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Abstract: This paper deals with the cost benefit analysis of a complex system with correlation
in time to preventive maintenance and time taken in preventive maintenance. The system
consists of two subsystems, say A & B, connected in series. Subsystem A consists of two
identical units while subsystem B consist only one unit. The operation of only one unit of
subsystem A with subsystem B is sufficient to do the job. The joint distribution of time to
preventive maintenance and time taken in preventive maintenance are taken bivariate
exponential. Each repaired unit works as good as new. Various measures of system effectiveness
of interest to system designers and operation managers are obtained by using regenerative point
technique. The graphical behaviors of MTSF and profit function have also been studied.
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1. Introduction
  Complex redundant systems have attracted many researchers including [1, 4,
6, 7] in the field of reliability theory. Some of them obtained the availability of a
complex system with two sub-systems taking constant failure and general repair time
distributions for each sub-system. Both sub-systems are repaired according to one of
the two repair policies – FCFS repair and repair on priority basis. Gupta et. al. [3]
analysed a complex system consisting of two sub-systems A’ and B’ arranged in series.
Sub-system A’ has two identical units – one operative and the other cold standby, while
sub-system B’ is a single unit system and has two types of mal functions – degraded
and total failure. Degradation reduces the efficiency of the system whereas in total
failure, the system either stops working or the efficiency of the system goes below the
specified tolerance limit. The failure and repair times of units for both sub-systems
follow exponential and general distributions respectively. Using supplementary variable
technique, they obtained transition state probabilities. In the above system model they
have considered an assumption that the random variable denoting the failure and repair
times are uncorrelated, which does not seem feasible always in real situations. In most
of the systems, it can be observed that an early (late) failure leads to an early (delayed)
repair.

 Keeping this concept in view, the purpose of the present paper is to analyse a
different type of complex system. The system composed of two sub-systems A and B,
which are connected in series. Sub-system A contains two identical units and subsystem
B consist only one unit. The operation of only one unit of subsystem A with subsystem
B is sufficient to do the job. Each unit of subsystem A has two modes normal and total
failures while unit of subsystem B has three modes normal, preventive maintenance and
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total failure. The time to preventive maintenance and time taken in preventive
maintenance are taken to be correlated random variables having their joint distribution
as Bivariate exponential.

 The following system characteristics are obtained by identifying the system at
suitable regenerative epochs with the help of regenerative point technique:

(i) State transition probabilities and mean sojourn times in different states.
(ii) Reliability of the system and mean time to system failure (MTSF).
(iii)   Pointwise and steady state availabilities of the system during (0, t).
(iv)   Expected busy period of repair facility during (0, t) and in steady state.
(v) Expected profit incurred by the system during (0, t) and in steady   state.

2. System Description and Assumptions
The assumptions about the model under study are as under:

(i) The system consists of two subsystems, say A & B, arranged in series
configuration.

(ii) Subsystem A comprise of two identical units and subsystem B comprise of only
one unit. The operation of only one unit of subsystem A with subsystem B is
sufficient to do the job.

(iii) Each unit of subsystem A has two modes – normal (N) and total failure (F) while
the subsystem B has three modes – normal (N), preventive maintenance (PM)
and total failure (F).

(iv) Initially the system starts from state 0S , in which one unit of subsystem A with
subsystem B is operative and other unit of subsystem A is kept as cold standby.

(v) After working some significant time, the operative unit oft subsystem B goes for
preventive maintenance.

(vi) A perfect and instantaneous switching device is used to detect the failed unit and
put the standby unit into operation.

(vii) A repairman is always available with the system to repair a failed unit and for
preventive maintenance of an operative unit.

(viii) The priority is given to do preventive maintenance or repair of unit of subsystem
B over the repair of failed unit of subsystem A.

(ix) The switching device, used to detect the failed unit and to put the standby unit
into operation, is perfect and instantaneous.

(x) The time to preventive maintenance and time taken in preventive maintenance
are considered to be correlated and follow the bivariate exponential distribution.

(xi) The failure and repair times distribution are taken as exponential with different
parameters.

3. Notations and States of the System
(a) Notations

X  : time to preventive maintenance of an operative unit of subsystem B.
Y        : time taken in preventive maintenance of unit of subsystem B.
f (x, y)  : joint probability density function of (X,Y) for subsystem B

respectively.

( )( x y)
0(1 r) e I 2 r x y− α +β=αβ − αβ ; x, y, , 0; 0 r 1α β > ≤ ≤
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    is the modified Bessel function of type-I and order zero.
g( )⋅  : marginal p.d.f. of X (1 r)x(1 r) e −α −=α −

h( )⋅   :   marginal p.d.f. of Y (1 r)y(1 r) e −β −=β −

k(y X x)= : conditional p.d.f. of iY  given X x= .

