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Abstract

Consider a population which contains graphical relationship between two variables.
There are two graphs of vertices and edges, each edge contains a length value and linked with
two vertices (nodes). Mean length of al edges is unknown which is a problem to explore. This
paper takes into account two planer graphs in particular, one of them is under main interest and
other is an auxiliary graph. A sample of some nodes is drawn by simple random sampling
(SRSWOR) dong with a laid down node-sampling procedure and a class of estimators is
proposed to estimate the mean length of an edge of planer graph using the structure of other
planer graph as an auxiliary source of information. Optimal properties of estimators are derived
and results are numerically supported with the calculation of length estimates and confidence
intervals.

Keywords : Graph, Planer Graph, Edge, Vertices(nodes), Smple Random Sampling without
replacement (SRSWOR), Class, Estimator, Bias, Mean Squared Error (MSE), Optimum Choice,
Confidence intervals.

1. Introduction
Consider a graph G, = (V, E, y) where set V consigts of the five vertices
V1, Vo, V3, V4, and Vs; set E has eght edges (none of whichisin V) like
V={V1,V, V3, V4 Vs} ; E= {en, s eu, €3eu, &x, 65,615}
The y is a set containing the relationship between V and E in the form of mapping.

Likewise, define another graph G,- (V', E', ) where V' and E' consist of

Vo= VLoV VLV E = {6 e e e 8]
and y hasrelationship of V'and E,
Note 1.1: The graph G, (or Gy) is said to be a planer graph if there exists some
geometric representation of G, (or G;) which can be drawn on a plane such that no two
of edges can intersect to each other [see Deo(2001)]. Detail description of planer
graph isin Parson (1971). Some useful research contributions to planer graphs are due
to Frederickson (1988), Gazot and Reif (1990), Shih et al. (1990), Grigni et a. (1995),
Osthus et al. (2003), Aleksandrav et a.(2007), etc.

Fig 1 is showing a structure of two linked planer graphs G; and G, (with a
common vertex V, =V, ). Suppose G; and G, together congtitute a population of
vertices (nodes) (V,V') and edges (E, E ). Overal average length of edges in G; is
assumed known but overall mean edge length is not known for G,. We want to estimate

this using mean edge information of graph G, and with the help of a random sample of
some nodes drawn according to following node-sampling procedure.
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Graph G;
(Auxiliary Source)

Graph G,
(Main Interest)

Fig. 1: A structure of two linked planer graphs G; and G,

1.1 Node- Sampling Procedure
Suppose G; and G; both individually have equal nodes M in form of V; and

V, (i=1,2,3,......... M).

Step I:  Construct node-edge (NE) table for the population of M units. Common
vertex represents both in G; and G, with the respective group edges (like V,
in G,= V2 in Gl)

Step Il :  Construct false-node-edge (FNE) matrix for G; and G, separately assuming
that (i, j)" element of matrix is unity if the ] edge is associated (or linked)
with i"™ vertex (node), otherwise zero. Some false edges are added in FNE
matrix in order to maintain equal number of edgesin both G; and G,, by the
diagonal-repetition of edges of same group on priority basis. If main
diagonal is full, the very next upper diagona is taken into consideration for
the false edge creation until equality of edges in G; and G, is met out. At
the end, total number of edgesin G; and G, are same, equal to N, shown
bel ow as an example for Fig. 1:
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Graph G, Graph G,
Vertex Edge Vertex Edge
Vi €12, €13, €14 A €,,€4
Vs €12, €23, €24, 5 Vv, €,,€5
Vs €13, €23, €35 V, €5,€5
Vs €14, €, €25 v, €1 €
Vs €25, €35, €15 Vs €€
Table 1: Node-Edge Table (NE Table) For Fig. 1
<—— Edges—» 4— False edges ——| | T
Giz%eh%%%téﬁ%E%Gis%ezs%%s%s%count edge
: length
V1110000 O;O 0O0O0O0OO OO 0| 3 g
841001 110000000000 4| ¢
%\é 0101001 O 00O0OOOOQ OO 3 8
0O 010100 1;0 0O0O0O0OO OO 0| 3 €
l\4000001115000000003 e
Total 16

Table 2: FNE Matrix for Graph G, (FNEM)

