ESTIMATION OF THE RELIABILITY FUNCTION FOR A FAMILY OF LIFETIME DISTRIBUTIONS UNDER TYPE I AND TYPE II CENSORINGS

Ajit Chaturvedi¹ , Kuldeep Chauhan² and Md. Wasi Alam³

1, 3: Department of Statistics, University of Delhi, Delhi-110007, India.

E Mail: 3. wasif_alam3@yahoo.co.in

2: Department of Statistics, Meerut College, Meerut-250005, India.

Abstract

A family of lifetime distributions is proposed. The problems of estimating the reliability function $R(t)=P(X>t)$ and $P=P(X>Y)$ are considered under type I and II censorings. Uniformly minimum variance unbiased and maximum likelihood estimators are derived. A comparative study of the performance of the two methods of estimation is done. Simulation study is performed.

Key Words: Reliability function; stress-strength set-up; type I and II censorings; uniformly minimum variance unbiased estimators; maximum likelihood estimators; bootstrap methods.

1. Introduction

The reliability function $R(t)$ is defined as the probability of failure-free operation until time t. Thus, if the random variable (rv) X denotes the lifetime of an item, then $R(t)=P(X>t)$. Another measure of reliability under stress-strength set-up is the probability $P=P(X>Y)$, which represents the reliability of an item of random strength X subject to random stress Y. Many researchers have considered the problems of estimation of $R(t)$ and 'P' in the literature under censoring and complete sample case. Uniformly minimum variance unbiased estimators (UMVUES) and maximum likelihood estimators (MLES) for R(t) and 'P' have been derived for various lifetime distributions, like, exponential, gamma, Weibull, half-normal, Maxwell, Rayleigh, Burr and others. For a brief review, one may refer to Pugh (1963), Basu (1964), Bartholomew (1957, 1963), Tong (1974, 1975), Johnson (1975), Chaturvedi and Surinder (1999), Sinha (1986), Kelly, Kelly and Schucany **(**1976), Chao (1982), Sathe and Shah (1981), Constantine, Karson and Tse (1986), Tyagi and Bhattacharya (1989), Awad and Gharraf (1986) and others.

In the present paper, we consider a family of distributions, which covers many lifetime distributions as specific cases. The UMVUES and MLES of R(t) and 'P' are derived under type I and II censorings. In order to obtain these estimators, the major role is played by the estimators of the powers of the parameter(s) and the functional forms of the parametric functions to be estimated are not needed. It is worth mentioning here that, in order to estimate 'P', in the literature, the authors have considered the cases when X and Y follow the same distributions, may be with different parameters. We have generalized the result to the case when X and Y may follow any distribution from the proposed family of distributions. Simulation study is carried out to investigate the performance of the estimators.

In Section 2, we introduce the family of lifetime distributions. In Section 3, we derive the UMVUES of $R(t)$ and 'P' under type I and II censorings. In Section 4, we obtain the MLES of R(t) and 'P' under two types of censorings. Finally, in Section 5, the simulation study is performed.

2. The Family of Lifetime Distributions

Let the rv X follow the distribution having the probability density function (pdf) $f(x; a, \lambda, \theta) = \lambda G'(x; a, \theta) \exp\{-\lambda G(x; a, \theta)\};\ x > a \ge 0, \lambda > 0.$ (2.1)

Here, $G(x; a, \theta)$ is a function of x and may also depend on the parameters 'a' and $\hat{\theta}$ - may be vector-valued. Moreover, $G(x; a, \theta)$ is monotonically increasing in x with $G(a; a, \theta) = 0$, $G(\infty; a, \theta) = \infty$ and $G'(x; a, \theta)$ denotes the derivative of $G(x; a, \theta)$ with respect to x.

 We note that (2.1) represents a family of lifetime distributions as it covers the following lifetime distributions as specific cases:

- i. For $G(x;a,\theta) = x$ and a=0, we get the one-parameter exponential distribution [Johnson and Kotz (1970, p.166)].
- ii. For $G(x;a,\theta) = x^p$ (p>0) and a=0, it gives Weibull distribution [Johnson and Kotz (1970, p.250)].
- iii. For $G(x; a, \theta) = x^2$ and a=0, it leads us to Rayleigh distribution [Sinha (1986, p.200)].
- iv. For $G(x; a, \theta) = log(1+x^b)$ (b>0) and a=0, it turns out to be Burr distribution [Burr (1942) and Cislak and Burr (1968)].
- v. For G(x;a, θ) = log($\frac{x}{a}$), it is known as Pareto distribution [Johnson and Kotz (1970, p.233)].
- vi. For G(x;a, $\underline{\theta}$) = log(1+ $\frac{x}{v}$), v>0 and a=0, we get Lomax (1954) distribution.
- vii. For G(x;a, $\underline{\theta}$) = log(1+ $\frac{x^b}{v}$), b>0, v>0 and a=0, it gives Burr distribution with scale parameter v [see Tadikamalla (1980)].
- viii. For $G(x;a,\theta) = x^{\gamma} exp(vx)$, $\gamma > 0$, $\nu > 0$ and a=0, it leads us to the modified Weibull distribution of Lai *et al.* (2003).
	- ix. For $G(x; a, \underline{\theta}) = \gamma \exp(\frac{x^{v}}{v})$ $G(x; a, \underline{\theta}) = \gamma \exp(\frac{x^{\nu}}{\gamma} - 1), \gamma > 0, \nu > 0$ and a=0, it turns out to be a modified form of Weibull distribution considered by Xie *et al.* (2002). If we also take $\gamma = 1$, this reduces to the lifetime distribution considered by Chen (2000).
	- x. For $G(x; a, \underline{\theta}) = (x-a) + \frac{v}{\lambda} \log(\frac{x+v}{a+\lambda})$, v>0, λ >0, we get the generalized Pareto distribution of Ljubo (1965).

3. UMVUE's of R(t) and 'P' under Type I and Type II Censorings

Throughout this section, we assume that λ is unknown, but 'a' and θ are known. First we consider the estimation based on type II censored data. Suppose n items are put on a test and the test is terminated after the first r ordered observations are recorded. Let $a \le X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$, $0 \le r \le n$, be the lifetimes of first r ordered observations. Obviously, (n-r) items survived until $X_{(r)}$.

