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Abstract
Consider a population which contains graphical relationship between two variables.

There are two graphs of vertices and edges, each edge contains a length value and linked with
two vertices (nodes). Mean length of all edges is unknown which is a problem to explore. This
paper takes into account two planer graphs in particular, one of them is under main interest and
other is an auxiliary graph. A sample of some nodes is drawn by simple random sampling
(SRSWOR) along with a laid down node-sampling procedure and a class of estimators is
proposed to estimate the mean length of an edge of  planer graph using the structure of other
planer graph as an auxiliary source of information. Optimal properties of estimators are derived
and results are numerically supported with the calculation of length estimates and confidence
intervals.

Keywords : Graph, Planer Graph, Edge, Vertices(nodes), Simple Random Sampling without
replacement (SRSWOR), Class, Estimator, Bias, Mean Squared Error (MSE), Optimum Choice,
Confidence intervals.

1. Introduction
Consider a graph G2 = (V, E, ) where set V consists of the five vertices

V1, V2, V3, V4, and V5; set E has eight edges (none of which is in V) like
          V = {V1, V2, V3, V4, V5 }  ;     E =  {e12, e13, e14, e23 e24, e25, e35 ,e45 }
The  is a set containing the relationship between V and E in the form of mapping.
Likewise, define another graph G1 = (V’, E’, ’) where 'V   and 'E consist of

'V   = { }'5'
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'
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1 V,V,V,V,V 'E = { }'
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'
12 ,,,, eeeee

and ' has relationship of  V' and E',
Note 1.1: The graph G2 (or  G1) is said to be a planer graph if there exists some
geometric representation of G2 (or G1) which can be drawn on a plane such that no two
of  edges  can intersect to each other [see Deo(2001)].  Detail description of planer
graph is in Parson (1971). Some useful research contributions to planer graphs are due
to Frederickson (1988), Gazot and Reif (1990), Shih et al. (1990), Grigni et al. (1995),
Osthus et al. (2003), Aleksandrav et al.(2007), etc.

 Fig 1 is showing a structure of two linked planer graphs G1 and  G2 (with a
common vertex 2V = '

2V  ). Suppose G1 and  G2 together constitute a population of

vertices (nodes) (V, 'V ) and edges (E, 'E ). Overall average length of edges in G1 is
assumed known but overall mean edge length is not known for G2. We want to estimate
this using mean edge information of graph G1 and with the help of a random sample of
some nodes drawn according to following node-sampling procedure.
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Fig. 1: A structure of two linked planer graphs G1 and G2

1.1 Node- Sampling Procedure
Suppose G1 and  G2 both individually have equal nodes M in form of Vi and

'
iV  (i=1,2,3,………M).

  Step I: Construct node-edge (NE) table for the population of M units. Common
vertex represents both in G1 and G2 with the respective group edges (like V2

in G2 = '
2V  in G1).

Step II : Construct false-node-edge (FNE) matrix for G1 and G2  separately assuming
that  (i, j)th element of matrix is unity if the jth edge is associated (or linked)
with ith vertex (node), otherwise  zero. Some false edges are added in FNE
matrix in order to maintain equal number of edges in both G1 and G2, by the
diagonal-repetition of edges of same group on priority basis. If  main
diagonal is full, the very next upper diagonal is taken into consideration for
the false edge creation until equality of edges in G1 and G2  is met out. At
the end, total number of edges in G1 and G2  are same,  equal to N, shown
below as an example for Fig. 1 :

Graph G1
(Auxiliary Source)

Graph G2
(Main Interest)
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Graph G2 Graph G1

Vertex Edge Vertex Edge

V1 e12, e13, e14
'

1V '
14

'
12 e,e

V2 e12, e23, e24, e25
'
2V '

23
'
12 e,e

V3 e13, e23, e35
'
3V '

35
'
23 e,e

V4 e14, e24, e45
'
4V '

45
'
14 e,e

V5 e25, e35, e45
'
5V '

