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Abstract

Block (1975) extended bivariate exponentia distributions (BVEDSs) of Freund (1961)
and Proschan and Sullo (1974) to multivariate case and called them as Generalized Freund-
Weinman's multivariate exponential distributions (MVEDS). In this paper, we obtain MLESs of the
parameters and large sample test for testing independence and symmetry of k components in the
generalized Freund-Weinman's MV EDs.
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1. Introduction

Multivariate exponential models can be viewed in the context of failure time
distribution of k components. Kotz, Balakrishna and Johnson (2000) discussed seven
multivariate exponential distributions. These are generalizations of Freund's BVED by
Weinman (1966), the multivariate exponential (MVED;) of Marshall and Olkin (1967),
MVED of Block (1974), the MVED of Al-Saadi and Young (1982) which is
generalization of BVED of Moran (1967) and Downton (1970), the MVED of Raftery
(1984) and O'Cinneide and Reftery (1989), the MVED of Olkin and Tong (1994) and
the multivariate exponential obtained by specializing a particular multivariate gamma
distribution. The Weinman distribution is a generalization of Freund's distribution but is
not a completely satisfactory generdization, since it is restricted to identica marginals
which corresponds to symmetry of the margina life time distribution of k components.
Block (1975) generalized the Weinman model to non-identical marginals which leads
to a multivariate exponential distribution (MVED)) and it depends on k2<* parameters.
Block (1975) aso extended BVED of Block and Basu (1974) to multivariate case
which we call as MVED; model. The fourth model is multivariate extension of
Proschan and Sullo's (1974) BVED, which we call as MVED, and is the combination of
both MVED; and MVED, models.

The problem of test of independence in the symmetric MVED; of Block
(1975) was studied by Weler and Basu (1980). Their work is based on generalized
likelihood ratio test (GLRT) of Barlow et a (1972) who considered the GLRT for
testing equality of scale parameters in the ordered gamma distributions, using isotonic
regression estimates. Tests of independence as wdl as symmetry in MVED; and
MVED; have been studied in detail by Hanaga (1991a, 1993a, 1993b). In this paper,
we consider the above problemsin MVED, and MVED, models. [ See related resultsin
Hanagal (1991b)].

In Section 2, we study the inter-relationship between the multivariate
exponential models. In Section 3, we obtain MLES and their asymptotic distribution in
these two models. We a so determine the confidence intervals of the parametersin these
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two models. In Section 4 and 5, we develop test of independence and symmetry in these
two models.

2. Modelsfor MVED
Thep.df.of (X1,Xa....X) of MVED, of Block (1975) is given by

f(x) = (Oq.“ D exp(- & (A 40K - Xy )O=X, <X, <<,

j=1 r=j
1)
where Xy = i-th ordered failure time, i.e, i-th minimum of (Xpa Xy ), 1 =10k
1) — 1) L i (i-1) : .
a (i =q; J||1 ..... - 8 0,j=1..k i1 =1.k, q' i, 18 failure

rate of the life time of the component C, when (j-1) components Cil N O failed and
, )

'
q! || ii , is independent of the order of failure of the components C, ,...,C; . (See Block
..... , -

(1975) for more details). The double subscripts I, * ...% 1, =1,...K are used because we have
k! different regionsin thep.df f(X).

In the above model MVED, of Block (1975), the j-th failure is independent of order of
failure of previous (j-1) components and so we have k2! parameters in al as can be seen from
the following argument. For fixed j, the number of parameters in

: : oK - 10
ql“hll.?.ij ittt =1 kare kg_ =. So, for j = 1,2,...k the total number of
ol -1

. - 16
parametersin ') o ) Lt =1..Kwill be a kg T=k2“".
Lol _ j -

The above model MVED, has loss of memory property (LMP) but the marginals are
not exponentials and are weighted combinati ons of exponentials.

The random variables (X,.., X,.) would be independent if and only if q,“l,) .....

q,“ v j=1...k-L; i, * .7 i, =1..K. Here the hypothesis of independence is a

ligseerij.q
k(2" * - 1) dimensional one and can be shown as follows.
(i)

iligsendin?

Observe that for fixed iy and j, the number of parameters in (],

_— % 10 [@))] .
Iy =1..Kisg . =.Sothetotal number of parametersin Cfj i ; .J=1,...K-
i o
: i1 1 =1.Kk 5ok 2 2€t-1
1; It =1 would  become a j ( ). These
=1 ﬂ

(2% - 1) parameters all equal to qi‘ko) for fixed i, So, the hypothesis of independence is a
k(2! - 1) dimensional one.
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The symmetry of k components implies identica marginals of all k components. The

random  variables  (X,,..,X,) ae identicaly distributed if and only if
l l . — . - — .

q.“hl,_?_,i.1:q,l‘|’,1,__)_,,11 jri=1..ki*..ti =1..K. In this cae dso the

hypothesis of symmetry isa K(2** - 1) dimensional one and can be shown as follows.