Lemma 1: Let $S_r = \sum_{r=1}^{r}$ $S_r = \sum_{i=1}^{r} G(X_{(i)}, a, \underline{\theta}) + (n-r)G(X_{(r)}, a, \underline{\theta})$. Then, S_r is complete and sufficient for the family of distributions given at (2.1) . Moreover, the pdf of S_r is r;a,λ,<u>θ</u>) = $\frac{\lambda^{r} s_r^{r-1}}{\Gamma(r)}$ exp(-λs_r $g(s_r; a, \lambda, \underline{\theta}) = \frac{\lambda^T s_r^{r-1}}{\Gamma(r)} \exp(-\lambda s_r)$ (3.1)

Proof: From (2.1), the joint pdf of $a \le X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$ is

$$
f^{*}(x_{(1)}, x_{(2)},..., x_{(n)}; a, \lambda, \underline{\theta}) = n! \lambda^{n} \prod_{i=1}^{n} G'(x_{(i)}; a, \underline{\theta}) \exp\{\lambda \sum_{i=1}^{n} G(x_{(i)}; a, \underline{\theta})\}.
$$
 (3.2)

Integrating out $x_{(r+1)}, x_{(r+2)}, ..., x_{(n)}$ from (3.2) over the region $x_{(r)} \le x_{(r+1)} \le ... \le x_{(n)}$, the joint pdf of $a \le X_{(1)} \le X_{(2)} \le ... \le X_{(r)}$ comes out to be

$$
h(x_{(1)}, x_{(2)}, ..., x_{(r)}; a, \lambda, \underline{\theta}) = n(n-1) \dots (n-r+1) \lambda^r \prod_{i=1}^r G'(x_{(i)}, a, \underline{\theta}) \exp(\lambda s_r).
$$
\n(3.3)

It follows easily from (2.1) that the rv U= λ G(X;a, θ) follows exponential distribution with mean life $1/\lambda$. Moreover, if we consider the transformation $Z_i = (n-i+1) \{U_{(i)} - U_{(i-1)}\}, i=1,2,...,r; U_0 = 0,$

then Z_i 's are independent and identically distributed (iid) rv's, each having exponential distribution with mean life $1/\lambda$. It is easy to see that $\sum_{n=1}^{\infty}$ $\sum_{i=1} Z_i = S_r$. Result (3.1) now follows from the additive property of gamma distribution [see Johnson and Kotz (1970, p.170)]. It follows from (3.3) that S_r is sufficient for the family of distributions given at (2.1). Since the distribution of S, belongs to exponential family of distributions, it is also complete [see Rohatgi (1976, p.347)].

The following lemma provides the UMVUE's of the powers (positive, as well as, negative) of λ .

Lemma 2: For $q \in (-\infty, \infty)$, the UMVUE of λ^q is

$$
\hat{\lambda}_{\rm II}^{\rm q} = \begin{cases}\n\frac{\Gamma(\rm r)}{\Gamma(\rm r\text{-}q)} S_{\rm r}^{\rm q} & (\rm q<\rm r) \\
0, \text{ otherwise.} \n\end{cases}
$$

Proof: From (3.1),

$$
E(S_r^{-q}) = \frac{\lambda^r}{\Gamma(r)} \int_0^{\infty} s_r^{r-q-1} exp(-\lambda s_r) ds_r
$$

$$
= \left\{ \frac{\Gamma(r\text{-}q)}{\Gamma(r)} \right\} \lambda^q
$$

and the lemma follows from Lehmann-Scheffé theorem [see Rohatgi (1976, p.357)].

In the following lemma, we provide the UMVUE of the sampled pdf (2.1) at a specified point 'x'.

Lemma 3: The UMVUE of $f(x; a, \lambda, \theta)$ at a specified point 'x' is

$$
\hat{f}_{II}(x; a, \lambda, \underline{\theta}) = \begin{cases}\n\frac{(r-1)G'(x; a, \underline{\theta})}{S_r} \left[1 - \frac{G(x; a, \underline{\theta})}{S_r} \right]^{r^2}; G(x; a, \underline{\theta}) < S_r \\
0, \text{ otherwise.} \n\end{cases}
$$

Proof: We can write (2.1) as

$$
f(x; a, \lambda, \underline{\theta}) = G'(x; a, \underline{\theta}) \sum_{i=0}^{\infty} \frac{(-1)^i}{i!} G^i(x; a, \underline{\theta}) \lambda^{i+1}.
$$
 (3.4)

Using Lemma 1 of Chaturvedi and Tomer (2002) and Lemma 2, from (3.4), the UMVUE of $f(x; a, \lambda, \theta)$ at a specified point 'x' is

$$
\begin{aligned} \hat{f}_{\mathrm{II}}(x;a,\!\lambda\!,\!\underline{\theta}) & = G'(x;a,\!\underline{\theta}) \sum_{i=0}^{\infty} \frac{(-1)^i}{i!}\; G^i(x;a,\!\underline{\theta}) \hat{\lambda}_{\mathrm{II}}^{i+1} \\ & = \! \frac{(r\text{-}1)G'(x;a,\!\underline{\theta})}{S_{\mathrm{r}}} \sum_{i=0}^{r\text{-}2} \left(\text{-}1\right)^i \!\! \left(\! \begin{array}{c} r\text{-}2 \\ i \end{array} \!\!\right) \!\! \left\{\! \frac{G(x;a,\!\underline{\theta})}{S_{\mathrm{r}}} \right\}^i \end{aligned}
$$

and the lemma holds.

In the following theorem, we obtain UMVUE of $R(t)$.