( )( y rx)
0e I 2 r x y− β + α=β αβ

K(y X x)= : conditional c.d.f. of Y given X x= .

1 2/θ θ  : constant failure rates of a unit from N to F-mode of
subsystem A/subsystem B.

λ  : constant failure rate of a unit from PM (preventive maintenance)
mode  to F-mode of subsystem B.

1µ  : repair rate of a unit of subsystem A.

2µ  : repair rate of unit of subsystem B.

(b) Symbols for the States of the System
 We define the following symbols for the states of the system:

o sNA / NA  :     unit is in N-mode and operative and standby of the subsystem A.

o PMNB / NB : unit is in N-mode and operative and under preventive
maintenance of the subsystem B.

wr rFA / FA  : unit is in F-mode and waiting for repair/under repair of
subsystem A.

rFB  : unit is in F-mode under repair of subsystem B.
 Using these symbols, the possible states of the system are shown in the

transition diagram of the system model (figure–1). In this figure, we observe that the
epochs of entrance from 1S  to 4S  and 4S  to 7S  are non-regenerative as the future
probabilistic behaviour at these epochs depends upon the previous states. The all other
entrance epochs are regenerative.

4. Transition Probabilities and Sojourn Times
 First, we obtained the direct conditional and unconditional transition

probabilities as follows:
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53p 1= ; 63p 1= ;
r x(1 )

10 x 43 xp p e ′−α −β′= =β   ; where 1/( )′β =β λ+β+θ

( )r x(1 )
112 x 46 xp p 1 e ′−α −β ′= =λ −β λ + θ   ;

 Now the transition probabilities via one or more non-regenerative states are
given by

( )(4) r x(1 )
1 113 xp 1 r x e ( )′−α −β′ ′=θ β +αβ λ +β+ θ
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( )

( ) ( )
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( )(7) r x(1 )
1 145 xp 1 e ′−α −β ′=θ −β λ +θ 
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( )
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It can be easily verified that,

01 02 03p p p 1+ + =     ; (4) (4) (4,7)
10 x 12 x 13 x 16 x 15 xp p p p p 1+ + + + =

20 53 63p p p 1= = =     ; 30 34 35 36p p p p 1+ + + = ;
(7)

43 x 46 x45 xp p p 1+ + = .

 From the above conditional steady state transition probabilities, the
unconditional steady state transition probabilities can be obtained by using the result:

ij ij  xp p g(x) dx=∫
Thus, 10 10  xp p g(x) dx= ∫ (1 r) (1 r )′ ′=β − − β 43p=

 Similarly,

( )12 46
1

(1 r)p 1 p
1 r
′ λ β −

= − = ′λ +θ − β 
;

( ) ( )
(4) 1
13 2

1

(1 r)p
1 r

′θ β −
=

′λ +β+θ − β
 ;

( )
( )

( )( )
(4) 11
16 2 2

1 1

(1 r)(1 r)p 1
1 r 1 r

 ′λ +θ β −′λ θ β − = − −
′− β ′ λ+θ λ +β+θ − β 

;

( )
(7) 1
45

1

(1 r)p 1
1 r
′ θ β −

= − ′λ+θ − β 
;

( )
( )

( )( )

2
1(4,7) 1

15 2 2
1 1

(1 r)(1 r)p 1
1 r 1 r

 ′λ +θ β −′θ β − = − −
′− β ′λ + θ λ +β+ θ − β 

Thus we have,

01 02 03p p p 1+ + =    ; (4) (4,7) (4)
10 12 13 15 16p p p p p 1+ + + + =

20p 1=       ; 30 34 35 36p p p p 1+ + + =
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(7)
43 4645p p p 1+ + =        ; 53 63p p 1= =

The mean sojourn times in various states are as follows:
[ ]1 2( )t(1 r)t

0 1 2e e dt 1 (1 r)− θ +θ−α −ψ = ⋅ = θ + θ +α −∫
Similarly,

( )r x(1 )
11  x 4  x1   e ′−α −β ′ψ = − β λ +θ =ψ 

 So that,
( )1 41  x

1

1 (1 r) g(x) dx 1
1 r
′ β −

ψ = ψ = − =ψ ′λ +θ − β 
∫

2 2 61ψ = µ =ψ ; [ ]3 1 1 21 (1 r)ψ = µ + θ +θ + α −

5 11ψ = µ ; ( )7  x 1 r xψ = +α β

 So that, [ ]7 7  x  g(x) dx 1 (1 r)ψ = ψ = β −∫

5. Analysis of Results
(a) Reliability of the System and MTSF
  Using the technique of regenerative point the expression of reliability, in terms
of its Laplace transform, is given by

( ) ( ) ( )( )
( ) ( )

(4)
0 01 1 14 4 34 43 03 01 3 34 413

0 (4)
01 10 34 43 01 30 03 3013

Z q Z q Z 1 q q + q q q Z q Z
R (s)
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∗

∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 + + − + + =
− − − +

where 0Z∗ , 1Z∗ , 3Z∗  and 4Z∗  are the L.T. of
{ }1 2 (1 r) t

0Z (t) e− θ + θ +α −= ; ( )1 t
1 4Z (t) Z (t)=e k(t x)− λ + θ= and

{ }1 1 2 (1 r) t
3Z (t) e − µ + θ + θ + α −=

The expression of mean time to system failure (MTSF) is given by
( ) ( ) ( ) ( )

( )( )
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(b) Availability Analysis
 Let us define iA (t)  as the probability that the system is up (operative) at

epoch ‘t’, when initially the system starts from state iS E∈ . Using the technique of
Laplace transforms, one can obtain the value of 0A (t)  in terms of its Laplace

transforms i.e. 0A (s)∗ .
 The steady state availability of the system is given by

0 0 0 1 1t s 0
A lim A (t) lim s A (s) N D∗

→∞ →
= = =

where,

( ) ( ) ( )(4) (4,7) (4)
1 30 0 01 1 14 4 3 34 4 03 01 13 15 16N p p p p p p p p p = ψ + ψ + ψ − ψ + ψ + + +    

and ( ) (4,7) (4)
1 0 30 1 01 30 2 30 01 12 02 5 15 6 16 01 30D p p p p p p p p p p p =ψ + ψ + ψ + + ψ + ψ 
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( ) ( ) ( )(7)
3 4 34 5 34 35 6 36 34 46 02 01 10 1245p p p p p p p 1 p p p p   + ψ + ψ + ψ + + ψ + − − +  

The expected up time of the system during (0, t) is given by,

up 0(s) A (s) s∗ ∗µ =

(c) Busy Period Analysis
 Let P

iB (t)  and r
iB (t)  be the probability that the repairman is busy in the

preventive maintenance of subsystem ‘B’ and repair of failed unit of subsystem ‘A’ or
subsystem ‘B’ respectively at epoch t, when initially the system starts from state iS E∈ .

Using the technique of Laplace transforms, one can obtain the value of P
0B (t)  and

r
0B (t)  in terms of its Laplace transforms i.e. P

0B (s)∗  and r
0B (s)∗ .

 In a long run, the probability that the repairman will be busy in the preventive
maintenance and repair of a failed unit of subsystem ‘A’ or subsystem ‘B’ respectively
is given by

P
0 2 1B N D=  and r

0 3 1B N D=

where, ( ) ( ) ( )(4) (4,7) (4)
2 01 03 1 14 4 03 01 4 47 7 3413 15 16N p p p p p p p p p p = ψ + ψ + + + + ψ + ψ 

and ( ) ( )(4,7) (4) (4) (4,7) (4)
3 30 02 2 01 12 2 5 6 03 0115 16 13 15 16N p p p p p p p p p p p   = ψ + ψ + ψ + ψ + + + +   

( )(7)
3 36 6 34 5 46 645p p p p × ψ + ψ + ψ + ψ 

The value of 1D  is same as in case of availability analysis.
  The expected busy period of the repair facility in repair of a unit of subsystem
‘A’ and subsystem ‘B’ respectively during (0, t) is given by

P P
b 0(s) B (s) s∗ ∗µ =  and r r

b 0(s) B (s) s∗ ∗µ =

(d) Profit Function Analysis
  The expected profit incurred by the system during (0, t) is given by
 P(t) = Expected total revenue in (0, t) – Expected total repair cost in (0, t)
   = P r

0 up 1 b 2 bK (t) K (t) K (t)µ − µ − µ

 where, 0K  is the revenue per unit up time by the system and 1 2K and K  are
respectively the amounts paid to the repairman per unit of time when the system is
under repair due to the failure of any unit of subsystem ‘A’ and subsystem ‘B’.
  The expected profit per unit time in a steady state is given by

P = P r
0 0 1 0 2 0K A  K B  K B− −

where A B
0 0 0A , B , and B  has been already defined.

6. Graphical Study of the System
 For a more concrete study of system behaviour of the model, we plot the

curves for MTSF and Profit function in figure–2 and figure–3 respectively for different
values of r (= 0.50, 0.25) and 2µ (= 0.07, 0.05, 0.03) against the failure parameter



Profit Analysis of A Complex System … 101

2θ while the other parameters are kept fixed as: 1θ = 0.05, 1µ = 0.08, λ = 0.04, α =
0.04, β = 0.06, 0K = 2500, 1K = 1000, 2K = 700.

 From the curves, we observe that both the MTSF and profit decrease as the
failure rate 2θ increases and these characteristics increase with the increase in repair
rate 2µ  and correlation coefficient r. Thus, we conclude that the high correlation
between the time to preventive maintenance and time taken in preventive maintenance
results the better system performances.
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