45
'
35 e,e

Table 1: Node-Edge Table (NE Table) For Fig. 1
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Table 2: FNE Matrix for Graph G2 (FNEM)
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Table 3: FNE Matrix for Graph G1 (FNEM)

Edges False edges

False Edges
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 For the ith node of FNEM, row-wise mean-length edge is denoted by ie  and
'
ie  based on their counts ni  and '

in  respectively for graph G1 and  G2. The overall
population means are:

∑
=

=
N

i
ii en

N
e

1

)2( 1      for graph G2

           (1.1)

∑
=

=
N

i
ii en

N
e

1

'')1( 1      for graph G1

 where ∑∑ ==
i

i
i

i nnN '     in FNEM

Step III : Draw a sample of n nodes (n < M) from graph G2 by SRSWOR  and choose
the corresponding similar number of nodes in G1. For example, if V3 from
G2 appears then '

3V  of G1 appears automatically, in the sample.

Step IV : For  any  ith sampled node (vertex), pickup ith row of FNEM of G2 and G1
both. Select very first edge from left among all non-zero elements of the
column, say j, of  ith row separately for both  G1 and G2. This provides two
edge-lengths eij and e'

ij related to the ith node for sample.

Step V :  Continue the procedure laid down in step IV, for all nodes i (i=1,2,3….n),
appeared in the sample using SRSWOR.

 The end of Node Sampling procedure provides a random sample of n edge
lengths, drawn from N edges, in the form of sie  and '

sie related to ith node.

The sample mean of edge lengths are :

∑
=

=
n

i
sis e

n
e

1

)2( 1       for graph G2

                                                                                                                                (1.2)

∑
=

=
n

i
sis e

n
e

1

')1( 1       for graph G1

2. A Class of Edge Estimators
 Deriving a motivation from Singh and Shukla (1987, 1993),  Shukla et al.

(1991) and Shukla (2002), assume the mean length
)1(

e  for G1 is   known ;
)2(

e  for G2

is unknown and under target of estimation. The discussion over  variable of  main
interest and use of auxiliary information, for estimation purpose, is  in Sukhatme et al.
(1984), Singh & Choudhary  (1986), Cochran  (2005) etc.
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Using equations (2.1), (2.2), (2.3), the proposed class of edge-estimators eM   is
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 where A = (k-1)( k -2);   B = (k -1)( k -4);  C = (k -2)( k -3)(k -4)

 The term k is a suitably chosen positive constant ( 0 < k <  ).

Note 2.1: The class (2.4) is close to the structure of factor-type estimator
discussed by Singh and Shukla (1987), Shukla (2002). Different graphical structures
which a population may contain, are described in Dev (2001).

Note 2.2: The (2.4) contains an unknown parameter k, whose different choices generate
a series of mean-edge estimators. Therefore, it could be looked upon as a class of edge-

estimators to estimate unknown
( )2

e .

2.1 Special Estimators
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3. Setting Approximations
Suppose large number of nodes and edges are linked in a population of  two

planer graphs G1 and G2, a large sample of n vertices is drawn by node-sampling
procedure described in section 1.1. For any two small positive numbers r1 and r2, ( |r1| <
1, |r2| < 1 ), the approximation is [see Cochran (2005)]
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Note 3.1: Symbols { }2)1(
eS , { }2)2(

eS  are population mean squares of  N edges of graphs
G1 and  G2 as described in FNE matrices. The ( )⋅V  denotes variance and

( )⋅E  denotes expectation of the estimates based on sample n.

Moreover, { } ( ){ } { } ;
2)1(212)1(

−
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−

= eSC ee    are coefficients of
variation of N edges in both the FNEM .Further, ρ  denotes correlation
coefficient between N edges in FNEM.

Remark 3.1: The (2.1), (2.2) and (2.3) could be expressed in the approximate  form
using (3.1) as
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Theorem 3.1: Using (3.1) and remark 3.1 the class of estimators (2.4) could be
expressed in the approximate form
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Proof : Using (3.1) and remark 3.1, one can express class eM  of (2.4)
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Assume  the term ( ) jr1
*β   very small when 2>j , therefore,  ignore  all terms  in

expansion ( ) 1
1

*1 −
+ rβ  for 2>j ,  we get[see Sukhatme et al. (1984), Singh and

Choudhary (1986), Cochran (2005)]
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Hence the theorem .

