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Abstract
 Two reliability models for a system of non-identical units – one is original and the
other is a substandard unit (called duplicate unit) are analyzed probabilistically in detail by using
regenerative point technique. There is a single server who comes immediately to do inspection
and repair whenever needed. On the failure of original unit, server inspects the operative
duplicate unit to see whether the unit is capable of performing the desired function well or not. If
duplicate unit is not capable to do so, the operation of the system is stopped and server starts
repair of the original unit immediately. However, no inspection is done at the failure of the
duplicate unit as the original unit alone is capable of performing the given task well. In model 1,
priority to repair the original unit is given in case system fails completely and duplicate unit is
already under repair whereas in model II there is no such priority. The failure and repair times of
each unit are assumed to be independent and uncorrelated random variables. The distributions of
failure time of the units are taken as negative exponential while that of repair and inspection
times are general. Graphs are plotted to compare some econo-reliability measures of the models
such as MTSF, availability and profit for a particular case.

Keywords: Non-identical Parallel Units, Inspection, Priority to Repair, Regenerative Point and
Probabilistic Analysis.

1. Introduction
Numerous reliability models for standby systems with different repair

mechanism have been proposed by the researchers including Mishra and Balagurusamy
[1976], Chiang and Niu [1981], Gopalan and Naidu [1982], Goel et al. [1985], Singh
[1989], Gupta and Chaudhary [1994], Tuteja and Malik [1994] under the assumptions
that

(i) System has identical unit(s) in cold standby.
(ii) No priority to repair a unit over the other unit is given.
(iii) Each unit is capable of performing the given task well.
(iv) Repair is done without stopping the operation of the system.

 But due to high cost of identical units, the non-identical (substandard) unit(s)
may be taken up for parallel working in the system. Each unit is capable of performing
some set of functions but their degree of reliability and desirability may differ from unit
to unit. Also, some time it becomes necessary to give priority to one of the units in
repair as compared to other in order to increase the reliability and availability of the
system. A good example of the situation can be cited of a system consisting of one unit
of an electric transformer and the other unit as a generator. The priority to repair may
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be given to the transformer rather than generator due to high cost of operation of the
later. Further, it is not always possible by a substandard unit to perform the given task
alone under excessive load. In such a case inspection can play a key role to see whether
the unit is capable of performing the desired function or not. Recently Kadyan et al.
[2004] and Chander [2005] have analyzed reliability models of non-identical units with
priority by keeping one unit in cold standby.

 Keeping the above facts in view, an attempt is made to develop the reliability
models for a system of non-identical units-one is original and the other unit as duplicate
(called sub-standard unit). Repair facility is provided immediately whenever needed.
On the failure of original unit, server inspects the duplicate unit to see whether the unit
alone is capable of performing the given task well or not. If duplicate unit is not capable
to perform the given task, the operation of the system is stopped and server starts the
repair of the original unit immediately. However, system may work with full capacity
when it has original unit for working at the failure of duplicate unit. The system fails
completely at the failure of both units. In model 1, priority to repair the original unit is
given when system fails completely and duplicate unit is already under repair whereas
in model II, there is no such priority. The failure, repair and inspection times of each
unit are assumed to be independent and uncorrelated random variables. The failure time
distributions of units follow negative exponential with different parameters while that
of repair and inspection times are general. It is assumed that switches and repairs are
perfect. Regenerative point technique is adopted to derive the expressions for some
measures of system effectiveness such as mean sojourn times, mean time to system
failure (MTSF), availability, busy period of the server and expected number of visits by
the server. Expression for profit incurred to each model is also derived by using these
parameters. Graphs are plotted to make a comparison of MTSF, availability and profit
of the models for a particular case.

2. Notations
E0   State of the system at t=0
E   Set of regenerative states.
O   Original unit is operative.
D(O)/DOUi  Duplicate unit is operative/Operative but under
                                            inspection.
OFur/OFwr/OFUR Original unit is failed and under repair/waiting for

repair/under repair continuously from previous state
DFur/DFwr Duplicate unit failed and under repair/waiting for repair
D (O) Duplicate unit is good but not working
λ/λ1   Failure rate of original unit/duplicate unit
g(t)/G(t), g1(t)/G1(t)           pdf / cdf of repair times of original and duplicate units
a/b Probability that duplicate unit is capable of performing the

given task or not operative is possible/non-possible by the
server

h(t)/H(t)                pdf and cdf of inspection time of the server.
qij(t), Qij(t) pdf and cdf of first passage time for regenerative state i to a

regenerative state j or to a failed state j without visiting any
other regenerative state in (0, t].
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qij.k(t), Qij.k(t) pdf and cdf of first passage time for regenerative state i to a
regenerative state j or to a failed state j visiting state k once
in (0,t].