Theorem 1: The UMVUE of R(t) is given by

$$
\hat{R}_{\text{II}}(t) = \begin{cases} \left[1 - \frac{G(t; a, \theta)}{S_r}\right]^{r-1}, & G(t; a, \theta) < S_r \\ 0, & \text{otherwise.} \end{cases}
$$

Proof: Let us consider the expected value of the integral $\int_{0}^{x} \hat{f}_{n}(x; a, \lambda, \theta) dx$ with respect to t S_r i.e.

$$
\int_{0}^{\infty} \left\{ \int_{t}^{\infty} \hat{f}_{\pi}(x; a, \lambda, \underline{\theta}) dx \right\} g(s_{r}; a, \lambda, \underline{\theta}) ds_{r} = \int_{t}^{\infty} \left[E_{S_{r}} \left\{ \hat{f}_{\pi}(x; a, \lambda, \underline{\theta}) \right\} \right] dx
$$

$$
= \int_{t}^{\infty} f(x; a, \lambda, \underline{\theta}) dx
$$

$$
= R(t).
$$
(3.5)

We conclude from (3.5) that the UMVUE of R(t) can be obtained simply integrating $\hat{f}_{II}(x; a, \lambda, \underline{\theta})$ from t to ∞ . Thus, from Lemma 3,

$$
\hat{R}_{\text{II}}(t) \text{=}\frac{\text{(r-1)}}{S_{\text{r}}}\int\limits_{t}^{\infty}G'(x;a,\underline{\theta})\left[1\text{--}\frac{G(x;a,\underline{\theta})}{S_{\text{r}}}\right]^{r\cdot2}dx
$$

and the theorem follows.

Let X and Y be two independent rv's following the classes of distributions $f_1(x; a_1, \lambda_1, \underline{\theta}_1)$ and $f_2(y; a_2, \lambda_2, \underline{\theta}_2)$, respectively, where

 $f_1(x; a_1, \lambda_1, \theta_1) = \lambda_1 G'(x; a_1, \theta_1) \exp\{\lambda_1 G(x; a_1, \theta_1)\}; x > a_1 \geq 0, \lambda_1 > 0$

and

$$
f_2(y; a_2, \lambda_2, \underline{\theta}_2) = \lambda_2 H'(y; a_2, \underline{\theta}_2) \exp\{-\lambda_2 H(y; a_2, \underline{\theta}_2)\}; y > a_2 \ge 0, \lambda_2 > 0.
$$

We assume that λ_1 and λ_2 are unknown, but $a_1, a_2, \underline{\theta}_1$ and $\underline{\theta}_2$ are known. Let n items on X and m items on Y are put on a life test and the truncation numbers for X and Y are r_1 and r_2 , respectively. Let us denote by

1 $1 \quad -1 \quad 1 \quad 1$ r $S_{r_i} = \sum_{i=1}^{5} G(x_{(i)}; a_i, \underline{\theta}_1) + (n-r_i)G(x_{(r_i)}; a_i, \underline{\theta}_1)$ and 2 2 r $T_{r_2} = \sum_{j=1}^{5} H(y_{(j)}; a_2, \underline{\theta_2}) + (m-r_2)H(y_{(r_2)}; a_2, \underline{\theta_2}).$ In what follows, we obtain the UMVUE of 'P'.

Theorem 2: The UMVUE of 'P' is given by

$$
\hat{P}_{II}=\begin{cases}(r_2-1)\int\limits_{1-\frac{H(G^{-1}(S_{\tau_1}))}{T_2}}^1z^{r_2\cdot l}\Bigg[1-\frac{G(H^{-1}((1-z)T_{r_2}))}{S_{\tau_1}}\Bigg]^{r_1-l}dz,\ G^{-1}(S_{\tau_1})<\!\!H^{-1}(T_{r_2})\\ \\ (r_2-1)\int\limits_{0}^1z^{r_2\cdot 2}\!\Bigg[1-\frac{G(H^{-1}((1-z)T_{r_2}))}{S_{\tau_1}}\Bigg]^{r_1-l}dz, \qquad \qquad H^{-1}(T_{r_2})\!\!<\!\!G^{-1}(S_{\tau_1}).\end{cases}
$$

Proof: It follows from Lemma 3 that the UMVUES of $f_1(x; a_1, \lambda_1, \underline{\theta}_1)$ and $f_2(y; a_2, \lambda_2, \underline{\theta}_2)$ at specified points 'x' and 'y', respectively, are

$$
\hat{f}_{III}(x; a_1, \lambda_1, \underline{\theta}_i) = \begin{cases}\n\underline{(r_1 - 1)G'(x; a_1, \underline{\theta}_i)} \begin{bmatrix}\n1 - \frac{G(x; a_1, \underline{\theta}_i)}{S_r}\n\end{bmatrix}^{(s_1 - 2)}\n\end{cases}, \quad G(x; a_1, \underline{\theta}_i) < S_r\n\end{cases}
$$
\n(3.6)

and

$$
\hat{f}_{2II}(y; a_2, \lambda_2, \underline{\theta}_2) = \begin{cases} \frac{(r_2 - 1)H'(y; a_2, \underline{\theta}_2)}{T_{r_2}} \left[1 - \frac{H(y; a_2, \underline{\theta}_2)}{T_{r_2}} \right]^{(r_2 - 2)} , H(y; a_2, \underline{\theta}_2) < T_{r_2} \\ 0, \text{ otherwise.} \end{cases} \tag{3.7}
$$

From the arguments similar to those adopted in proving Theorem1, it can be shown that the UMVUE of 'P' is given by

$$
\hat{P}_{_{II}}=\smallint\limits_{y\,=\,a_{_2}\,x\,=\,y}^{\infty}\hat{\int\limits_{x\,=\,y}^{\infty}}f_{_{III}}(x;a_{_1},\lambda_{_1},\underline{\theta}_{_1})\hat{f}_{_{2II}}(y;a_{_2},\lambda_{_2},\underline{\theta}_{_2})\;dx\;dy,
$$

which on using (3.6) and (3.7) gives that

$$
\hat{P}_{II} = \frac{(r_{1}-1)(r_{2}-1)}{S_{r_{1}}T_{r_{2}}} \int_{y=a_{2}}^{H^{3}(T_{r_{2}})G^{3}(s_{r_{1}})} G'(x; a_{1}, \underline{\theta}_{1}) H'(y; a_{2}, \underline{\theta}_{2}) \left[1 - \frac{G(x; a_{1}, \underline{\theta}_{1})}{S_{r_{1}}} \right]^{T_{1}^{-2}} \left[1 - \frac{H(y; a_{2}, \underline{\theta}_{2})}{T_{r_{2}}} \right]^{T_{2}^{-2}} dxdy
$$
\n
$$
= \frac{(r_{2}-1)}{T_{r_{2}}} \int_{y=a_{2}}^{\min(G^{3}(s_{n}), H^{3}(T_{r_{2}}))} \left[1 - \frac{G(y; a_{1}, \underline{\theta}_{1})}{S_{r_{1}}} \right]^{T_{1}-1} H'(y; a_{2}, \underline{\theta}_{2}) \left[1 - \frac{H(y; a_{2}, \underline{\theta}_{2})}{T_{r_{2}}} \right]^{T_{2}^{-2}} dy.
$$
\n(3.8)