Theorem  3.2 : Bias of the proposed class of estimators eM  is
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Proof : Let ( ).B  denotes the bias, then using theorem 3.1 :
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Using results in (3.2) to (3.5) and substituting

( ) 0. 21 =ji rrE   when 0,1,2,3...ji,;3ji =≥+ [see Cochran (2005)]            (3.6)
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we get

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 21**21***2















 −

−−





 −

−+= eeee CC
Nn

nNC
Nn

nNeME ραβαββ

( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ]21**21***22
eee CCC

Nn
nNee ραβαββ −−−






 −

+=

Therefore, the bias is
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Hence the theorem.

Remark  3.2 : The class eM  contains a sub-class of unbiased estimators if
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Proof : Substituting ( ) 0=eMB ( )( ) ( ) ( ) 02121* =−⇒ eee CCC ρβ and hence the  result.
Remark  3.3 : The remark 3.2 generates an equation in terms of A, B, C, f and V

( ) ( ) 0221 =+−+−+ CVBfVfAV δδ                              (3.7)
which provides a necessary condition for obtaining unbiased estimators in the class, up
to the first order of approximation, by suitable choices of k. The (3.7) is a cubic
equation in k which gives at most three values of k for which the bias is zero. One can
chose the useful value of k related to lowest m.s.e.

Theorem  3.3 : Mean squared error of estimator eM  is
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Remark  3.4 : Some special cases related to bias and m.s.e. are
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4. Optimum Choices of k
               Expression of mean square error of the class depends on parameter *P  which
is a function of k . One can obtain the appropriate choice of *P  subject to condition
the mean squared error is minimum.

Theorem 4.1 :  The minimum mean squared error  occurs when
VP −=*

Proof : Differentiating ( )eMMSE of theorem 3.3 with respect to *P  and equating to
zero,

( )[ ] 0* =eMM
dP

d ( )( ) ( )( ) ( )( ) 02121* =+⇒ eee CCCP ρ

( )( )
( )( ) V

C
P

e

−=−= 1

2
e* Cρ                                  (4.1)

 Hence the theorem.

Remark 4.1  : The optimality condition (4,1) provides an equation,
[ ] [ ] 02 11 =+++−−+ CfVBfVfVA δδ                                      (4.2)

which is  cubic  in term of parameter k  and for known values of f and V , there are at
most three values of k  for which the m.s.e. could be optimized (minimized).

Remark 4.2 : Let '
1k , '

2k and '
3k   be three values for which ( )eMMSE  is minimum

using equation (4.2).The best choice among them is,
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( ) ( ) ( )[ ]'
3

'
2

'
1

,,'
kekekeopt MBMBMBMink =                                        (4.3)

5. Numerical Illustrations
Consider graphical population, described in Fig. 2, containing G1 and G2. Both

are planer graphs, G2 is of main interest, G1 an auxiliary source. Both are related to each
other by a common vertex ( )'

11 VV = , therefore, it is worth to assume a correlation
between them. Aim is to estimate an average edge length of G2 using the known
information of edges in G1, with a sample drawn by node sampling procedure. The total
edges in FNEM are N=32 for both graphs, total vertices are M=9 and sample size is
n=4.

