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Abstract
This paper considers an important concept which suggested to take stock of the over

estimation in reliability characteristics or under estimation of hazard rate. Using this concept, the
study considers the analysis of the reliability characteristics of an exponential lifetime model
when prior variations in its parameters are suspected.
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1. Introduction
In life testing the experiments are conducted to record the lifetime data and the

same are then used for analyzing the systems in terms of their reliability characteristics
like-reliability or survival function, hazard rate, MTSF etc. in the classical setup. Some
of the studies dealing with this aspect are Mann, Schafer & Singhpurwala [7], Kapur
and Lemberson [4], Lawless [5], Sinha [12] etc. However, the life testing experiments
are costly and time consuming phenomenon, and, therefore, it should be recognized that
the parameters, characterizing reliability characteristics, in a life time distribution, are
bound to follow some random variations due to continuous environmental stresses on
the system. So it is a factor which should be considered with experimental data for
analyzing the system reliability characteristics.

 Obviously, therefore, the reliability characteristics need to be analyzed in the
Bayesian setup. Some of the comprehensive studies dealing with this aspect of the
problem are Savage [9], Lindley [6], Bhattacharya [1], Box and Tiao [2], and Martz &
Wallher [8]. Studies like Sharma et. al. [10, 11] are also efforts in the same direction.

In the Bayesian analysis of reliability characteristics, the parameter(s),
representing reliability characteristics, in a lifetime distribution follows random
variations represented by priors. The priors then are updated with experimental data.
The updated form of the prior is then called the posterior distribution which becomes
the basis of future analysis of the problem involved.

However, in same study G.G. Brush [3] showed that even the lifetime
distributions can be updated in view of variations in its parameters. The updated basic
distribution has been used to study the robustness of the reliability characteristics when
parametric variations in the parameters of the lifetime distributions are suspected.

In the process of analysis, we still come through yet another problem of
interest. Here if should be recognized that the over estimation of system reliability or
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under estimation of hazard rate is a bad phenomenon. After using the updated and
predictive basic distributions, we get three important distributions whose comparison
leads to the analysis of robust character of lifetime distributions when variations in the
parameters are suspected.   In this regard, an adjustment factors has been suggested to
take stock of the over estimation in good reliability characteristics like system
reliability or under estimation of some bad reliability characteristics like the hazard
rate. A methodology has been suggested which helps in adjusting the over or under
estimation phenomenon. The discussions of the problem also highlight an important
concept where classical reliability is adjustable with Bayesian information. It has been
shown as to how inverse reliability can be used as an adjustment factor so that an over
estimate of classical reliability or under estimation of hazard rate can be associated with
the Bayesian estimation of survival function or hazard rate.

In the light of above discussions, the present paper deals with the development
of a methodology of developing an adjustment factor for connecting the reliability
characteristics by using the Bayesian information available. The theoretical
developments have been highlighted with suitable example.

2. Notations, Assumptions and Definitions
(a) ( )f pdf=g                Probability density function

0[ ]P X t θ θ> ≤          Classical System Reliability (CSR)

0[ ]P X tθ θ≤ >          Adjustment factor for system reliability (AFSR)

CSR∗ , AFSR∗   Respective reliability of Classical and Adjustment
     factor for system reliability under Prior information.

CSR∗∗ , AFSR∗∗  Respective reliability of Classical and Adjustment factor for
    system reliability under Posterior information.

. .r v                              Random variable
CV                             Coefficient of Variation
MTSF                        Mean time to system failure

0θ θ≤                          Span for MTSF
( ) [ ]R t P X t= ≥         Reliability of the independent and identical components for a

testing time t
( ), ( ) & ( )km p sR t R t R t    Respective reliability of k-out-of-m, parallel and series

    system for the mission time t.

(b)   It is assumed that the components are identical and statistically independent.