φi(t) cdf of the first passage time from regenerative state i to a
failed state.

Ai(t) Probability that the system is up at instant t, given that
system entered into the regenerative state i at t=0.

Bi(t) Probability that the server is busy at an instant t given that
system entered into the regenerative state i at t=0.

Ni(t) Expected number of visits by server in (0,t]/E0 = Si∈E.
Mi(t) Probability that the system, initially up in the regenerative

state i, is up at time t without passing through any other
regenerative state.

mij Contribution to mean sojourn time in state Si when the
transition is to Sj = )(~ oQij− = )(* oq ji−

µi Mean sojourn time in state Si ∈ E.
LST Laplace Stieltjes Transform
LT Laplace Transform
∼(**) Symbol for Laplace Stieltjes Transform e.g

∫
∞

−=
0

)()(~ dttqesQ ijij
st

   Symbol for Stieltjes Convolution
©   Laplace Convolution
pdf   Probability density function.
cdf   Cumulative distribution function.

3. Analysis for Model I
Here, priority to repair the original failed unit is given when system fails

completely and duplicate unit is already under repair. Transition diagram for the model
is shown in Fig.1.

3.1 States of the System
The following are the possible transition states of the system:
S0 = (O, D(O)) ,S1 = (OFwr, DOUi),S2 = (OFur, D(O))

 S3 = (OFur, D (O)),S4 = (OFur, DFwr),S5 = (OFUR, DFwr)
S6 = (O, DFur)
The states S0,  S1,  S2,  S3,  S4,  S6 are regenerative states while state S5 is non-

regenerative.

3.2 Mean Time to System Failure
φ0(t) = Q01(t) φ1(t)+ Q06(t) φ6(t)

φ1(t) = Q12(t) φ2(t)+ Q13(t) φ3(t)+Q14(t)

φ2(t) = Q20(t) φ0(t)+ Q25(t)
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φ3(t) = Q30(t) φ0(t)

φ6(t) = Q60(t) φ0(t)+ Q64(t)                                                                        (1)
Letting t → ∞, using Qij(∞) = pij, we get following transition probabilities

p01 =
1λ+λ

λ
,  p06 =

1

1

λ+λ
λ

,  p12 = )(*ah 1λ ,  p13 = )(*bh 1λ

p14 = )(*h1 λ−  ,  p20 = )(*g 1λ ,  p25 = )(*g1 1λ−                              (2)

p26.5 = )(*g1 1λ− ,  p30 = p46 = 1,  p60 = )(*g1 λ ,  p64 = )(*g1 1 λ−
It can be verified that

p01+p06 = p12+p13+p14 = p20+p26.5 = p34 = p46 = p60 +p64 = 1
The mean sojourn times µi in the state Si are

10

1)(0 λλ
µ

+
=>= ∫

∞

dttTP ,
θ+λ

=µ
1

1
1

,
α+λ

=µ
1

2
1

,
α

=µ
1'2 ,

43
1

µ=
α

=µ ,
1

6
1

α+λ
=µ                                                             (3)

The unconditional mean time taken by the system to transit to any regenerative state
 Sj ∈ E when it is counted from epoch of entrance into Si ∈ E is

  mij = ∫ )t(tdQij

Thus
µ0 = m01+m06,µ1 = m12+m13+m14, µ2 = m20+m25,µ'2 = m20+m26.5,

µ3 = m30,µ4 = m46, µ6 = m60+m64                                              (4)
Taking LST of relations 1 and solving for 0

~
φ (s) and using this we get

MTSF (T1) = 11110s
D/Ns/))s(~1(Lim =φ−

→
                                         (5)

where N11 = µ0 + µ1p01 + µ2p01p12+ µ3p01p13+ µ6p06 and
 D11 = 1-p01p12p20 - p01p13- p06p60

3.3 Availability Analysis
A0(t) = M0(t) + q01(t) © A1(t) + q06(t) © A6(t)                                          (6)
A1(t) = M1(t) + q12(t) © A2(t) + q13(t) © A3(t) + q14(t) © A4(t)
A2(t) = M2(t) + q20(t) © A0(t) + q26.5(t) © A6(t), A3(t) = q30(t) © A0(t)
A4t) = q46(t) © A6(t),  A6(t) = M6(t) + q60(t) © A0(t) + q64(t) © A4(t)

where
M0(t) = e-(λ+λ1)t dt, M1(t) =e-λ1t H(t) dt,M2(t) =  e-λ1t G(t) dt,M6(t) = e-λt G1(t) dt

Taking LT of relations (6) and solving for A0*(s) and by using this, we get steady-state
availability of the system as:

A10(∞) = 12120s
D/NLim =

→
(s)* sA0                                                       (7)