\nthe theorem now follows from (2.8.)

The theorem now follows from (3.8).

Corollary 1: In the case when $a_1 = a_2 = a$, say, $\underline{\theta}_1 = \underline{\theta}_2 = \underline{\theta}$, say, G(x; a, $\underline{\theta}$)=H(x; a, $\underline{\theta}$), but $\lambda_1 \neq \lambda_2$,

1 1 2 1 2 2 1 1 i+1 r -2 ⁱ ² 2 1 i = 0 II i r -1 i 1 2 2 i = 0 r -2 S r (r -1) B(i+1,), S <T (-1) r ^T r r i r P = Ö r -1 T r (r -1) B(i+1, r -1), T <S . (-1) S r r i r [∑] [∑]

Proof: From Theorem 2, for $S_{r_1} < T_{r_2}$,

$$
\hat{P}_{II} = (r_2 - 1) \int_{1-\frac{S_{r_1}}{T_{r_2}}}^1 z^{r_2 - 2} \left[1 - \frac{T_{r_2}}{S_{r_1}} (1 - z) \right]^{r_1 - 1} dz
$$
\n
$$
= (r_2 - 1) \int_{0}^{S_{r_1}T_{r_2}} (1 - u)^{r_2 - 2} \left[1 - \frac{T_{r_2}}{S_{r_1}} u \right]^{r_1 - 1} du
$$
\n
$$
= (r_2 - 1) \sum_{i=0}^{r_2 - 2} (-1)^i \left(\frac{r_2 - 2}{i} \right) \left(\frac{S_{r_1}}{T_{r_2}} \right)^{i+1} \int_{0}^{i+1} v^i (1 - v)^{r_1 - 1} dv
$$

and the first assertion follows. Furthermore, for $T < S_{r₁}$,

1 2 2 1 r -1 1 r 2 II 2 0 T Ö r P = (r -1) 1- (1-z) dz S r *z* − ∫ 1 i r -1 1 i i ¹ r 2 ² 2 i = 0 0 1 r -1 T r = (r -1) (du (-1) 1-u) u i S r − [∑] [∫]

and the second assertion follows.

Now we consider estimation based on type I censored data. Let $a \leq X_{(1)} \leq X_{(2)} \leq ... \leq X_{(n)}$ be the failure times of n items under test from (2.1). The test begins at time $X_{(0)} = a$ and the system operates till $X_{(1)} = x_{(1)}$ when the first failure occurs. The failed item is replaced by a new one and the system operates till the second failure occurs at time $X_{(2)} = X_{(2)}$, and so on. The experiment is terminated at time t_0 .

Lemma 4: If $N(t_0)$ be the number of failures during the interval [0, t_0], then

$$
P[N(t_{_0}){=}r|t_{_0}] {=} \frac{\left\{n \lambda G(t_{_0};a,\underline{\theta})\right\}^r}{r!} exp\{-n \lambda G(t_{_0};a,\underline{\theta})\}.
$$

Proof: Let us make the transformations $W_1 = G(X_{(1)}, a, \underline{\theta})$, $W_2 = G(X_{(2)}, a, \underline{\theta}) - G(X_{(1)}, a, \underline{\theta})$, …,

 $W_n = G(X_{(n)}; a, \underline{\theta}) - G(X_{(n-1)}; a, \underline{\theta})$. The pdf of W_1 is

$$
h(w_1) = n\lambda exp(-n\lambda w_1).
$$

Moreover, W_2 , ..., W_n are independent and identically distributed as W_1 . Using the monotonicity property of $G(x; a, \theta)$,

$$
P[N(t) = r|t_0] = P[X_{(r)} \le t_0] - P[X_{(r+1)} \le t_0]
$$

\n
$$
= P[G(X_{(r)}; a, \underline{\theta}) \le G(t_0; a, \underline{\theta})] - P[G(X_{(r+1)}; a, \underline{\theta}) \le G(t_0; a, \underline{\theta})]
$$

\n
$$
= P[W_1 + W_2 + ... + W_r \le G(t_0; a, \underline{\theta})] - P[W_1 + W_2 + ... + W_{r+1} \le G(t_0; a, \underline{\theta})].
$$
\n
$$
[S(3.9)]
$$
\n
$$
[S(4.9)]
$$
\n
$$
[S(5.9)]
$$
\n
$$
[S(6.9)]
$$
\n
$$
[S(7.9)]
$$
\n
$$
[S(7.9)]
$$
\n
$$
[S(8.9)]
$$
\n
$$
[S(7.9)]
$$
\n
$$
[S(8.9)]
$$
\n
$$
[S(9)]
$$
\n
$$
[S(1.9)]
$$
\n
$$
[S(1.9)]
$$

From the additive property of exponentially distributed rv's [see Johnson and Kotz (1970), p.170], U= $n\lambda \sum_{i=1}^{r}$ $n\lambda \sum_{i=1}^{n} W_i$ follows gamma distribution with pdf

$$
h(u) = \frac{1}{\Gamma(r)} u^{r \cdot 1} e^{-u} ; u > 0
$$
\n
$$
(3.10)
$$

Using (3.10) and a result of Patel, Kapadia and Owen (1976, p.244), we obtain from (3.9) that

$$
\begin{aligned} P[N(t_\circ)=r|t_\circ]=\frac{1}{\Gamma(r+1)}\int\limits_{n\lambda G(t_\circ:a,\underline{\theta})}^\infty e^{u}u^{r}\;du-\frac{1}{\Gamma(r)}\int\limits_{n\lambda G(t_\circ:a,\underline{\theta})}^\infty e^{u}u^{r\cdot l}\;du\\ =\exp\{-n\lambda G(t_\circ;a,\underline{\theta})\}\Bigg[\sum_{j=0}^r\;\frac{\{n\lambda G(t_\circ;a,\underline{\theta})\}^j}{j!}-\sum_{j=0}^{r\cdot l}\;\frac{\{n\lambda G(t_\circ;a,\underline{\theta})\}^j}{j!}\Bigg] \end{aligned}
$$

and the lemma follows.