<«— Edges —> i«—False Edoes—{ o, | ™ean

by €4 €3 6 €56 ) edge
€2 G4 €3 65 € E €2 Q4 €3 €5 € count g

; length

T V,[1 1 0 0 0i1 1 0 0 0| 4| &
_Q V,[1 0 1 0 0 01 0 0 o0 3 &
[o WS : -
>V,[0 01 1 050 0 1 0 0| 3 &
l [0 1 0 0 1{0 0 0 1 Of 3 €
V[0 OO 1 1:0 0 0 0 1| 3 | &

Total 16

Table 3: FNE Matrix for Graph G; (FNEM)
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For the i node of FNEM, row-wise mean-length edge is denoted by E, and
e based on their counts n, and n; respectively for graph G; and G,. The overall

population means are:
e ——a ne for graph G,
(1Y
-0 _ 18 =
e =

—Wa ne for graph G,

i=1

whee N=3 n=§ n inFNEM

Step 111 : Draw a sample of n nodes (n < M) from graph G, by SRSWOR and choose
the corresponding similar number of nodes in G;. For example, if V3 from

G, appearsthen V, of G; appears automaticaly, in the sample.

Step IV : For any i sampled node (vertex), pickup i row of FNEM of G, and G,
both. Select very first edge from left among all non-zero elements of the
column, say j, of i" row separately for both G, and G,. This provides two
edge-lengths g; and e;; related to the i" node for sample.

Step V@ Continue the procedure laid down in step 1V, for all nodesi (i=1,2,3....n),
appeared in the sample using SRSWOR.

The end of Node Sampling procedure provides a random sample of n edge
lengths, drawn from N edges, in theform of e, and e, related to i node.

The sample mean of edge lengths are:

e == a e, forgraphG,
=1
1.2
—(l) g
€s ——a e for graph G;

i=1

2. A Class of Edge Estimators
Deriving a motivation from Singh and Shukla (2987, 1993), Shukla et a.

(1991) and Shukla (2002), assume the mean length e” for Gy is known ; e for G,

is unknown and under target of estimation. The discussion over variable of main
interest and use of auxiliary information, for estimation purpose, is in Sukhatme et al.
(1984), Singh & Choudhary (1986), Cochran (2005) etc.



Edge Estimation in Population of Planer ... 17

— eNe”- nel’ U

Define e’ =é&————0; f=n/N; (2.1)
g N-n §

e e(1 fe” - fe(l) 2.2)

i,b’:g €))+(1- f)e (a’u 23)

Using equations (2.1), (2.2), (2.3), the propo&d class of edge-estimators M, is

_@ ene” +cel) + f Be Y rcelu
M. =6 ¢ —(1) —(b) —(a) -
gAe” +Ces +Cey + f Bes H

(2.9

where A = (k-1)( k-2); B=(k-1)(k-4); C=(k-2)(k-3)(k-4)
Theterm kisa suitably chosen positive constant (0 <k < o).

Note 2.1: The class (24) is close to the structure of factor-type estimator
discussed by Singh and Shukla (1987), Shukla (2002). Different graphical structures
which a population may contain, are described in Dev (2001).

Note 2.2: The (2.4) contains an unknown parameter k, whose different choices generate
a series of mean-edge estimators. Therefore, it could be looked upon as a class of edge-

. . —(2
estimators to estimate unknown e( ) .

2.1 Special Estimators

_(2)ee( )+e( au
At k=1 [M]=e e ——50 (2.5)
Ges +es f
_aéu
k=2 [m] =¢e”é e;) (2.6)
e,
e e
=3 [ =eneS e 27)
ge - fes H
k=4 [m,], =6 (28)

3. Setting Approximations

Suppose large number of nodes and edges are linked in a population of two
planer graphs G; and G, a large sample of n vertices is drawn by node-sampling
procedure described in section 1.1. For any two small positive numbersry and ry, (4| <
1, |r2) < 1), the approximation is [see Cochran (2005)]
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for graph G, ei) =¢? @+r,)

(3.1
for graph G, ei) =" @A+r)
with conditions
(i) E(r)=gr,)=0 (32
72\ 2..
-@q | ACIRCH u
Er2)=€e U {E e Qy
€2 U l 2 ou
“e° @ Vge
=(N- n)(Nn)'l(céz’)z (33)
2\ 2..
@y | ® -0 gl
E(r ee U g e 9y
(iii) E(r?) = gl ?9 ﬂg
_é0 ur i W gl
=Xe Vetes £
e 6t ﬂ%
=(N - n)(Nn)"*(C{")? (34)
. =@ l cam® O g5 =@ gl
E = e 9 | Effes - e, - Q
(iv) E(rr,) §'e e ol '%Ee e %Ee e ﬂ%
=(N - n)(Nn) *(r.c’Cc?) (35)

Note 3.1: Symbols{ (1)} ,{Séz)}2 are population mean squares of N edges of graphs
G; and G, as described in FNE matrices. The V(>) denotes variance and
E(>) denotes expectation of the estimates based on sample n.