For fixed j, the number of parameters in q,“l, l)lll ot =1 kwill be

ak- 10 . .
- imensional one. ererore Orj = , e Nypothesis symmetry Is a
k 11d a Therefore f 1..., k, the hypothesis of et
j- 1y
K1 ak-1p U
é ik :- 1y = k(2" - 1) dimensional one.
=] &1- ?S

We next derive the pdf of the fourth model MVED, which isthe multivariate extenson
of BVED of Proschan and Sullo (1974) in the foll owing manner as suggested by Block (1975).

Initially the lifetimes (X,,.., X, ) follow (k+1) parameters version of MVED; of
Marshall-Olkin (1967) as stated in Proschan-Sullo (1976) with survival function

& i

F(x) =expi- A 6" X0y, max(xl,...,xk)g,
| i=1

x 20993 -,i=1..,kq,., 3 0.

We assume that if j(j=1,...,k-1) components fail (and not been replaced) then the
survival function of the remaining (k-j) componentsis

r= _ l, & (r-1) u
F(Xii+1 e X, ) = eXpi- a iy, %, - dent max(xl )g,
T r=j+

it =1,k
Incorporating the above modification, we derive the p.d.f. of MVED, whichis given by

i
f(x) = Oq.(J Y _(Q.(k Y +qk+1)eXpl a aql(J X5y = X-) = DX ¥
b

T j=ir=j
0= Xio <X, <...<X; w.rt. Lebesque measurein Ry

k-1+1

i ‘ ..
: u

(- 1) - R .

§O q. _Qk+1 eXpl a ad, (X(j) - X(j—l)) = Quaa Xk 14 g

T ==

O:Xio <Xi1 <"'<Xik—| <(Xik—|+1

R, i = 1,000k (2.2
where x; = i-th ordered failure time i = 1,...k, q“ Y —q,“ voo3 0,j = 1,..k

fig ey |J,1
H 1 1 H —
ittt =1k,

=...= X, ) w.rt Lebesque measurein
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In the above model MVED, aso we assume that the j-th failure is independent of the

order of falure of previous (j-1) components and so we have k2k? +1 parameters in dl in
MVED,4 model.

When Q. ,, = 0, i.e., the probability of simultaneous failures of the components is

zero, the MVED, reduces to MVED, of Block (1975), which in turn reduces to MVED; from
0] - -9 i i i =

relation (5.4) of Block (1975). If Oy ;= Oy o j=lekel i bt =LK

i.e., falure of a component doesnot change the parameter of the life distribution of other

components, MVED, reduces to MVED; of Marshal-Olkin (1967). The random variables

(X{,-.X,) of MVED4 ae independent if and only if Q,,, =0Oand q,“l,) _____ i =

ali L kL it ..t i, =1..K Here the hypothesis of independence is

figseensijen
k(2% *- 1) +1 dimensional one.
The random variables (X,,.., X, ) are identicaly distributed if and only if
q,“ b :qi(j-'l)- =1k it .., =1..K. Here the hypothesis for

fiseensijen pligseien

symmetry is K(2*°* - 1) dimensiona one.

3. MLEs of the Parameters and their Asymptotic Distributions
We first consider the method of maximum likelihood in MVED, of Block (1975). Let

{(x)hi=1...k;l =1,...,n beii.d sampleof size n. The likelihood of the sample of size
nin MVEDZ model isgiven by

-1)
1 I 1
L= (()q|(J )) J expf - a (a q.“ ))a Xy = X-p (XY
=1 r=j
where m(J Y= m(ﬂ.ll). = the number of observations when the component C, fails after
J

the failure of (j-1) components Cil,...,Ci, _and the failure of the component C is
1- ]
independent of the order of failure of the components Cil,...,Ci, cand Xy = the j-th
-

minimumof (X, ,..., %, ),] =1...,Nn.

The expected values of N} J|| l) iy ] =1,...,K can be obtained from the p.d.f. of

MVED, which are given by
E(mY, ) =nP(max(X, ... X; ) <X Mmin(X ,...X)),

=1kt Lt =10 K. (32)
Here E(I’T](J Y ) depends on the parameters Y. j 11 =1..,k;

liyeniijoq i eijg
i, ...t i, =1,..K The exact expression of E(I’l’]“|I
The likelihood equations are given by

) is very difficult to obtain.
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(i-9
T“Ogl_ _ m ||1,..,| 1 c? . . P
fq00 =0= q“| no ia:l(xmI - Xy )l =Lkt i =1k

|'1""'| 1

Thus the score function w.r.t. the components of the parameters depends only on that
component and the components are separable in the sense of Hanagal and Kade (1992).