(c)   k-out-of-m system: This system consists of m-components and operates as a long
as any of its k ( ≤ m) components operate.
With simple probabilistic reasoning,

( )
( ) [ ( )] [1 ( )]

m m

km

m
R t R t R t

µ µ

µ κ µ
−

=

 
= − 

 
∑                  (1)

For 1k = , the system reduces to a parallel system which functions as long as any of its
components operates. Thus,

( ) 1 [1 ( )]m
pR t R t= − −                   (2)
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For k m= , the system reduces to series system which fails as soon as any of its
components fails.
As such (1) reduces to

( ) [ ( )]m
sR t R t=                    (3)

3. Statistical Backgrounds
It is assumed that :

(a) In the classical set up, θ  is assumed as constant, however it is taken as r.v. in the
Bayesian setup. Thus, θ  perform as a random variable.
(b) The basic lifetime distribution for each component is exponential, exp(1 )θ  with
p.d.f.

1( , ) exp( )f x xθ θ
θ

= −            ; x , θ >0                (4)

Thus for a component,
       MTSF [ ]E X θ= = , 2( )V X θ=

( ) [ ] exp( )R t P X t t θ= ≥ = −
(c) ' 'θ  is a random variable and its prior is gamma distribution with p.d.f.

1 exp( )( ) ;g
λθ θ

θ
λ

− −
= 0, 0λ θ> < < ∞          (5)

 (d) Let, 1, 2( ,........, )nX X X X=  be a random sample from (1 )exp θ . Then the
posterior distribution ofθ , in respect of its prior in (5), will be

( )xθΠ
%

1

1

1

0
1

exp exp( )

exp exp( )

n
n

i
i
n

n
i

i

x

x d

λ

λ

θ θ θ

θ θ θ θ

− −

=

∞ − −

=

 
− − 

 =
 − − 
 

∑

∑∫
                (6)

(e) If ( 1 2 nX ,X ,..........,X ) are identically distributed, as exponential with
parameter θ(1/ ) , then = 1 2 nY M in(X ,X ,..........,X ) is also exponentially distributed
with parameter θ(1/ ) , with p.d.f.

θ θ
θ

= − >
nf(y) exp( yn / ) ; y, 0                  (7)

Thus,
θ= −sR (t) exp( nt / )

(f) If 1 2 nX ,X ,..........,X  are identically distributed exponential with parameter θ(1/ ) ,
then = 1 2 nZ Max(X ,X ,..........,X ) has the p.d.f.

θ θ θ
θ

−= − − − >n 1nf(z) exp( z / )(1 exp( z / )) ; z, 0          (8)

Thus,
θ= − − − n

pR (t) 1 (1 exp( t / ))
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4. Comparisons between Classical Reliability and an Adjustment Factor
under Prior Information

For, the purpose of making comparison between the classical and adjusted
reliability characteristics, an additional concept is introduced.

4.1 Classical Analysis of Reliability Function for Various Static System
Models
In the classical setup the system reliability can be defined as-

0
0

0

[ ]
[ ]

[ ]
P X t and

P X t
P

θ θ
θ θ

θ θ
> ≤

> ≤ =
≤

                              (9)

Equation (9) give us the proportion of the systems which survive for the mission time t
when ' 'θ  is a random variable defined in the span for MTSF 0θ θ≤ .

(i) On using equations (4) and (5), the classical reliability function R(t) , say, *CSR (t) ,
is

*CSR (t)

θ

θ

θ θ

θ θ
=
∫
∫

0

0

0

0

R(t)g( )d

g( )d

( ) ( )

( )

θ λ

θ λ

θ θ θ θ

θ θ θ

−

−

− −
=

−

∫
∫

0

0

1
* 0

1
0

exp t / exp d
CSR (t)

exp d
                                  (10)

(ii) Similarly, on using equations (5) and (7), the classical reliability sR (t) , say,
∗
sCSR (t) , becomes

*
sCSR (t)

θ

θ

θ θ

θ θ
=
∫

∫

0

0

s
0

0

R (t)g( )d

g( )d

( )
θ λ

θ λ

θ θ θ θ

θ θ θ

−
∗

−

− −
=

−

∫
∫

0

0

1
0

s
1

0

exp nt / exp( )d
CSR (t)

exp( )d
     (11)