Moreover, {C® = {Sf)}z{ém }_2; fcof = {S(Z)}ZE(Z) }_2; are coefficients of

e

variation of N edges in both the FNEM .Further, I denotes correlation
coefficient between N edgesin FNEM.

Remark 3.1: The (2.1), (2.2) and (2.3) could be expressed in the approximate form
using (3.1) as

o =o' dr] ;d=n(Nn)* &= g ],
o =g L+d,] d, = (- F-d)f
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Theorem 3.1: Using (3.1) and remark 3.1 the class of estimators (2.4) could be
expressed in the approximate form

M, :é(z)[l- (b* - a*)r1+b*(b* - a*)rf+r2 - (b* - a*)r1r2+b*(b* - a*)rfrz]
where a’ =(Cd,- fBd,+Cf)/D; b’ =(cd, - Cd, + £?B)/D;
D=(A+2C + fB)

Proof : Using (3.1) and remark 3.1, one can express class M, of (2.4)
e{A +Ce()(1+d rl)+fBe()(1 dlrl)+Ce()(1+frl)}
A’ +ce”(1+dyr)+Ce (1- dyr,)+ fBe (L+ f rl)}H

_@ ¢ D+(cd, - fBd, +Cf)r, }u

Ler)e g D+(cd,- cd, + 2B)r, [y

=eer)fra'n)frn'n)?

=) ra) L b7+ (b7)7 - (b71,)? +eeeood

Assume the term (b*rl)j very small when j>2, therefore, ignore al terms in

M, = ( (L+r,)e

expansion (1+ b*rl)'1 for j>2, we get[see Sukhatme et a. (1984), Singh and
Choudhary (1986), Cochran (2005)]
__(2) * * * N2
M, =e”(+r,)ra ) b+ (b'r)?)
e() (b -a )r +b*(b* - a*)r12+r2- (b* - a*)rlr2 u
: +b*(b* B a*)fffza

™

Hence the theorem .

Theorem 3.2: Bias of the proposed class of estimators M, is
B(M,) =e 7SN ”“[(b a*)(b*(cg>)2- rcgl)cgz))]

& Nn H
Proof : Let B() denotesthe bias, then using theorem 3.1 :
B
g 1 b’ - a)rn
_-@4- (b* - a*)E(r1)+ b*(b* - a*)E(r12)+ E(r,)- (b* - a*)E(rer) U
=€ ¢e wfy * » u
é +Db (b -a )E(rlzrz)[:l

Using resultsin (3.2) to (3.5) and substituting
E(r/.r))=0 wheni+j? 3; i,j=01,2,3..[see Cochran (2005)] (36)
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_ 6 } u
B(Me) - QE(ME) g
=g eN- ”3[(b “a )(b*(c;))2 ] rcgl)cgz))]
é Nn g
Hence the theorem.

Remark 3.2: Theclass M, contains a sub-class of unbiased estimators if
.__ch

b =r T =V (Let)

Proof : Substituting B(M_)=0b b’ (Cél))2 - rc8c® = 0 and hence the result.

Remark 3.3: Theremark 3.2 generates an equation intermsof A, B, C,fandV
VA+ (V- f) B+{dd+2V) C=0 @3.7)

which provides a necessary condition for obtaining unbiased estimators in the class, up

to the first order of approximation, by suitable choices of k. The (3.7) is a cubic

equation in k which gives at most three values of k for which the biasis zero. One can
chose the useful value of k related to lowest m.s.e.