For Graph G1 For Graph G2

S. No.

Sample
Vertices Sample Edge ( )1

se Sample Edge ( )2
se

1 ( )4321 ,,, VVVV

19,14

15,15,
'
14

'
13

'
12

'
12

==

==

ee
ee 15.75

8,8
6,6,

1413

1212

==
==

ee
ee 7.00

2 ( )5421 ,,, VVVV

12,19

15,15,
'
15

'
14

'
12

'
12

==

==

ee
ee 15.25

9,8
6,6,

1514

1212

==
==

ee
ee 7.25

3 ( )5432 ,,, VVVV

12,19

14,15,
'
15

'
14

'
13

'
12

==

==

ee

ee 15.00

9,8
8,6,

1514

1312

==

==

ee
ee 7.75

4 ( )6532 ,,, VVVV

14,12

14,15,
'
46

'
15

'
13

'
12

==

==

ee

ee 14.00

8,9
8,6,

4615

1312

==

==

ee
ee 7.75

5 ( )7543 ,,, VVVV

18,12

19,14,
'
47

'
15

'
14

'
13

==

==

ee

ee 15.75

9,9
,8,8

4715

1413

==

==

ee
ee 8.50

6 ( )8654 ,,, VVVV

17,14

12,19,
'
58

'
46

'
15

'
14

==

==

ee

ee 15.50

6,8
,9,8

5846

1514

==

==

ee
ee 7.75

7 ( )9765 ,,, VVVV

16,18

14,12,
'
59

'
47

'
46

'
15

==

==

ee

ee 15.50

5,9
,8,9

5947

4615

==

==

ee
ee 7.75

8 ( )9876 ,,, VVVV

16,17

18,14,
'
59

'
58

'
47

'
46

==

==

ee

ee 16.25

5,6
9,,8

5958

4746

==

==

ee
ee 7.00

Table 4:  Sample Edge Description for N=4 Drawn as per Node Sampling Procedure
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2V

3V

5V

6V
7V

'
5V

'
7V '

8V

'
2V

'
4V

'
3V

'
6V

'
9V

1,1 VV

8V
9V

4V

11

             17
                      12

              18
 17

  16
  14  13

Graph G1

                                        16           19          12          15

           15               14

 6      8
                     8

          9         9

4
            5
           7

Graph G2       3
                                     8              9                         6                       5

        5                                2 7

Fig. 2: Graphical population containing G1 and G2

The FNE matrices for G1 and  G2, as per Fig. 2, are given in the Tables 5 and 6

respectively.



Journal of Reliability and Statistical Studies, June 2010, Vol. 3(1)24

 N
od

es
Edges

10010000000000
11001000000000
01100100000000
00100010000000
00011001101000
00000111010100
00000000100010
00000000010001
00000000001111

'
9

'
8

'
7

'
6

'
5

'
4

'
3

'
2

'
1

'
89

'
78

'
67

'
59

'
58

'
47

'
46

'
45

'
35

'
24

'
15

'
14

'
13

'
12

V
V
V
V
V
V
V
V
V

eeeeeeeeeeeeee

        False edges

000.14200000000000000
333.13300000000000000
333.15300000000000000
500.15200000000000000
600.14500000000000000
333.15600000000001000
000.16300000000000100
000.15300000000000010
000.15500000000000001

length
edge'

89
'
78

'
67

'
59

'
58

'
47

'
46

'
45

'
35

'
23

'
15

'
14

'
13

'
12

Mean
counteeeeeeeeeeeeee

Total   32

Table 5:  FNE Matrix for G1
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N
od

es
    Edges

.

.
1001000000000000
1100100000000000
0110010000000000
0010001000000000
0001100110001000
0000011101100100
0000000011010010
0000000000110001
0000000000001111

9

8

7

6

5

4

3

2

1

89786759584746453534242315141312

V
V
V
V
V
V
V
V
V

eeeeeeeeeeeeeeee

             False edges

000.620000000000000000
000.530000000000000000
333.530000000000000000
500.620000000000000000
000.650000000000000000
167.660000000000000000
250.740000000000000000
333.630000000000000000
750.740000000000000000

length
edge89786759504746453534242315141312

Mean
counteeeeeeeeeeeeeeee

Total      32
Table 6:  FNE Matrix for G2
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GRAPH  G2 GRAPH G1

Node Edges Length False
edge

Len-
gth

Average
length Node Edges Length False

edge Length Average
length

1V
15,14

,13,12

ee
ee 6,8,

8,9 - - 7.750 '
1V '

15
'

,14

'
,13

'
,12

ee

ee 15,14,
19,12

'
12e 15 15.000

2V
24

,23,12

e
ee 6,9,

4 - - 6.333 '
2V '