(iii) Similarly, on using equations (5) and (8), the classical reliability pR (t) , say,
∗
pCSR (t) , will be

*
pCSR (t)

θ

θ

θ θ

θ θ
=
∫

∫

0

0

p
0

0

R (t)g( )d

g( )d

( )
θ λ

θ λ

θ θ θ θ

θ θ θ

−
∗

−

− − − −
=

−

∫
∫

0

0

1 n
0

p
1

0

exp( )[1 (1 exp t / ) ]d
CSR (t)

exp( )d
 (12)
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4.2 Adjustment Factor for the Various Static Models
The adjustment factor may we written as-

0[ ]P X tθ θ≤ > 0 0[ ] [ ]
[ ]

P X t P
P X t
θ θ θ θ> ≤ ≤

=
>

0[ ]
[ ]

P X t and
P X t

θ θ> ≤
=

>
                           (13)

  The Bayesian probability or Inverse probability defined in this case can be
considered as the adjustment factor for the classical reliability. It gives answer to the
question that:-
(a) If the MTSF varies in the span 0θ θ≤ , what percentage of systems will survive the
mission time t.
(b) How much be proportion of the system will be surviving the mission time t?
(i) On using equations (4) and (5), adjustment factor for system reliability function
R(t) , say, *AFSR (t)  , will be

*AFSR (t)

θ
θ θ

θ θ
∞=

∫
∫

0

0

0

R(t) g( ) d

R(t)g( )d

θ λ θ θ

λ θ θ

θ θ

θ θ

− − −

∞ − − −
=
∫
∫

0 1 ( t / ) ( )
* 0

1 ( t / ) ( )
0

e e d
AFSR (t)

e e d
    (14)

(ii) Similarly, on using equations (5) and (7), adjustment factor for system reliability of

sR (t) , say, ∗
sAFSR (t) , becomes

∗
sAFSR (t)

θ
θ θ

θ θ
∞=∫

∫

0
s0

s0

R (t)g( )d

R (t)g( )d

∗
sAFSR (t)

θ λ θ θ

λ θ θ

θ θ

θ θ

− − −

∞ − − −
=
∫
∫

0 1 ( nt / ) ( )
0

1 ( nt / ) ( )
0

e e d

e e d
(15)

(iii) On using equations (5) and (8), the adjustment factor for system reliability
of pR (t) , say, ∗

pAFSR (t) , is

∗
pAFSR (t)

θ
θ θ

θ θ
∞=

∫
∫

0
p

0

p
0

R (t)g( )d

R (t)g( )d

∗
pAFSR (t)

θ λ θ θ

λ θ θ

θ θ

θ θ

− − −

∞ − − −

− −
=

− −

∫
∫

0 1 ( ) t / n
0

1 ( ) t / n
0

e [1 (1 e ) ]d

e [1 (1 e ) ]d
(16)
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5 Comparisons between Classical Reliability and an Adjustment Factor for
System Reliability under Posterior Information

5.1 Classical Analysis of Reliability Functions for Various Static Models
In the classical approach this may be written as-

0
0

0

[ ]
[ ]

[ ]
P X t and

P X t
P

θ θ
θ θ

θ θ
> ≤

> ≤ =
≤

                      (17)

(i) Using equations (4) and (6), the classical analysis of the reliability function R(t) ,
say, **CSR (t) , can be attained from the expressions

**CSR (t)

θ

θ

θ θ

θ θ

Π
=

Π

∫
∫

%

%

0

0

0

0

R(t) ( x)d

( x)d
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θ θ θ θ

θ θ θ θ

− −

=

− −

=

 
 − + −
 
 =
 
 − −
 
 

∑∫

∑∫

0

0

n
n 1

i
0

i 1**
n

n 1
i0

i 1

exp x t / exp( )d

CSR (t)

exp x / exp( )d

(18)