Theorem 3.3: Mean squared error of estimator M, is

M. = (M) (2);%23%&(@)2+(p*>2(cg1>>z+zp*r
where P’ = (a* - b*)

Proof : Define MSE(M E?\/I . On replacing M, using theorem

3.1 together with equation (3.6), we get

M (Me)zgé(z)g[E(rzz)+(b* - a*)zE(rf)- 2(b* - a*)E(rlrz)]
Using equation (3.2) to (3.5) ,

M (M ) ?( )Q ENN nd(cé ))2 +(b* ) a*)Z(Cél))Z +or (b* ) a*)Cél)ng)]

g N oo (o e o clict]

Hence the theorem.
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Remark 3.4: Some special casesrelated to biasand m.s.e. are

~(2)éN - nual, + f 96%&11- dzg(c(l)

ou
At k=1 B(M,) =e : ( @)
M) = e 0& 2 o6 2

f+r ey
e

_(2):24N - N0 € 2 ..
M (), = 87O NP B T O (ol B 1O, il
gé& Nn ug e 2 g 2 §
At k=2.B(M,), e()gNNn H[(f+d1) (r (o -« cg)cgz))]

e e

(o), =BG i (1 e - ofr v it

,
nc=a8(u.), =o SN AIOBE [ ey ¢ cpich
g€ Nn H f-1 p&&f-15 P
_ @5 eN - nu§ o), @f (f +d,)6 f+d )(2)@
), -7 Pty PG cop o118 cpcp

4. Optimum Choices of k
Expression of mean square error of the class depends on parameter P~ which

is a function of k . One can obtain the appropriate choice of P’ subject to condition
the mean squared error is minimum.

Theorem 4.1 : The minimum mean squared error occurs when

P =-Vv
Proof : Differentiating MSE(ME) of theorem 3.3 with respect to P* and equating to
zero,

M=o P (d)ic)=o
P =- el=.v (4.1)
Hence the theorem.

Remark 4.1 : The optimality condition (4,1) provides an equation,

VA+f[V- f-d]B+[2v+f+d]C=0 (4.2)
whichis cubic interm of parameter k and for known valuesof f and V , thereareat
most threevaluesof k for which them.s.e. could be optimized (minimized).

Remark 4.2 : Let k;, kyand k;, be three values for which MSE(M,) is minimum
using equation (4.2).The best choice anong themis,
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Kope = Min[B(Me)ki, B(M.),. B(Me)k-s] 4.3

5. Numerical Illustrations

Consider graphical population, described in Fig. 2, containing G; and G, Bath
are planer graphs, G, is of main interest, G; an auxiliary source. Both are related to each
other by a common vertex (\/1 =v1'), therefore, it is worth to assume a correlation

between them. Aim is to estimate an average edge length of G, usng the known
information of edgesin G;, with a sample drawn by node sampling procedure. The tota
edges in FNEM are N=32 for both graphs, total vertices are M=9 and sample size is
n=4.

Sample For Graph G; For Graph G,
S. No. Vertices Sample Edge ég) Sample Edge égz)
1 AAYAA e, =156, =15, 1575 | e, =6,e,=6, | 7.00
e, =14,e, =19 e;=8e, =8

2 AAYAA e, =156, =15, 1525 | e,=6,e,=6, | 725
e, =19,e, =12 €, =865=9

3 | WMVaV,V.) | e,=15e,=14 |1500 | e,=6e,=8 | 775
e, =19,e, =12 e, =8,65=9

4 (V,, V5, Ve, Vs ) e, =15,€, =14, 1400 | e,=6,e,=8 | 7.75
e, =12,e, =14 €5 =964 =8

5 | MV,VeV,) | e,=14e, =19, |1575 | e,=8,e,=8 | 850
e, =12,e, =18 es =9,8, =9

6 Vo, Vo, Vs, Ve) | €, =19,€, =12, 1550 | e,=8e.=9, | 775
e, =14,e, =17 €5 =865 =6

7 Vs Vs Vo Vo) | e =126, =14, 1550 | e =9e,=8 | 7.75
e, =186, =16 €y =969 =5

8 | Ve VoVeV,) | e, =146, =18 |1625 | e, =8¢, =9, | 7.00
e, =17,e, =16 8 = 6,85 =5

Table4: Sample Edge Description for N=4 Drawn as per Node Sampling Procedure
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v, v,
17

5 ) 2 7

Fig. 2. Graphical population containing G; and G,
The FNE matrices for G; and G,, as per Fig. 2, are given in the Tables 5 and 6
respectively.
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<«—— Edges

Bs €4 Bs €4 €5 €5 € € & € & €y

&

False edges —»

Mean

length
15000
15000
16000
15333
14600
15500
15333
13333
14000

5
3
3
6
5
2
3
3
2

6, €3 €4 G5 €3 €5 €5 G €; € & & €5 6 |count| edge

0O 0 0 0 0 0 0O O 0O O o o0 o

0O 0 0 0 0O 0O OO O O 0O

1

0 0 0 0 0 0O 0O OO0 0 O

1
0 0 0 0o OO0 OO 0O O O 0 O

0 0 0 0 0O 0O OO0 0 O

Total 32

Table5: FNE Matrix for G;
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Edges

€2 €3 €y G5 €3 €y €y B €5 €5 €y 6 & €& €y 5'89!