In the following lemma, we derive the UMVUE of λ^q , where q is a positive integer.

Lemma 5: For q to be a positive integer, the UMVUE of λ^q is given by

$$
\hat{\lambda}_I^q = \begin{cases} \frac{r!}{(r-q)!} \left[nG(t_0; a, \underline{\theta}) \right]^q (q \le r) \\ 0, \text{ otherwise.} \end{cases}
$$

Proof: It follows from Lemma 4 and Fisher-Neyman factorization theorem [see Rohatgi (1976, p.341)] that r is sufficient for estimating λ . Moreover, since the distribution of r belongs to exponential family, it is also complete [see Rohatgi (1976, p.347)]. The lemma now follows from the result that the qth factorial moment of distribution of r is given by

 $E{r(r-1)...(r-q+1)} = {n\lambda G(t_0; a, \underline{\theta})}^q.$

In the following lemma, we obtain the UMVUE of the sampled pdf (2.1) at a specified point 'x'.

Lemma 6: The UMVUE of $f(x; a, \lambda, \theta)$ at a specified point 'x' is

$$
\hat{f}_I(x; a, \lambda, \underline{\theta}) = \begin{cases}\n\frac{rG'(x; a, \underline{\theta})}{nG(t_o; a, \underline{\theta})} \left[1 - \frac{G(x; a, \underline{\theta})}{nG(t_o; a, \underline{\theta})} \right]^{r-1}; & G(x; a, \underline{\theta}) < nG(t_o; a, \underline{\theta}) \\
0, & \text{otherwise.} \n\end{cases}
$$

Proof: Using Lemma 1 of Chaturvedi and Tomer (2002) and Lemma 5, from (3.4), the UMVUE of $f(x; a, \lambda, \theta)$ at a specified point 'x' is

$$
\hat{f}_1(x;a,\lambda,\underline{\theta}) = G'(x;a,\underline{\theta}) \sum_{i=0}^{r-1} \frac{(-1)^i}{i!} G^i(x;a,\underline{\theta}) \lambda_1^{i+1}
$$
\n
$$
= G'(x;a,\underline{\theta}) \sum_{i=0}^{r-1} \left\{ \frac{(-1)^i}{i!} G^i(x;a,\underline{\theta}) \right\} \left\{ \frac{r!}{(r-i-1)} \right\} \{ nG(t_o;a,\underline{\theta}) \}^{-(i+1)}
$$
\n
$$
= \frac{rG'(x;a,\underline{\theta})}{nG(t_o;a,\underline{\theta})} \sum_{i=0}^{r-1} (-1)^i {r-1 \choose i} \left\{ \frac{G(x;a,\underline{\theta})}{nG(t_o;a,\underline{\theta})} \right\}^i
$$

and the lemma follows.

In the following theorem, we derive the UMVUE of $R(t)$. **Theorem 3:** The UMVUE of R(t) is given by

$$
\hat{R}_1(t) = \begin{cases} \left[1 - \frac{G(t; a, \theta)}{nG(t_o; a, \theta)}\right]^r; & G(t; a, \theta) < nG(t_o; a, \theta) \\ 0, & \text{otherwise.} \end{cases}
$$

Proof: From the arguments similar to those adopted in the proof of Theorem 1, using Lemma 6,

$$
\begin{aligned} \hat{R}_1(t) & = \int\limits_t^\infty \hat{f}_1(x; a, & \lambda, & \underline{\theta}) dx \\ & = \frac{r}{nG(t_\circ; a, \underline{\theta})} \int\limits_t^{G^{-1}(nG(t_\circ; a, \underline{\theta}))} G'(x; a, & \underline{\theta}) \Bigg[1 - \frac{G(x; a, & \underline{\theta})}{nG(t_\circ; a, & \underline{\theta})} \Bigg]^{r-1} dx \\ & = r \int\limits_{\frac{G(t; a, & \underline{\theta})}{nG(t_\circ; a, & \underline{\theta})}}^{1} (1 - y)^{r-1} dy \end{aligned}
$$

and the theorem follows.

 In what follows, we obtain UMVUE of 'P'. Suppose n items on X and m items on Y are put through a life test and t_0 and t_{∞} are their truncation times, respectively. Let r_1 items on X and r_2 items on Y fail before times t_0 and t_{∞} , respectively.

Theorem 4: The UMVUE of 'P' is given by

1 1 -1 1 r -1 1 oo 2 2 r 1 2 0 o11 -1 -1 oo 2 2 1 1 o I r H(G (nG -1 oo 2 2 r -1 2 0 o 11 G(H (mH(t ;a ,^ș)z)) r 1- dz, (1-z) nG(t ;a ,ș) H (mH(t ;a ,ș)) <G (nG(;a , t ș)) PÖ G(H (mH(t ;a ,^ș)z)) r 1- dz (1-z) nG(t ;a ,ș) − [−] ∫ = (;a , t ^o 1 1 oo 2 2 ș))) mH(t ;a , { } ș) -1 -1 o 11 2 2 oo , G (nG(t ;a ,ș))<H (mH(;a , t ș)). ∫