The MLEs of qll(ljlll)l,l’J =1k 0t Lt =10 K aegivenby

(i-1)
me
1 _ 1 eemn 1 - o . _
q,"hly_?_,iH 7 — NI O ' T P B '

Using E(I’T](J Y ) from (3.2), we obtain Fisher information matrix which is

fiy,ij-n

diagona with diagonal elements given by

[m“pﬁ).., - 1]
[ '(J' l)| ]2 ,

|j||1 ----- -j—1

=1..,Ki T, =1k

The parameters q,“ b =10k it Lt =Lk ae thus

[ig,eey | 1!
orthogonal. The above Fisher mformatlon matrix is positive definite. Here one can very easily
check that MLEs satisfy all regularity conditions for consistent asymptotically norma (CAN)
estimators. [See Rao (1973) p.347, 364]. Thus using multivariate central limit theorem (MCLT),
the MLEs are asymptotically multivariate normal (AMVN) with variance covariance matrix
which is diagonal with diagonal €ements given by

[0, 17 . .
YCERIE W’Fl---,killl L=k

]lll ----- lj-1
Hence dl the k2! MLEs are asymptotically independent. The 100(1- a )%
confidence interval for the parameters q,“ b jri=L..k i,t..ti =1k

fig,..., |1

based on the MLEs and their asymptotic variances are given by
~(i-0) (i-0 12 . -
a4 X V@D, )N =1kt =1k

[ig ey | 1
where X, . ,, is 100(1- a / 2)% point of standard normal variate.
We next consider the method of maximum likelihood in MVED, model. Letting

hi2 i =@, +0y), thelikelihood of the sample of size nisin MVED, model is
given by
'
L=(OQai™)™ (&)™ q,., expf- a(aq." ”)a (X = X-n)
=1 =1 r=j

n

(k 1) 2
h a (X(k)l Xik-11 )- Ovaad X(k»l)l}

I=1
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where M, ,; is the number of observations with at least two simultaneous failures of k

components and M"Y =m{{Y; is as defined in the likelihood of MVED, from
expression (3.1).
The expected values of M, ,; and mJ Y ,j :l,...,k can be obtained from the

||1,..,|J 1
p.d.f. of MVED, which are given by

E(m,)= nP[max(Xl pa Xi )<Ko ==X = X
r=1,.. k1 i;* .. =1..K and E(m J|| l) ) as defined in (3.2). Here aso
E(m.,,) ad E(I’T]“lli)_’I ) depends on the parameters q|(|J| 1)| it =Lk
CE

iiclig i ? ) )|s very

difficult to obtain.

=1..Kand q,,,. The exact expression of E(m{* T

,..,| 1

The likelihood equations are given by

T“Ogl_ A m(Jpl,l.).,. 1 3 . G 1 —
‘Hq“ 5 -0= q“ R _al(x(j)I - X )i I =Lk L =10k
Piligmijn Pilignijn 1=
fllogL mi? 8 .
=0=_troa . Xy = X I =1..,k
AL P2, & Do X =2
flogL
J =0= ey a Xik- 1)1 -
ﬂqk+l qk+1 i=1

Note that the parameters in this model are also separable in the sense of Hanagal and
Kale (1992). The MLEs of these k2! +1 parameters are given by
(i-1)
My i
(J l) _ Laeees 1 - ) P
q| ||1 _____ Ii'l - 61 I I l] _:L'""k’ll 1 ---1 Ik —:L...,k
a (X(j)l - X(j—l)l)

1=1

(k-1)

H(k»l) _ _ mklll ----- i1 ,ik:l---,k

i ligmies
(X(k)l - X(k—l)l)

o)

1=1

M

qk+l = n

[o]
a Xik- 11

Using E(m“ Y. Yand E(M,,,) . we obtain Fisher information matrix which is

fig,ij-n

diagonal with diagonal elements given by
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Elm{,]

li,--.s ] 1

[q(J 1) ]2 !

figseesijn

j=l..ki; i =1,k
el )
TN
E(M.,)

Ui
The parameters q,“ Doojrl=1,.. kh,(:(hi)__’ ot =1 kend

[ig sy |1

=1..k

J,., arethus orthogonal. The above Fisher information matrix is positive definite. Here one can

very easily check that MLEs satisfy all regularity conditions for consistent asymptatically normal
(CAN) estimators. [See Rao (1973)]. Thus using multivariate central limit theorem (MCLT), the
MLEs are asymptotically multivariate norma (AMVN) with variance covariance matrix which is
diagonal with diagonal elements given by