 N12 = µ0p60+µ1p01p60 + µ2p01p12p60 + µ6(p01p12p26.5 + p01p14+p06) and
 D12 = µ0p60+(µ1+µ2

'p12+µ3p13)p01p60+µ4[p64(p01p12p26.5+p06+p01p14)
+p60p01p14]+ µ6(p01p12p26.5 + p06 +p01p14)
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3.4 Busy Period Analysis
B0(t) = q01(t) © B1(t) +q06(t) © B6(t)
B1(t) = W1(t)+q12(t) © B2(t)+q13(t) © B3(t)+q14(t) © B4(t)
B2(t) = W2(t)+q20(t) © B0 (t)+q26.5(t) © B6(t)
B3(t) = W3(t)+q30(t) © B0 (t)
B4(t) = W4(t)+q46(t) © B6 (t)
B6(t) = W6(t)+q60(t) © B0 (t)+q64(t) © B4(t)                                             (8)
where
W1(t) = e-λ1t H (t) ,W2(t) = e-λ1t G (t) + (λ1 e-λ1t ©1) G (t)
W3(t) =G (t), W4(t) = G (t) ,  W6(t) = e-λt G1 (t)

Taking LT of relations (8) and solving for B0*(s) and by using this, we get in the long
run the time for which the system is under repair as

B10 = 12130s
D/NLim =

→
(s)* sB0                                                              (9)

where N13 =   (W1+W2p12+W3p13)p01p60 +W4[p64(p01p12p26.5+p06)+
                           p01p14]+W6(p01p12p26.5+p01p14+p06) and

D12 is already specified.

3.5 Expected Number of Visits by the Server
N0(t) = Q01(t) [1+N1(t)] +Q06(t) [1+N6(t)]                                        (10)

N1(t) = Q12(t) N2(t)+Q13(t) N3(t)+ Q14(t)  N4(t)

N2(t) = Q20(t) N0(t)+Q26.5(t) N6(t),  N3(t) = Q30(t) N0(t)

N4(t) = Q46(t) N6(t), N6(t) = Q60(t) N0(t)+Q64(t) N4(t)

Taking LST of relations (10) and solving for oN~ (s) and by using this, we get expected
number of visits per unit time as:

 N10= 12140s
D/N~Lim =

→
(s)Ns 0                                                                 (11)

 where N14 = p60 and D12 is already specified.

4. Analysis for Model II
Here no priority to repair the original unit is given. Transition diagram for the

model is shown in figure 2.

4.1 States of the system
The states S0,  S1,  S2,  S3,  S4,  S5,  S6 are same as defined for model I while the

remaining state S7 = (OFwr, DFUR).
The states S0,  S1,  S2,  S3,  S4,  S6 are regenerative states while S5 and  S7 are non-
regenerative states.

4.2 Mean Time to System Failure (MTSF)
The MTSF of this model is the same as that of model I.

4.3 Transition Probabilities and Mean Sojourn Times
The expression for some of the transition probabilities and mean sojourn times are

same as derived for model I while the remaining are
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p67 =
1λ+λ

λ
= p62.7   with    p60+p62.7 =1

and 52
1' µ
α

µ == ,
1

6
1'

α
µ = ,  where µ6 = m60 + m65

4.4 Availability Analysis
The expressions for A0(t), A1(t), A2(t) A3(t), A4(t) are same as defined in

model I while the remaining is
A6(t) = M6(t) + q60(t) © A0(t) + q62.7(t) © A2(t)

 Steady-state availability is given by
A20(∞) = 22 2200

 sA *(s) /
s
Lim N D

→
=                                                 (12)

 N22 = µ0p60+µ1p01p60 + µ2p01p12p60 + µ6(p01p12p26.5 + p01p14+p06) and
              D22 = µ0p60+(µ1+µ2

'p12+µ3p13)p01p60+µ4[p64(p01p12p26.5+p06+p01p14)
+p60p01p14]+ µ6(p01p12p26.5 + p06 +p01p14)

4.5 Busy Period Analysis
The expressions for B0(t), B1(t), B2(t), B3(t), B4(t) are same as defined in model I

and the remaining is
B6(t) = W6(t)+q60(t) © B0 (t)+q62.7(t) © B2(t) , where
W6(t) = e-λt G1 (t) + (λe-λt © 1) G1(t)

Now proceeding in similar way as in model I, the time for which the system is under
repair to given by

B20 = 222300
/(s)*sB DNLim

s
=

→
                                                             (13)

where N23 =   (W1+W2p12+W3p13)p01p60 +W4[p64(p01p12p26.5+p06)+
                          p01p14] +W6(p01p12p26.5+p01p14+p06)
and D12 is already specified.