24
'

,12 ee 15,16 '
13e 14 15.000

3V
35,34

,23,13

ee
ee 8,9,

5,7 - - 7.250 '
3V '

35
'

,13 ee 14,15 '
14e 19 16.000

4V

47,46

,4534

,24,14

ee
ee
ee 8,4,

5,3,
8,9

- - 6.167 '
4V

'
47

'
,46

'
,45

'
,24

'
,14

e

ee

ee 19,16,
13,14,

18
'
15e 12 15.333

5V

59

,58,45

,35,15

e
ee
ee 9,7,

3,6,
5

- - 6.000 '
5V

'
59

'
,58

'
,45

'
,35

'
,15

e

ee

ee 12,15,
13,17,

16
- - 14.600

6V ,67,46 ee
8,5 - - 6.500 '

6V
'
67

'
,46 ee

14,17 - - 15.500

7V
78

,67,47

e
ee 9,5,

2 - - 5.333 '
7V

'
78

'
,67

'
,47

e

ee 18,17,
11 - - 15.333

8V
89

,78,58

e
ee 6,2,

7 - - 5.000 '
8V

'
89

'
,78

'
,58

e

ee 17,11,
12 - - 13.333

9V 89,59 ee
5,7 - - 6.000 '

9V '
89

'
,59 ee 16,12 - - 14.000

Table 7:  Edge Vertex  Description of Population

S.No. Parameter Value S.No. Parameter Value
1 M 9 7 ( )( )22

eC 0.115662

2 N 4 8 ( )( )21
eC 0.025426

3 ( )2
e 6.3125 9 ( )2

eC 0.340092

4 ( )1
e 14.9375 10 ( )1

eC 0.159457

5 ( )( )22
eS 4.608871 11 ρ 0.130111

6 ( )( )21
eS 5.673387 12 V 0.277502

Table 8:   Population Parameter Description

S.No Value of k Bias [] ik.  at k=ki MSE [] ik.  at k=ki

1 =1k 2.001256 [ ] =
1keMB -0.000115 [ ] =

1keMMSE 0.115192
2 =2k    -- [ ] =

2keMB     -- [ ] =
2keMMSE     --

3 =3k    -- [ ] =
3keMB     -- [ ] =

3keMMSE     --

Table 9:  k-Value When Estimator is Unbiased (With MSE)
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 Using (3.7), the unbiased estimator is achievable in the class when values of k
are according to  Table 9.
S.No Value of 'k Bias [] '. ik  at k= '

ik MSE [] '. ik  at k= '
ik

1 ='
1k 2.026643 [ ] ='

1keMB -0.000185 [ ] ='
1keMMSE 0.114661

2 ='
2k      -- [ ] ='

2keMB       -- [ ] ='
2keMMSE     --

3 ='
3k       -- [ ] ='

3keMB        -- [ ] ='
3keMMSE      --

Table 10:  k -Value for  Optimum MSE ( )eM
  Using  (4.2), the optimum estimator could be obtained in the class when values
of k  are according to Table 10.

 k Bias ( )eM MSE ( )eM V ( )eM

k =1 [ ] =1eMB 0.0014 [ ] =1eMMSE 1.0286 [ ] =1eMV 1.0285

k=2 [ ] =2eMB -0.0014 [ ] =2eMMSE 0.9911 [ ] =2eMV 0.9910

k=3 [ ] =3eMB -0.0002 [ ] =3eMMSE 1.0135 [ ] =3eMV 1.0134

1kk = =2.001256
(unbiased)

[ ] =
1keMB -0.0001 [ ] =

1keMMSE 0.1152 [ ] =
1keMV 0.1151

'
1kkk opt == =2.026643

(opt MSE)

[ ] ='
1keMB -0.0002 [ ] ='

1keMMSE 0.1147 [ ] ='
1keMV 0.1147

Table 11:  Calculation of MSE ( )eM for various values of k

where variance is computed by ( ) ( ) ( )[ ]2... BaisMSEV −= .