A 4

False edges

Mean

edge
length

7.750
6.333
7.250
6.167
6.000
6.500
5.333
5.000
6.000

7
3
4
6
5
2
3
3
2

€5 & | count

€7

%4%5945946947%959

€s €3 €y

€,

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0 0 0 O
0 0 0 O
0O 0 0 O
0O 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O

0
0
0
0
0
0
0
0
0

0O 0 0 0 0 0O 0O O O
0O 0 0 0 0 OO0 0 O
0O 0 0 0 0 OO0 O O
0O 0 0 0 0O OO0 0 O
0O 0 0 0 0 0O 0O 0 O
0O 0 0 0 0O OO 0 O
0O 0 0 0 0O OO 0 O
0O 0 0 0 0 0O 0O 0 O
0O 0 0 0 0 0O 0O 0 O

32

Total

Table6: FNE Matrix for G,
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GRAPH G, GRAPH G,
Falsg Len-|Average False Average
Nodg Edges|Length edge| gth |length Nodg Edges | Length edge Length length
85 | 6,8, | eeds | 1524,
A oo | 89 - - | 7750 | Vv, c.e | 1912 €, 15 | 15.000
v, e*;%’ 6’4?’ | - | 638 v, | €6 | 1516 e | 14 | 15000
4
€363, 8,9 . o )
V. Iy _ _
s | oo | 57 7250 | Vi | eges | 1415| e, | 19 | 16.000
€146, 8,4, eiA,"%A, 19, 16,
V, | ewtss | 5,3 - - | 6167 | V, | eses | 1314, | es 12 | 15.333
e461e47 8,9 e;w 18
€585, 9,7, eis,e'ss, 12,15,
Vs | € 3,6, - - 6.000 | Vi | eses | 13,17, - - 14.600
€5 5 eé’g 16
o . —
v | %% g5 | | - | 6500 | V| % | 1417 - - | 1550
€& | 95 | enes | 1817
V. , , ™ _ _ , , y ] _ _
p ., 5 5333 | V, . 1 15.333
€sCs | 6,2 | oesem | 17,12
\V/ d d &y _ _ d » ] ] _ _
A ., - 5.000 | V, o 12 13.333
Vo | 2% 57 | | - | 6000| V| ewe, | 1612 - - | 14000
Table7: EdgeVertex Description of Population
S.No. Parameter Value S.No. Parameter Value
1 M 9 7 (ng))z 0.115662
2 N 4 8 (Cgl))z 0.025426
3 P 6.3125 9 cl 0.340092
4 5(1) 14.9375 10 Cél) 0.159457
5 (S(z))2 4.608871 11 r 0.130111
6 (S(l))2 5.673387 12 \Y, 0.277502
Table8: Population Parameter Description
SNo [ Valueof k Bias[], at k=k; MSE[], at k=k;
1 k, = 2.001256 B[M.], =-0.000115 MSE[M, ], =0.115192
k2 = - B[M e]kz = - MSE[Me]kZ = -
k= - B[M e]k3 = MSE[Me]k3 =

Table9: k-Value When Estimator is Unbiased (With MSE)
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Using (3.7), the unbiased estimator is achievable in the class when values of k

are accordingto Table9.

SNo | Vvalueof k Biasl]; at k=k MSE[], at k=k
1 K = 2.026643 BM.],, =-0.000185 MSE[M. |, =0.114661
7 - - .- - vl ], -
3 kK= - BM.J, = - MSEM,]. = -

Table 10: k -Valuefor Optimum MSE (|V| e)
Using (4.2), the optimum estimator could be obtained in the class when val ues

of k areaccording to Table 10.