(ii) Similarly, on using equations (6) and (7), the classical analysis of sR (t) , say,
∗∗
sCSR (t) , can be performed from

**
sCSR (t)

θ

θ

θ θ

θ θ

Π
=

Π

∫
∫

%

%

0

0

s
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0

R (t) ( x)d
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θ θ λ

θ λ

θ θ θ θ

θ θ θ θ
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=∗∗
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 
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∑∫
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(nt / ) n 1

i
0

i 1
s n

n 1
i0

i 1

e exp x / exp( )d

CSR (t)

exp x / exp( )d

(19)

(iii)  Similarly, on using equations (6) and (8), the classical analysis of pR (t) , say,
∗∗
pCSR (t) , can be achieved from

**
pCSR (t)

θ

θ

θ θ

θ θ

Π
=

Π

∫
∫

%

%

0

0

p
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0

i 1
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[1 (1 e ) ] exp x / exp( )d

CSR (t)

exp x / exp( )d

                (20)
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5.2 Adjusted Analysis of Reliability Functions for Various Static System
Models
We know that

0 0
0

[ ] [ ]
[ ]

[ ]
P X t P

P X t
P X t
θ θ θ θ

θ θ
> ≤ ≤

≤ > =
>

0[ ]
[ ]

P X t and
P X t

θ θ> ≤
=

>
(i) On using equations (4) and (6), the adjustment factor for system reliability R(t) , say,

**AFSR (t) , can be performed from
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θ
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∞

Π
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Π

∫
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    (22)

(ii) Similarly, on using equations (5) and (6), the adjustment factor for system
reliability sR (t) , say, ∗∗

sAFSR (t) , can be performed from

∗∗
sAFSR (t)

θ
θ θ

θ θ
∞

Π
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(iii) On using equations (6) and (8), the adjustment factor for system reliability pR (t) ,

say, ∗∗
pAFSR (t) , can be done by using
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6. Illustrations
6.1 Comparison between Classical and Adjusted System Reliability When
an Adjusted Factor under Prior Information is used

For demonstrating variations in classical and adjusted system reliability as the
mean of quality distribution and the mission time varies, we use the expressions in
equations (10) and (14). The respective values of *CSR (t)  and *AFSR (t)  are given in
Table 1.

Now for analyzing the behavior of classical system reliability and adjusted
system reliability, when the components are arranged in the form of series and parallel
configuration. We consider n=10 (number of components) and use the expressions in
equations [(11) (12), (15) and (16)], the respective values of *

sCSR (t) , ∗
sAFSR (t)  and

*
pCSR (t) , ∗

pAFSR (t)  are summarized in Tables (2-3).

6.2 Comparison between Classical, Adjusted System Reliability and
Adjusted Factor under Posterior Information

Estimates following the methodology in the previous section, the reliability
functions for various static system models with posterior information. These processes
have been listed in Table 4, 5 and 6. A sample of size 10 was generated from the p.d.f.
in (4) with parameters (quality mean θ =1, 2), and then getting the sum of all the

observations as   (
1

n

i
i

x
=

=∑ 9.64,
1

n

i
i

x
=

=∑ 21.33) respectively to get the reliability

estimates in both the cases. The number of components is also 10. Using expressions in
equations [(18, 22), (19, 23) and (20, 24)], the respective values of
[{ **CSR (t) , **AFSR (t) }, { **

sCSR (t) , **
sAFSR (t) }  and  { **

pCSR (t) , **
pAFSR (t) }] are

summarized in Tables  [4, 5 and 6].

7. Conclusions
After highlighting some of the concepts regarding robustness of reliability

function, when parameters in the lifetime distribution are considered as random variable
in the Bayesian setup, yet another concept of over and under estimation of reliability
and hazard rate have been proposed. A methodology has been developed to deal with
the phenomenon by using an adjustment factor based on Bayesian information.
Subsequently, it is shown as to how we can use the Bayesian information to adjust the
classical knowledge; various tables can be analyzed to see the robust character of
classical estimates as adjusted in the light of Bayesian knowledge.