[ 1% . .
( I(J|I1_:I:)..Y |'1) Wl)l]’] :ll’k’ll ! "'1 Ik ::L’k

[h (k-1) ]2

il miigd
VEHD )= i =1k
liy iy E[m(:(lllyl.)mh ] k

Qe
V() =— -
E(mk+1)
Hence all the K2%* +1 MLEs are asymptotically independent. We can also obtain
k-1 : : Mol _pa(ke1) °
MLEs of qi£|i1,.?.,ik,11 it ..t i =1..K bythereation el q _hik|il ..... i, ~ i

it ...t i, =1..K. The asymptotic variances of qiilTi;_?-riKl’ it =K can

a so be obtained from the relation
vai®, )=VESD )V (@)

P [ Py P [P Py

The 100(1- a)%  confidence  interval  for  the  parameters
C]IJ b =1k it ..t =1..Kand Q,,, based on the MLEs and their

[ig e 1!
asymptotic variances are given by

a2 E X V@D )R =Lk Lt =k

fig,ees ij.1

J J 12
qk+l iXl—a/z[\/(qkﬂ)/n]
where X, . ,, is 100(1- a /2)% point of standard normal variate.

4. Test for I ndependence

We first consider the test of independence in MVED, model. In this model, the
hypothesis of independence of k components corresponds to
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H,:q : =qU?, ,j=1..,k-2%ijt..1i =1..Kad(q,,, =0. Thisis

iz e lig i

k(2** - 1) +1 dimensional one. The test is based on

A

W :(qi(kju)1 ..... i T Cilijhll)lllij =1..k-Lig* .ty :l"'!k;dk+1)lzw1dk+1)l1

where W isavector of order K(2“"* - 1) +1 and W, isavector of order K(2“* - 1) . The

exact distribution of W is very difficult to find out but its asymptotic distribution can be
obtained using the results of Section 3.

One can obtain GLRT based on - Z[logl (X) = - Z[log L, (x) - logL,(x)].
An approximation to this test procedure is obtained by using the fact that W is
AMVN(IT, S/ Nn) where

m= (qi(kj|i)1 ..... i " qi(kj|i_1%)..,ii,11 J=lo k- Lt i =1, K O)'= (MO
, T isavector of order K(2“* - 1) + 1 and M isavector of order K(2“"* - 1) and Sisthe
variance-covariance matrix of W. But S depends on k2" +Lunknown parameters, we
studentize (estimating the variance-covariance matrix S by é from the MLEs under
H, E H ) and construct the test statistic NW'S W whichiis asymptotically chi-square with
K(2**- 1) +1d+. under Ho. This is well-known as Wald's test. [In the case of GLRT, the
variance-covariance matrix (S) of Wis estimated by MLEs under Hg]. We reject Hy if
nw'S*w >c 5+1,1— . Where C>. 1, . is 100(1- a)% point of chi-square variate,
P =Kk(2*- 1) . The power function increases monotonically with non-centrality parameter
nmS 'm

We next consider MVED, model. The hypothesis of independence corresponds to
Ho:m =0 versuss H, :m 1 Owhere

m :(qi(j) | qi(j'l) =1 k=Lt Lt =1,...,K)". The hypothesis is

ki iz i
k(2k,l - 1) dimensional one. Here the test statistic is nV\/lSl]V\/l which is asymptotically

chi-square with P = K(2"° " - 1) df. under H,where S, is the variance-covariance matrix

A

W, and is estimated by S, from the MLEs. For the aternative H, 1M O, we reject Ho if

nw, S;'w, > C,z)’l_a. The power function increases monotonicaly with non-centrality

parameter nanilnl.

5. Test for Symmetry
We consider the test for symmetry in both MVED, and MVED, models where the

hypothesis of symmetry is K(2“*- 1) dimensiona one i.e, H,:m =0 versus
H,:m,* Ownere
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m =@ A st =l k=Lt i =1.,K) in both

i pligsenijeg

MVED, and MVED, models where M, is a vector of order P =K(2"- 1). The test
statistic is based on

W, =@ -al it =tk bt i =1.,K)" where W, s a

i lig e . g e o1
vector of order p. The exact distribution of W2 is very difficult to find out but it s asymptotic
distribution can be obtained using the results of Section 3.

One can obtain GLRT based on - 2l0gl (X). An approximation to this test

procedure is obtained by using the result that W, is AMVN(M,, S, /N) where S, is the

variance-covariance matrix of Wz- But 52 depends on unknown parameters, we studentize
(estimating the variance-covariance matrix S, by éz from the MLEs under H E H,) and
construct the test statistic W, S, W, which is asymptotically chi-square with k(2 * - 1)
df. under H,. For the altenative H, :m, 1 0, we rgect Ho it NW,S, W, >¢2 .

The power function increases monotonically with non-centrality parameter nm'ZS';mz.

Numerical Study

The numerical study of estimation of the parameters and testing for independence and
symmetry of MVED, when k = 2 have been done by Hanagal (1992). MVED; is sub-model of
MVED, and al the estimation and testing procedures of MVED, can be obtained from MVED,

model by substituting (],,; = O.
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