Proof: Using the arguments similar to those applied in the proofs of Theorem 1 and Lemma 6,

$$
\hat{P}_{1} = \int_{y=a_{2}}^{\infty} \int_{x=y}^{\infty} \hat{f}_{11}(x; a_{1}, \lambda_{1}, \underline{\theta}_{1}) \hat{f}_{21}(y; a_{2}, \lambda_{2}, \underline{\theta}_{2}) dx dy \n= \frac{F_{1}F_{2}}{nmG(t_{o}; a_{1}, \underline{\theta}_{1})H(t_{oo}; a_{2}, \underline{\theta}_{2})} \int_{y=a_{2}}^{\infty} \int_{x=y}^{G^{1}(nG(t_{o}; a_{1}, \underline{\theta}_{1}))} G'(x; a_{1}, \underline{\theta}_{1}) H'(y; a_{2}, \underline{\theta}_{2}) \n\left[1 - \frac{G(x; a_{1}, \underline{\theta}_{1})}{nG(t_{o}; a_{1}, \underline{\theta}_{1})} \right]^{n-1} \left[1 - \frac{H(y; a_{2}, \underline{\theta}_{2})}{mH(t_{oo}; a_{2}, \underline{\theta}_{2})} \right]^{n-1} dx dy \n= \frac{r_{1}r_{2}}{mH(t_{oo}; a_{2}, \underline{\theta}_{2})} \int_{y=a_{2}}^{y} \int_{u=\frac{G(y; a_{1}, \underline{\theta}_{1})}{nG(t_{o}; a_{1}, \underline{\theta}_{1})}} (1-u)^{n-1}H'(y; a_{2}, \underline{\theta}_{2}) \left[1 - \frac{H(y; a_{2}, \underline{\theta}_{2})}{mH(t_{oo}; a_{2}, \underline{\theta}_{2})} \right]^{n-1} du dy \n= \frac{r_{2}}{mH(t_{oo}; a_{2}, \underline{\theta}_{2})} \int_{a_{2}}^{mH(f^{-1}(nG(t_{o}; a_{1}, \underline{\theta}_{1})), H^{1}(mH(t_{oo}; a_{2}, \underline{\theta}_{2})))} H'(y; a_{2}, \underline{\theta}_{2}) \n\left[1 - \frac{G(y; a_{1}, \underline{\theta}_{1})}{nG(t_{o}; a_{1}, \underline{\theta}_{1})} \right]^{n} \left[1 - \frac{H(y; a_{2}, \underline{\theta}_{2})}{mH(t_{oo}; a_{2}, \underline{\theta}_{2})} \right]^{n-1} dy.
$$
\n(3.11)

The theorem now follows from (3.11).

Corollary 2: In the case when $a_1 = a_2 = a$, say, $\underline{\theta}_1 = \underline{\theta}_2 = \underline{\theta}$, say, $G(x; a_1, \underline{\theta}_1) = H(x; a_2, \underline{\theta}_2)$, t_0 $= t_{\rm oo}$, but $\lambda_1 \neq \lambda_2$,

$$
\hat{P}_I \! = \! \begin{cases} \! r_2 \sum\limits_{i=0}^{r_i} \! \! \! (-1)^i \! \! \left(\! \begin{array}{c} \! r_i \\ \! i \! \end{array} \! \right) \! \! \! \left(\! \begin{array}{c} \! m \\ \! n \! \end{array} \! \right) \!\! \! \! B(i\!+\!1,r_2), \qquad \qquad m \!\! < \!\! n \\ \! r_2 \sum\limits_{i=0}^{r_{\!2}} \! \! (-1)^i \! \! \left(\! \begin{array}{c} \! r_2 \! -\! 1 \\ \! i \! \end{array} \! \right) \! \! \! \left(\! \begin{array}{c} \! m \\ \! m \! \end{array} \! \right)^{\! \! +1} \! B(i\!+\!1,r_i\!+\!1), \quad \ n \!\! < \!\! m. \! \! \end{cases}
$$

Proof: From Theorem 4, for m<n,

$$
\hat{P}_I = r_2 \int_0^I \left(1 - \frac{m}{n}z\right)^{r_1} (1 - z)^{r_2 - 1} dz
$$
\n
$$
= r_2 \sum_{i=0}^{r_1} (-1)^i \left(\frac{r_1}{i}\right) \left(\frac{m}{n}\right)^i \int_0^1 z^i (1 - z)^{r_2 - 1} dz
$$

and the first assertion follows. For $n < m$,

$$
\begin{aligned} \hat{P}_I &= r_2 \int_0^{n/m} \left(1 - \frac{m}{n} z \right)^{r_1} (1 - z)^{r_2 - 1} dz \\ &= r_2 \left(\frac{m}{m} \right)_0^l (1 - u)^{r_1} \left(1 - \frac{m}{m} u \right)^{r_2 - 1} du \\ &= r_2 \sum_{i=0}^{r_2 - 1} (-1)^i \left(\frac{r_2 - 1}{i} \right) \left(\frac{m}{m} \right)^{i + 1} \int_0^1 u^i (1 - u)^{r_1} du \end{aligned}
$$

and the second assertion follows.

4. MLE's of R(t) and 'P' under Type I and Type II Censorings

In order to compare the performance of UMVUES and MLES, we consider the case when 'a' and θ are known, but λ is unknown.

We first consider estimation based on type II censoring.

Lemma 7: The MLE of λ is

$$
\bm{\rlap{/}\!\!R}_\mathrm{II}=\frac{r}{S_\mathrm{r}}.
$$

Proof: From (3.3), the log-likelihood is

r $logL(\lambda | \underline{x}) = log\{n(n-1)...(n-r+1)\} + rlog\lambda + \sum_{i=1}^{r} log\{G'(x_{(i)}; a, \underline{\theta})\} - \lambda S_r$. (4.1)

The result now follows on differentiating (4.1) with respect to λ , equating the differential coefficient to zero and solving the equation for λ .

Lemma 8: The MLE of $f(x; a, \lambda, \theta)$ at a specified point 'x' is

$$
\oint_{\Pi} (x; a, \lambda, \underline{\theta}) = \left(\frac{r}{S_r}\right) G'(x; a, \underline{\theta}) \exp\left\{-\left(\frac{r}{S_r}\right) G(x; a, \underline{\theta})\right\}.
$$

Proof: The proof follows from (2.1) , Lemma 7 and one-to-one property of the MLE.