From Table- (1, 2,3,4,5 and 6), it is seen that
(i) As usual the, reliability for different static system models decreases uniformly as the
mission time t increases.
(ii) *CSR  And *AFSR  uniformly increases as the span of MTSF, 0θ θ≤  increases.
Accordingly, the resulting adjustment in classical reliability tends to be uniformly less.
(iii) Resulting tends in classical reliability can also be ascertained with the resulting
adjustment factor.
Other trends can be analyzed in all the situations by going through the Tables  (1-6).
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Time
0 1θ = , 1λ = 0 2θ = , 1λ =

t *CSR *AFSR *CSR × *AFSR *CSR *AFSR *CSR × *AFSR
0.01 0.93 0.62 0.57 0.95 0.86 0.81
0.05 0.78 0.58 0.45 0.83 0.84 0.70
0.10 0.66 0.55 0.36 0.74 0.83 0.61
0.15 0.58 0.52 0.29 0.66 0.82 0.54
0.20 0.51 0.49 0.25 0.60 0.81 0.49
0.25 0.45 0.47 0.21 0.55 0.79 0.44
0.30 0.40 0.45 0.18 0.51 0.78 0.40
0.35 0.36 0.43 0.16 0.47 0.77 0.37
0.40 0.33 0.41 0.13 0.44 0.76 0.34
0.45 0.29 0.40 0.12 0.41 0.75 0.31
0.50 0.27 0.38 0.10 0.38 0.74 0.29

Table 1: Comparison between Classical Reliability and Adjustment Factor for System
Reliability ( )R(t) under Prior Information

Time
0 1θ = , 1λ = , 0 2θ = , 1λ =

t *
sCSR *

sAFSR *
sCSR × *

sAFSR *
sCSR *

sAFSR *
sCSR × *

sAFSR
0.01 0.66 0.55 0.36 0.74 0.83 0.61
0.05 0.27 0.38 0.10 0.38 0.75 0.29
0.10 0.11 0.26 0.03 0.21 0.66 0.14
0.15 0.05 0.18 0.01 0.13 0.59 0.08
0.20 0.03 0.12 0.00 0.08 0.52 0.04
0.25 0.01 0.08 0.00 0.06 0.46 0.03
0.30 0.00 0.06 0.00 0.04 0.41 0.02
0.35 0.00 0.04 0.00 0.03 0.36 0.01
0.40 0.00 0.03 0.00 0.02 0.32 0.00
0.45 0.00 0.02 0.00 0.01 0.28 0.00
0.50 0.00 0.01 0.00 0.00 0.24 0.00

Table 2: Comparison between Classical Reliability and Adjustment Factor for System
Reliability ( )sR (t) under Prior Information

Time
0 1θ = , 1λ = 0 2θ = , 1λ =

T *
pCSR *

pAFSR *
pCSR × *

pAFSR *
pCSR *

pAFSR *
pCSR × *

pAFSR
0.01 0.99 0.63 0.62 0.99 0.86 0.86
0.05 0.97 0.62 0.60 0.97 0.86 0.84
0.10 0.94 0.61 0.57 0.95 0.85 0.81
0.15 0.91 0.60 0.55 0.93 0.85 0.78
0.20 0.88 0.60 0.52 0.91 0.85 0.77
0.25 0.85 0.59 0.50 0.88 0.85 0.75
0.30 0.84 0.58 0.48 0.86 0.84 0.73
0.35 0.79 0.57 0.45 0.84 0.84 0.71
0.40 0.77 0.56 0.43 0.82 0.84 0.69
0.45 0.74 0.55 0.41 0.81 0.83 0.67
0.50 0.71 0.55 0.39 0.79 0.83 0.66

Table 3: Comparison  between Classical Reliability and Adjustment Factor for System
Reliability ( )pR (t) under Prior Information
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Time