N=32,     M=9,    n=4,
( )1

e  =14.9375,
( )2

e  =6.3125  (which is actually unknown)

Sample
Means

Estimate eM

when K=1
Estimate eM  when k=3S.No Sample

Vertices
( )1
se

( )2
se ( )3eM Confidence

Interval 99%
( )3eM Confidence

Interval 99%
1 ( )4321 ,,, VVVV 15.75 7.00 6.760 (3.740, 9.780) 6.760 (3.740, 9.780)

2 ( )5421 ,,, VVVV 15.25 7.25 7.000 (3.980, 10.020) 7.000 (3.980, 10.020)

3 ( )5432 ,,, VVVV 15.00 7.75 7.483 (4.463, 10.503) 7.483 (4.463, 10.503)

4 ( )6532 ,,, VVVV 14.00 7.75 7.481 (4.461, 10.501) 7.481 (4.461, 10.501)

5 ( )7543 ,,, VVVV 15.75 8.50 8.208 (5.188, 11.228) 8.208 (5.188, 11.228)

6 ( )8654 ,,, VVVV 15.50 7.75 7.484 (4.464, 10.504) 7.484 (4.464, 10.504)

7 ( )9765 ,,, VVVV 15.50 7.75 7.484 (4.464, 10.504) 7.484 (4.464, 10.504)

8 ( )9876 ,,, VVVV 16.25 7.00 6.760 (3.740, 9.781) 6.760 (3.740, 9.781)

Table 12 :  Sample Based Estimates of  Mean Edge in G2 of  Fig. 2 (Related to Table 4)

Note that the computation of 99% confidence interval is according to formula

( ) ( )[ ]eeee MVMMVM 3,3 +−  for values of k= 1 and 3.
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6. Discussion
Table 4 presents eight samples, each of four vertices along with the description

of edge lengths. Table 5 and 6 are FNEM used to generate Table 4 using node sampling
procedure of section 1.1. The Table 7 contains the population-wise details of vertices,
linked edges, lengths and average length of each vertex. Table 8 presents the
computation of population parameters. The class of estimators eM contains an unbiased
estimator at the choice 1kk = = 2.001256 and there exist only one such real root to
satisfy the cubic equation (3.7) [see Table 9]. Minimum mean squared error is found
when '

1kk = = 2.026643, satisfying the cubic equation (4.2) with the existence of only

one real root [see Table 10]. It is  observed that at the optimum value 'k = 2.026643,the
bias is very small which turns out to explore an almost unbiased minimum variance
estimator in the class for estimating mean edge length [see Table 11]. Sample based
estimate eM , for k=1  & k=3, is computed over eight random samples, drawn from

population and shown in Table 12. This reveals that the estimate of true length
( )2

e lies
in the 99% confidence intervals. There is high chance to get a best estimate of mean
edge length of the planer graph population, because the unbiased estimator ( 1k =

2.001256) and optimal estimator ( '
1k =2.026643) both, in the class, are obtainable in the

range 31 ≤≤ k  which generates a sub-class of efficient estimators in the proposed eM .

The sample based estimates are very close to the true estimate
( )2

e , when k=1 and 3,as
shown in Table 12.

7. Conclusions
Sampling methodology under a graphical population is taken into account and

a new sampling technique "Node Sampling Procedure" is designed. A class of
estimation strategies is proposed which is found affective to estimate the average length
of an edge of planer-graph population .Optimum estimator in the class is obtained and
its properties are shown. There are atmost three possible values for which the unbiased
estimator could be obtained in the class and one of them is shown. Moreover, the class
may have atmost three optimum estimators also, the best would be that having the least
bias. One such estimator is obtained on considered data. Node Sampling Procedure
facilitates to estimate the mean edge length of planer graph population. The sample
based estimates are found closed to the true values. Within range 31 ≤≤ k , almost
unbiased minimum variance estimators are available in the proposed class. Most of the

sample estimates depict the true length
( )2

e  within the 99% confidence interval
specially when k=1 and k=3 are used.
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