∈                                                                                              (7.3)

Substituting these limits of k,
0k  and G, we get from equation (6.2);
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For positively skewed distribution 030µ > , 0ρ >  therefore,
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If distribution is mesokurtic, β2 = 3    then,
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                                                                (7.5)

Further we may obtain from equation,
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       If 021µ <                                 (7.6)

2Cx , being a stable quantity, may be known from previous experience, pilot

survey or literature and hence may be replaced by that valve say
0C  then,

( ) ( )2 2 4 1
1 01

nYMSE g C
n n

 +
≤ + 

−  
                                                 (7.7)

 which is the upper bound of MSE (
1g ).
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8. Empirical Example
 From the real primary data dealing with weight (Y) in kg and height (X) in
c.m. in a study of N=277 children between age group of 3 to 36 months, the required
value of population parameters are calculated. Further to study the property of proposed
estimator, random sample of size 30 was taken and required sample values calculated.

6.587726Y = , 68.23105X = , 2 6.691442S y =

2 156.989902Sx = , 26.029657S yx = , 2 0.154187Cy =

2 0.033721Cx = , 0.0579096Cyx = , 8.28540357730µ =

26.787132721µ = , 124.97607940µ = , 6.667286120µ =

2.8114393032β = , 6.069568621Gm = , 6.09678417414G =

64.86667x = , 6.09667y = , 2 6.374126sy =

2 145.291954sx =  , 23.782298syx = , 2 0.17148877cy =

2 0.03453014cx =   , 15.031577130µ = , 47.5857833921µ =

129.84728740µ = , 6.16165555620µ =  , 3.4200940252β =

5.59133710g = , 5.881337942781g =

( ) 0.2290924050MSE g = , ( ) 0.1159901681MSE g =

( ) 0.205048824940MSE g = , ( ) 0.088564412181MSE g =

 Relative efficiency of
1g  over

0g  is

( )
( )

MSE g0Efficiency= ×100
MSE g1

  = 197.5101933%

Relative efficiency of
1g over

0g  based on estimated MSE of
0g  and

1g

( )
( )

MSE g0Efficiency= ×100
MSE g1

  = 231.525078632%

9. Conclusions

(i)  we can easily see that ( )1MSE g   < ( )0MSE g  if 0
2 0

GCx
k Cy

ρ ≥ ≥  ,

which shows that
1g will be better than

0g  in the sense of having lesser mean square

error when variables y and x are positively correlated .
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(ii) A generalized class of estimators of geometric mean may be taken as gc
2

1 2

s xyg yc Xy

λ
α

 
  

= −     
  

 

                                                                                    (9.1)

        where α  and λ  are the characterizing scalars to be chosen suitably and
determined by minimizing mean square error ( )MSE gc .

 (iii) When y and x are positively correlated we may take λ  = -1,in (9.1) to get

( )1MSE g  < ( )0MSE g  and obtain following estimator ,

2
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xy
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  

= −     
  

 

                                                                                (9.2)

(iv) When y and x are negatively correlated we may take λ  = 1 in   (9.1) to get

1

MSE g
 
 
 ∗ 
 

 < ( )0MSE g  and obtain following estimator,

2

11 2

s xyg y
Xy

α

 
  ∗ = −     
  

 

                                                                                (9.3)

(v). It is clear that values of the proposed estimators
0g =5.5913371 and

1g =5.881338

are very close to exact and approximated population geometric means
6.069568621Gm =  and 6.09678417414G =  respectively having very small MSE's

and estimated MSE's are given by ( ) 0.2290924050MSE g = ,

( ) 0.1159901681MSE g = . ( ) 0.205048824940MSE g = , ( ) 0.088564412181MSE g = .

(vi) Relative and estimated relative efficiency of 1g which utilizes auxiliary
information is 197.5% and 231.5% respectively over estimator

0g  which does not

utilizes auxiliary information in the example under consideration.

(vii) Upper bounds of MSEs  of
0g  and

1g  are given as 14.6921009961 and

1.20139259602 showing that the upper bound of MSE is sharpened a lot by using
auxiliary information and becomes quite closer to the actual value of MSE.
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(viii) It has been shown that under suitable conditions ( ) ( )1 0MSE g MSE g<  showing

that efficiency of the estimator
0g  of population geometric mean of variable under

study y has been improved by utilizing information on auxiliary variable x in
1g which

is positively correlated with y variable.
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