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Abstract
Block (1975) extended bivariate exponential distributions (BVEDs) of Freund (1961)

and Proschan and Sullo (1974) to multivariate case and called them as Generalized Freund-
Weinman's multivariate exponential distributions (MVEDs). In this paper, we obtain MLEs of the
parameters and large sample test for testing independence and symmetry of k components in the
generalized Freund-Weinman's MVEDs.

Key Words: Fisher information, Generalized likelihood ratio test, Maximum likelihood
estimator, Multivariate exponential model, Simultaneous failures.

1. Introduction
Multivariate exponential models can be viewed in the context of failure time

distribution of k components. Kotz, Balakrishna and Johnson (2000) discussed seven
multivariate exponential distributions. These are generalizations of Freund's BVED by
Weinman (1966), the multivariate exponential (MVED1) of Marshall and Olkin (1967),
MVED of Block (1974), the MVED of Al-Saadi and Young (1982) which is
generalization of BVED of Moran (1967) and Downton (1970), the MVED of Raftery
(1984) and O'Cinneide and Reftery (1989), the MVED of Olkin and Tong (1994) and
the multivariate exponential obtained by specializing a particular multivariate gamma
distribution. The Weinman distribution is a generalization of Freund's distribution but is
not a completely satisfactory generalization, since it is restricted to identical marginals
which corresponds to symmetry of the marginal life time distribution of k components.
Block (1975) generalized the Weinman model to non-identical marginals which leads
to a multivariate exponential distribution (MVED2) and it depends on k2k-1 parameters.
Block (1975) also extended BVED of Block and Basu (1974) to multivariate case
which we call as MVED3 model. The fourth model is multivariate extension of
Proschan and Sullo's (1974) BVED, which we call as MVED4 and is the combination of
both MVED1 and MVED2 models.

The problem of test of independence in the symmetric MVED3 of Block
(1975) was studied by Weier and Basu (1980). Their work is based on generalized
likelihood ratio test (GLRT) of Barlow  et al (1972) who considered the GLRT for
testing equality of scale parameters in the ordered gamma distributions, using isotonic
regression estimates. Tests of independence as well as symmetry in MVED1 and
MVED3 have been studied in detail by Hanagal (1991a, 1993a, 1993b). In this  paper,
we consider the above problems in MVED2 and MVED4 models. [ See related results in
Hanagal (1991b)].

In Section 2, we study the inter-relationship between the multivariate
exponential models. In Section 3, we obtain MLEs and their asymptotic distribution in
these two models. We also determine the confidence intervals of the parameters in these
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two models. In Section 4 and 5, we develop test of independence and symmetry in these
two models.

2. Models for MVED
 The p.d.f. of  (X1,X2,….,Xk) of  MVED2 of Block (1975) is given by
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 In the above model MVED2 of Block (1975), the j-th failure is independent of order of
failure of previous (j-1) components and so we have k2k-1 parameters in all as can be seen from
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 The above model MVED2 has loss of memory property (LMP) but the marginals are
not exponentials and are weighted combinations of exponentials.
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θ , j=1,…,k-1; kii k ,...1...1 =≠≠ . Here the hypothesis of independence is a
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 The symmetry of k components implies identical marginals of all k components. The
random variables ),..,( 1 kXX  are identically distributed if and only if
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 We next derive the pdf of the fourth model MVED4 which is the multivariate extension
of BVED of Proschan and Sullo (1974) in the following manner as suggested by Block (1975).

 Initially the lifetimes ),..,( 1 kXX follow (k+1) parameters version of MVED1 of
Marshall-Olkin (1967) as stated in Proschan-Sullo (1976) with survival function
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 We assume that if j(j=1,…,k-1) components fail (and not been replaced) then the
survival function of the remaining (k-j) components is
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 Incorporating the above modification, we derive the p.d.f. of MVED4 which is given by
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 In the above model MVED4 also we assume that the j-th failure is independent of the

order of failure of previous (j-1) components and so we have 12 1 +−kk parameters in all in
MVED4 model.

 When ,01 =+kθ i.e., the probability of simultaneous failures of the components is
zero, the MVED4 reduces to MVED2 of Block (1975), which in turn reduces to MVED3 from
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3. MLEs of the Parameters and their Asymptotic Distributions
 We first consider the method of maximum likelihood in MVED2 of Block (1975). Let
{ } nlkixil ,...,1;,...,1,)( ==  be i.i.d. sample of size n. The likelihood of the sample of size
n in MVED2 model is given by
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 Thus the score function w.r.t. the components of the parameters depends only on that
component and the components are separable in the sense of Hanagal and Kale (1992).
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where 1+km is the number of observations with at least two simultaneous failures of k
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 Note that the parameters in this model are also separable in the sense of Hanagal and

Kale (1992).  The MLEs of these 12 1 +−kk parameters are given by

.