Theorem 5: The MLE of R(t) is given by

$$
\boldsymbol{\dot{R}}_{\rm II}(t) = \exp \left\{ -\left(\frac{r}{S_{\rm r}}\right) G(t; a, \underline{\theta}) \right\}.
$$

Proof: From one- to-one property of MLE,

$$
\oint_{\Pi}(t) = \int_{t}^{\infty} \oint_{\Pi}(x; a, \lambda, \underline{\theta}) dx ,
$$

which, on using Lemma 8, gives that

$$
\mathbf{\hat{R}}_{II}(t) = \left(\frac{r}{S_r}\right)_t^{\infty} G'(x; a, \underline{\theta}) exp\left\{ \left(\frac{r}{S_r}\right) G(x; a, \underline{\theta}) \right\} dx
$$
\n
$$
= \int_{\left(\frac{r}{S_r}\right) G(t; a, \underline{\theta})}^{\infty} e^{-y} dy
$$

and the theorem follows.

Theorem 6: The MLE of 'P' is given by

$$
\hat{\mathbf{P}}_{II} = \int_{0}^{\infty} \exp \left\{ \left(\frac{r_{I}}{S_{r_{I}}} \right) G(H^{-1}(\frac{T_{r_{2}}}{r_{2}}v)) \right\} e^{-V} dv.
$$

Proof: From one-to-one property of MLE,

 $\oint_{\Pi} = \int_{y=a_2}^{\infty} \int_{x=y}^{\infty} \oint_{1\Pi} (x; a_1, \lambda_1, \underline{\theta}_1) \oint_{2\Pi} (y; a_2, \lambda_2, \underline{\theta}_2) dx dy$, which, on using Lemma 8, gives that

$$
\Phi_{II} = \left(\frac{r_{i}r_{2}}{S_{r_{i}}T_{r_{2}}}\right) \int_{y=a_{2}}^{\infty} \int_{x=y}^{\infty} \left\{G'(x;a_{1},\underline{\theta}_{1}) \exp\left(\frac{r_{1}}{S_{r_{1}}}\right)G(x;a_{1},\underline{\theta}_{1})\right\}
$$
\n
$$
\cdot \left\{H'(y;a_{2},\underline{\theta}_{2}) \exp\left(\frac{r_{2}}{T_{r_{2}}}\right)H(y;a_{2},\underline{\theta}_{2})\right\} dx dy
$$
\n
$$
= \left(\frac{r_{2}}{T_{r_{2}}}\right) \int_{y=a_{2}}^{\infty} \int_{u=\left(\frac{r_{1}}{S_{r_{1}}}\right)G(y;a_{1},\underline{\theta}_{1})} e^{-U} H'(y;a_{2},\underline{\theta}_{2}) exp\left\{-\left(\frac{r_{2}}{T_{r_{2}}}\right)H(y;a_{2},\underline{\theta}_{2})\right\} du dy
$$
\n
$$
= \left(\frac{r_{2}}{T_{r_{2}}}\right) \int_{y=a_{2}}^{\infty} exp\left\{-\left(\frac{r_{1}}{S_{r_{1}}}\right)G(y;a_{1},\underline{\theta}_{1})\right\} H'(y;a_{2},\underline{\theta}_{2}) exp\left\{-\left(\frac{r_{2}}{T_{r_{2}}}\right)H(y;a_{2},\underline{\theta}_{2})\right\} dy
$$
\nand the theorem. (c)

and the theorem follows.

Corollary 3: In the case when $a_1 = a_2 = a$, say, $\underline{\theta}_1 = \underline{\theta}_2 = \underline{\theta}$, say, $G(x; a_1, \underline{\theta}_1)$ $= H(x; a_2, \underline{\theta}_2)$, but $\lambda_1 \neq \lambda_2$,

$$
\boldsymbol{\acute{P}}_{II}=\left(\frac{r_2S_{r_i}}{r_2S_{r_i}+r_iT_{r_2}}\right)
$$

Now we consider estimation base on type I censoring.

Lemma 9: The MLE of λ is

$$
\oint_{I} = \frac{r}{nG(t_o; a, \underline{\theta})}.
$$

Proof: From Lemma 4, the log-likelihood is $logL(\lambda | r) = rlogn + rlogG(t_o; a, \theta) - log r! + rlog \lambda - n\lambda G(t_o; a, \theta)$ and the result follows.

Lemma 10: The MLE of $f(x; a, \lambda, \theta)$ at a specified point 'x' is

$$
\oint_{I}(x; a, \lambda, \underline{\theta}) = \left\{ \frac{rG'(x; a, \underline{\theta})}{nG(t_{o}; a, \underline{\theta})} \right\} \exp \left\{ - \frac{rG(x; a, \underline{\theta})}{nG(t_{o}; a, \underline{\theta})} \right\}.
$$

Proof: The Lemma follows from (2.1) and Lemma 9.

Theorem 7: The MLE of R(t) is given by

$$
\hat{\mathbf{R}}_1(t) = \exp\left\{-\frac{rG(t;a,\underline{\theta})}{nG(t_0;a,\underline{\theta})}\right\}.
$$
\nProof: From Lemma 10,
\n
$$
\hat{\mathbf{R}}_1(t) = \int_{t}^{\infty} \hat{\mathbf{P}}_1(x;a,\lambda,\underline{\theta}) dx
$$
\n
$$
= \left\{\frac{r}{nG(t_0;a,\underline{\theta})}\right\} \int_{t}^{\infty} G'(x;a,\underline{\theta}) exp\left\{-\frac{rG(x;a,\underline{\theta})}{nG(t_0;a,\underline{\theta})}\right\} dx
$$
\n
$$
= \int_{\frac{rG(t;a,\underline{\theta})}{nG(t_0;a,\underline{\theta})}}^{\infty} e^{-y} dy
$$

and the theorem follows.