k Bias (M,) MSE (M.,) vV (m,)
k=1 B[M_], =0.0014 MSE[M.], = 1.0286 v[m,], =1.0285
k=2 BM,., =-0.0014 | MM ],=09911 | v[m],=0.9910
k=3 BM.],=-0.0002 | MsE[M,],=10135 | v[m],=1.0134
k = k, =2.001256 BM,], =-0.0001 | msEM.] =0.1152 | Vv[m.], =0.1151
(unbiased)

k =k, =k =2.026643
(opt MSE)

BM.],, =-0.0002

MSE[M, |, =0.1147

v[M,], =0.1147

Table 11: Calculation of MSE (|V| e)for variousvalues of k
where variance is computed by V()= MSE()- [Bais()]?.

n=4, p

()

N=32, M=9, =14.9375, e~ =6.3125 (which isactually unknown)
S.No Sample Sample Estimate M, Estimate M, when k=3
Vertices Means when K=1
W & |(m.); | Confidence (M,), | Confidence
Interval 99% Interval 99%
1 MVv,V,v,) | 15.75 | 7.00 | 6.760 | (3.740,9.780) | 6.760 | (3.740, 9.780)
2 (Vl,VZ,V4,V5) 1525 | 7.25 | 7.000 | (3.980, 10.020) 7.000 | (3.980, 10.020)
3 VoV, v.) | 1500 | 7.75 | 7.483 | (4.463,10503) | 7.483 | (4.463, 10.503)
4 (,VoVov,) | 1400 | 7.75 | 7.481 | (4461, 10501) | 7.481 | (4.461, 10.501)
5 (,V,vov) | 1575 | 850 | 8.208 | (5.188, 11.228) | 8.208 | (5.188, 11.228)
6 (V,VoVoV,) | 1550 | 7.75 | 7.484 | (4464, 10.504) | 7.484 | (4.464, 10.504)
7 VoV, v,) | 1550 | 7.75 | 7.484 | (4.464,10504) | 7.484 | (4.464, 10.504)
8 (VoV,Vov,) | 1625 | 7.00 | 6.760 | (3.740,9.781) | 6.760 | (3.740, 9.781)

Table12: SampleBased Estimates of Mean Edgein G, of Fig. 2 (Related to Table 4)

Note that the computation of 99% confidence interva is according to formula
[Me- VIM,), Me+3,/ViMei] for values of k=1 and 3.
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6. Discussion

Table 4 presents eight samples, each of four vertices along with the description
of edge lengths. Table 5 and 6 are FNEM used to generate Table 4 using node sampling
procedure of section 1.1. The Table 7 contains the population-wise details of vertices,
linked edges, lengths and average length of each vertex. Table 8 presents the
computation of population parameters. The class of estimators M, containsan unbiased

estimator at the choice k =k, = 2.001256 and there exist only one such real root to
satisfy the cubic equation (3.7) [see Table 9]. Minimum mean squared error is found
when  k =k, = 2.026643, satisfying the cubic equation (4.2) with the existence of only

onereal root [see Table 10]. It is observed that at the optimum value k = 2.026643,the
bias is very small which turns out to explore an almost unbiased minimum variance
estimator in the class for estimating mean edge length [see Table 11]. Sample based
estimate M, for k=1 & k=3, is computed over eight random samples, drawn from

population and shown in Table 12. This reveals that the estimate of true length é(z) lies

in the 99% confidence intervals. There is high chance to get a best estimate of mean
edge length of the planer graph population, because the unbiased estimator (k,=

2.001256) and optimal estimator ( k, =2.026643) both, in the class, are obtainablein the

range 1£ k £ 3 which generates a sub-class of efficient estimatorsin the proposed M, .

()

The sample based estimates are very close to the true estimate e, when k=1and 3,as

shownin Table 12.

7. Conclusions

Sampling methodology under a graphical population is taken into account and
a new sampling technique "Node Sampling Procedure” is designed. A class of
estimation strategies is proposed which is found affective to estimate the average length
of an edge of planer-graph population .Optimum estimator in the class is obtained and
its properties are shown. There are atmost three possible values for which the unbiased
estimator could be obtained in the class and one of them is shown. Moreover, the class
may have atmost three optimum estimators a so, the best would be that having the least
bias. One such estimator is obtained on considered data. Node Sampling Procedure
facilitates to estimate the mean edge length of planer graph population. The sample
based estimates are found closed to the true values. Within range 1£ k £ 3, amost
unbiased minimum variance estimators are available in the proposed class. Most of the

sample estimates depict the true length é(z) within the 99% confidence interval
specially when k=1 and k=3 are used.
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