4.6 Expected number of visits by the server
The expressions for N0(t), N1(t), N2(t), N3(t), N4(t)  are same as defined in   model I

while the remaining equation is:
N6(t) = Q60(t) N0(t)+Q62.7(t)  N2(t)

The expected number of visits per unit time is given by
N20 = 222400

/(s)N~s DNLim
s

=
→

                                                                 (14)

where N24 = (1-p26.5 p62.7) and D22 is already specified.

5. Profit Analysis
The expected profit incurred to the system models in (0,t] are given by:

 P1 = K0A10 – K1B10 – K2N10
 P2 = K0A20 – K1B20 – K2N20                                                                        (15)
where    K0 = Fixed revenue per unit up time of the system

K1 = Fixed cost per unit up time for which server is busy
K2 = Fixed cost per unit visit by the server
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Particular Case
Suppose that  g(t) = αe-αt,   g1(t) = α1e-α

1
t,   h(t) = θe-θt

By using the non-zero element pij, we get the following results

For model I

MTSF (T1) =
11

11

D
N

,                         Availability (A10) =
12

12

D
N

,

Busy Period (B10) =
12

13

D
N

,  Expected no. of visits (N10) =
12

14

D
N

For model II

MTSF of this model is same as that of model I.

Availability (A20) =
22

22

D
N

,                      Busy Period (B20) =
22

23

D
N

,

Expected no. of visits (N20) =
22

24

D
N

, where

N11 =  (λ+α1)[(λ1+α)(λ+λ1+θ+bθ)+aθλ]+λ1(λ1+θ)(λ1+α)
D11 =  (λ1+θ)(λ1+α)[(λ+λ1)(λ+α1)-λ1α1]-θλ(λ+α1)[aα-b(λ1+α)]
N12 = α(α1+λ1)[(λ1+θ)(λ1+α) +λ(λ1+α+aθ)]
D12 = α1(λ1+α)[α(λ+λ1+θ)+λ(θ+λ1)]+λ1(λ+α)[λ(aθ+λ1+α)+(λ1+θ)(λ1+ α)]
N13 = λα1 (λ1+α)(α+θ)+(λ1+θ)(λ1+α)(λ+λ1α)+(λ1+α)[λλ1(λ+α1)+α]+aθλλ1(λ+α)
N14 = αα1(λ+α1)(λ+λ1)(λ1+θ)(λ1+α)
N22 = αα1[(λ1α1+λα1+αα1)(λ+λ1+θ)+λ{aθ(λ+λ1)+λλ1+λ1(λ1+θ)}

 +λ1{aθ+λ1+α+(λ1+θ)(λ1+α)}]
D22=αα1(λ1+θ)[αλ1+α1(λ1+α)]+αα1[αλ(λ+λ1)+ (λ1+α){λ2+α1(λ+λ1)}]

+λα1(λ1+α)[aθ(λ+α1)+λλ1(λ1+θ+1)]+λα1(λ1+bθ)[αλ+α1(λ1

α)]+αλ1 (λ+α1)[(λ1+α)(λ+λ1+θ)+αθλ]
N23 = λα1 (α+λ+bθ)[λα+α1(α+λ1)]+λα1(λ1+α)[λ1(λ1+θ+λ)+aθ(λ+α1)]

 +λ1α(λ+α1)[(λ1+α)(λ+λ1+θ)+aθλ]
and
 N24 = (αα1)(λ+λ1)(λ1+θ)[αλ+α1(α+λ1)]

6. Conclusion
The mean time to system failure of both the models is same as shown

graphically in figure 3. It is analyzed that MTSF decreases with the increase of failure
rates  and 1 for fixed values of other parameters , 1, , a and b. Figures 4 and 5
depict the behavior of availability of models w.r.t. failure rate . The availability of the
model I is more than that of the model II but it decreases with the increase of failure
rates  and 1. Further if repair rate  increases, the availability of the models increases
rapidly. The numerical results obtained for a particular case also reveal  that profit
difference (P2-P1) keeps on decreasing with the increase of failure rate  for 1 = 0.04,

1 = 0.1,  = 0.2,  = 0.6, a = 0.3 and b = 0.7. Again, if repair rate  increases, model II
becomes more profitable. Hence, finally we conclude that system models become less
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profitable when probability of performing given task by the duplicate unit is very small
and priority to repair the original unit is given.
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• Regenerative point    Up-state               Single unit working state

 Failed state                Non-working state

Graphical Study

State Transition Diagrams

       S6 λ1        S0  g(t)        S3

        g1(t)
       g(t)

     g(t)               bh(t)

λ          g(t)
       S5 λ

λ1

          S2    ah(t)
     S4 λ1                  S1

Fig. 1: Model I
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Fig. 3

Fig. 4 (for Model-I)
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Fig. 5 (for Model-II)