1

n

i
i

x
=

=∑ 9.64, 0 1θ = , 1λ =
1

n

i
i

x
=

=∑ 21.33, 0 2θ = , 1λ =

t **CSR **AFSR **CSR × **AFSR **CSR **AFSR **CSR × **AFSR
0.01 0.9872 0.5102 0.5037 0.9937 0.5118 0.5086
0.05 0.9379 0.5053 0.4739 0.9690 0.5096 0.4938
0.10 0.8798 0.4992 0.4392 0.9390 0.5068 0.4759
0.15 0.8255 0.4931 0.4070 0.9100 0.5040 0.4586
0.20 0.7746 0.4871 0.3773 0.8819 0.5012 0.4420
0.25 0.7269 0.4810 0.3497 0.8547 0.4984 0.4260
0.30 0.6822 0.4750 0.3241 0.8284 0.4956 0.4105
0.35 0.6404 0.4690 0.3004 0.8029 0.4928 0.3957
0.40 0.6012 0.4631 0.2784 0.7782 0.4900 0.3813
0.45 0.5645 0.4572 0.2581 0.7543 0.4872 0.3675
0.50 0.5300 0.4512 0.2392 0.7311 0.4845 0.3542

Table 4: Comparison between Classical Reliability and Adjustment Factor for System
Reliability ( )R(t) under Posterior Information

Time

1

n

i
i

x
=

=∑ 9.64, 0 1θ = , 1λ =
1

n

i
i

x
=

=∑ 21.33, 0 2θ = , 1λ =

t **
sCSR **

sAFSR **
sCSR × **

sAFSR **
sCSR **

sAFSR **
sCSR × **

sAFSR
0.01 0.8687 0.4980 0.4326 0.9332 0.5062 0.4724
0.05 0.4978 0.4453 0.2217 0.7086 0.4817 0.3414
0.10 0.2513 0.3830 0.0962 0.5038 0.4516 0.2275
0.15 0.1284 0.3254 0.0417 0.359 0.4224 0.1517
0.20 0.0663 0.2734 0.0181 0.2569 0.3939 0.1012
0.25 0.0345 0.2271 0.0078 0.1841 0.3664 0.0675
0.30 0.0181 0.1868 0.0033 0.1323 0.3400 0.0449
0.35 0.0095 0.1521 0.0014 0.0953 0.3147 0.0299
0.40 0.0050 0.1227 0.0006 0.0687 0.2905 0.0199
0.45 0.0027 0.0981 0.0003 0.0497 0.2676 0.0133
0.50 0.0014 0.0778 0.0001 0.0360 0.2459 0.0088

Table 5: Comparison between Classical Reliability and Adjustment Factor for System
Reliability ( )sR (t) under Posterior Information
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Time

1

n

i
i

x
=

=∑ 9.64, 0 1θ = , 1λ =
1

n

i
i

x
=

=∑ 21.33, 0 2θ = , 1λ =

t **
pCSR **

pAFSR **
pCSR × **

pAFSR **
pCSR **

pAFSR **
pCSR × **

pAFSR
0.01 0.9872 0.5102 0.5037 0.9937 0.5118 0.5086
0.05 0.9379 0.5053 0.4739 0.9690 0.5096 0.4938
0.10 0.8798 0.4992 0.4392 0.9390 0.5068 0.4759
0.15 0.8254 0.4931 0.4071 0.9100 0.5040 0.4586
0.20 0.7745 0.4871 0.3772 0.8812 0.5012 0.4420
0.25 0.7269 0.4810 0.3496 0.8547 0.4984 0.4260
0.30 0.6822 0.4750 0.3240 0.8284 0.4956 0.4105
0.35 0.6403 0.4690 0.3003 0.8029 0.4928 0.3957
0.40 0.6010 0.4630 0.2783 0.7782 0.4900 0.3813
0.45 0.5642 0.4570 0.2578 0.7542 0.4872 0.3675
0.50 0.5295 0.4510 0.2388 0.7311 0.4845 0.3542

Table 6: Comparison between Classical reliability and Adjustment Factor for System

Reliability ( )pR (t)  under Posterior Information
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