,...,1,
)(

,...,1...;,...,1,
)(

1
)1(

1
1

1
)1()(

)1(
,...,|)1(

,...,|

1

1
)1()(

)1(
,...,|)1(

,...,|

11

11

11

11

∑

∑

∑

=
−

+
+

=
−

−
−

=
−

−
−

=

=
−

=

=≠≠=
−

=

−

−

−

−

n

l
lk

k
k

kn

l
lklk

k
iiik

iii

kn

l
ljlj

j
iiij

iii

x

m

ki
xx

m

kiikj
xx

m

kk

kk

jj

jj

θ

η

θ

 Using )( )1(
,..,| 11

−
−

j
iii jj

mE and )( 1+kmE , we obtain Fisher information matrix which is

diagonal with diagonal elements given by



 Inference in the Multivariate … 7

2
1

1

2)1(
,...,|

)1(
,...,|

12)1(
,...,|

)1(
,...,|

)(

,...,1,
][

][

,...,1...;,...,1,
][

][

11

11

11

11

+

+

−

−

−

−

=

=≠≠=

−

−

−

−

k

k

kj
iii

k
iii

kj
iii

j
iii

mE

ki
mE

kiikj
mE

kk

kk

jj

jj

θ

θ

θ

The parameters ,;,...,1, )1(
,...,|

)1(
,...,| 1111

−−
−−

=≠ k
iii

j
iii kkjj

klj ηθ kii k ,...1...1 =≠≠ and

1+kθ  are thus orthogonal. The above Fisher information matrix is positive definite. Here one can
very easily check that MLEs satisfy all regularity conditions for consistent asymptotically normal
(CAN) estimators. [See Rao (1973)]. Thus using multivariate central limit theorem (MCLT), the
MLEs are asymptotically multivariate normal (AMVN) with variance covariance matrix which is
diagonal with diagonal elements given by

.
)(

)(

,...,1,
][

][
)(

,...,1...;,...,1,
][

][
)(

1

2
1

1

)1(
,...,|

2)1(
,...,|)1(

,...,|

1)1(
,...,|

2)1(
,...,|)1(

,...,|

11

11

11

11

11

11

+

+
+

−

−
−

−

−
−

=

==

=≠≠==

−

−

−

−

−

−

k

k
k

kk
iii

k
iiij

iii

kj
iii

j
iiij

iii

mE
V

ki
mE

V

kiikj
mE

V

jk

jk

jj

jj

jj

jj

θ
θ

η
η

θ
θ

Hence all the 12 1 +−kk  MLEs are asymptotically independent. We can also obtain

MLEs of ,)1(
,...,| 11

−
−

k
iii kk

θ kii k ,...1...1 =≠≠  by the relation ,1
)1(

,...,|
)1(

,...,| 1111 +
−− −=

−− k
k

iii
k

iii kkkk
θηθ

kii k ,...1...1 =≠≠ . The asymptotic variances of ,)1(
,...,| 11

−
−

k
iii kk

θ kii k ,...1...1 =≠≠  can

also be obtained from the relation

).()()( 1
)1(

,...,|
)1(

,...,| 1111 +
−− +=

−− k
k

iii
k

iii VVV
kkkk

θηθ

The )%1(100 α−  confidence interval for the parameters

;,...,1,)1(
,...,| 11

kljj
iii jj

=≠−
−

θ kii k ,...1...1 =≠≠ and 1+kθ  based on the MLEs and their

asymptotic variances are given by

2/1
12/11

1
2/1)1(

,...,|2/1
)1(

,...,|

]/)([

,...,1...;,...,1,]/)([
1111

nV

kiikjnV

kk

k
j

iii
j

iii jljl

+−+

−
−

−

±

=≠≠=±
−−

θξθ

θξθ

α

α

where 2/1 αξ −  is )%2/1(100 α−  point of standard normal variate.

4. Test for Independence
 We first consider the test of independence in MVED4 model. In this model, the
hypothesis of independence of k components corresponds to
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)'.,...,1...;1,...,1,( 1
)1(

,...,|
)(

,...,|1 111
kiikj k

j
iii

j
iii jkjk

=≠≠−=−= −
−

θθµ  The hypothesis is

)12( 1 −−kk  dimensional one. Here the test statistic is 1
1

1
'

1 WnW −Σ  which is asymptotically

chi-square with )12( 1 −= −kkp d.f. under 0H where 1Σ  is the variance-covariance matrix

1W  and is estimated by 1Σ  from the MLEs. For the alternative 0: 11 ≠µH , we reject H0 if

.2
1,1

1
1

'
1 αχ −

− >Σ pWnW  The power function increases monotonically with non-centrality

parameter .1
1

1
'
1 µµ −Σn

5. Test for Symmetry
 We consider the test for symmetry in both MVED2 and MVED4 models where the

hypothesis of symmetry is )12( 1 −−kk  dimensional one i.e., 0: 20 =µH  versus

0: 21 ≠µH where
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)',...,1...;1,...,1,( 1
)1(

,...,|
)1(

,...,|2 1111
kiiklj k

j
iii

j
iii jljj

=≠≠−=≠−= −−
−−

θθµ  in both

MVED2 and MVED4 models where 2µ  is a vector of order )12( 1 −= −kkp . The test
statistic is based on

)',...,1...;,...,1,'( 1
)1(

,...,|
)1(

,...,|2 1111
kiikljW k

j
iii

j
iii jljj

=≠≠=≠−= −−
−−

θθ  where 2W  is  a

vector of order p. The exact distribution of 2W  is very difficult to find out but it s asymptotic
distribution can be obtained using the results of Section 3.
 One can obtain GLRT based on ).(log2 xλ−  An approximation to this test

procedure is obtained by using the result that 2W  is AMVN( n/, 22 Σµ ) where 2Σ is the

variance-covariance matrix of 2W . But 2Σ  depends on unknown parameters, we studentize

(estimating the variance-covariance matrix 2Σ  by 2Σ  from the MLEs under 10 HH ∪ ) and

construct the test statistic 2
1

2
'

2 WnW −Σ  which is asymptotically chi-square with )12( 1 −−kk
d.f. under 0H . For the alternative 0: 21 ≠µH , we reject H0 if .2

1,2
1

2
'

2 αχ −
− >Σ pWnW

The power function increases monotonically with non-centrality parameter .2
1

2
'
2 µµ −Σn

Numerical Study
 The numerical study of estimation of the parameters and testing for independence and
symmetry of MVED4 when k = 2 have been done by Hanagal (1992). MVED2 is sub-model of
MVED4 and all the estimation and testing procedures of MVED2 can be obtained from MVED4

model by substituting .01 =+kθ
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