 Theorem 8: The MLE of 'P' is given by

$$
\boldsymbol{\varphi}_{I} = \int_{0}^{\infty} \exp \left\{ -\frac{r_{1}G(H^{-1}(\frac{m}{r_{2}}H(t_{\infty}; a_{2}, \underline{\theta}_{2})v))}{nG(t_{\infty}; a_{1}, \underline{\theta}_{1})} \right\} e^{\nu} dv.
$$

Proof: From Lemma 10,

$$
\begin{aligned} \boldsymbol{\acute{P}}_I&=\smallint\limits_{y\,=\,a_2}\prod\limits_{x\,=\,y}^{\infty}\boldsymbol{\acute{P}}_{II}(x;a_1,\lambda_1,\underline{\theta}_1)\,\boldsymbol{\acute{P}}_{2I}(y;a_2,\lambda_2,\underline{\theta}_2)\;dx\;dy\\ &=\left\{\frac{r_1r_2}{nmG(t_o;a_1,\underline{\theta}_1)H(t_{oo};a_2,\underline{\theta}_2)}\right\}\int\limits_{y\,=\,a_2}\prod\limits_{x\,=\,y}^{\infty}\widetilde{G}'(x;a_1,\underline{\theta}_1)\\ &\qquad \quad .exp\left\{-\frac{r_1G(x;a_1,\underline{\theta}_1)}{nG(t_o;a_1,\underline{\theta}_1)}\right\}H'(y;a_2,\underline{\theta}_2)\;exp\left\{-\frac{r_2H(y;a_2,\underline{\theta}_2)}{mH(t_{oo};a_2,\underline{\theta}_2)}\right\}dxdy\\ &=\left\{\frac{r_2}{mH(t_{oo};a_2,\underline{\theta}_2)}\right\}\int\limits_{y\,=\,a_2}\prod\limits_{u\,=\, \frac{r_1G(y;a_1,\underline{\theta}_1)}{nG(t_o;a_1,\underline{\theta}_1)}}e^{-u}\;H'(y;a_2,\underline{\theta}_2)\;exp\left\{-\frac{r_2H(y;a_2,\underline{\theta}_2)}{mH(t_{oo};a_2,\underline{\theta}_2)}\right\}dudy\\ &=\left\{\frac{r_2}{mH(t_{oo};a_2,\underline{\theta}_2)}\right\}\int\limits_{a_2}^{\infty}\exp\left\{-\frac{r_1G(y;a_1,\underline{\theta}_1)}{nG(t_o;a_1,\underline{\theta}_1)}\right\}H'(y;a_2,\underline{\theta}_2)\;exp\left\{-\frac{r_2H(y;a_2,\underline{\theta}_2)}{mH(t_{oo};a_2,\underline{\theta}_2)}\right\}dy \end{aligned}
$$

and the theorem follows.

Corollary 4: In the case when $a_1 = a_2 = a$, say, $\underline{\theta}_1 = \underline{\theta}_2 = \underline{\theta}$, say, $G(x; a_1, \underline{\theta}_1) = H(x; a_2, \underline{\theta}_2)$, $t_0 = t_{\infty}$, but $\lambda_1 \neq \lambda_2$,

$$
\mathbf{\acute{P}}_{_{I}}=\frac{r_{_{2}}n}{r_{_{2}}n+r_{_{I}}m}.
$$

Remarks 1:

- (i) In the literature, researchers have dealt with the estimation of $R(t)$ and P' , separately. If we look at the proofs of Theorems 1-8, we observe that the UMVUE(S) / MLE(S) of power(s) of parameter(s) is (are) used to obtain UMVUE(S) / MLE(S) of the sampled pdf(s), which is (are) subsequently used to estimate $R(t)$ and 'P'. Thus, for both the estimation problems, the basic role is played by the estimator(s) of power(s) of parameter(s). In this way, we have justified estimation of power(s) of parameter(s).
- (ii) We have established an interrelationship between the estimation of R(t) and 'P'.
- (iii) In the literature, the researchers have derived the UMVUES / MLES of 'P' for the case when X and Y follow the same distribution (may be with different parameters). We have obtained these estimators for all the three situations, when X and Y follow the same distribution having all the parameters same other than λ 's, when X and Y have the same distribution with different parameters and when X and Y follow different distributions.
- (iv) In the present approaches of obtaining UMVUES and MLES, one does not need the expressions of R(t) and 'P'.
- (v) The problems of obtaining MLES when more parameters are unknown can be dealt on similar lines. One just needs as many differentials (with respect to unknown parameters) of likelihood function as the number of unknown parameters and their simultaneous solutions. The MLE of any parametric function can be obtained by plugging the MLES in place of unknown parameters.

(vi) It follows from Lemma 2 that
$$
Var(\hat{\lambda}_{\pi}) = \frac{\lambda^2}{(r-2)} \to 0
$$
 as $r \to \infty$. Moreover,

from Lemma7,
$$
E(\hat{\mathbf{X}}_{II}) = \frac{r\lambda}{(r-1)} \rightarrow \lambda
$$
 as $r \rightarrow \infty$ and $Var(\hat{\mathbf{X}}_{II}) = \frac{r^2\lambda^2}{(r-1)^2(r-2)} \rightarrow 0$

as $r \to \infty$. Thus, $\hat{\lambda}_{\text{II}}$ and $\hat{\lambda}_{\text{II}}$ are consistent estimators of λ . Since $\hat{f}_{\pi}(x; a, \lambda, \underline{\theta}), \oint_{\pi} (x; a, \lambda, \underline{\theta}), \quad \hat{R}_{\pi}(t), \oint_{\pi} (t) , \hat{R}_{\pi}(t) , \hat{P}_{\pi}$ and \oint_{π} are continuous functions of consistent estimators, they are also consistent estimators.

5. Simulation Studies

We have shown under Remarks 1(vi) that $\hat{\lambda}_{\text{II}}$, $\hat{\mathbf{X}}_{\text{II}}$, $\hat{\mathbf{f}}_{\text{II}}$ (x; a, λ , $\hat{\mathbf{y}}$), $\hat{\mathbf{f}}_{\text{II}}$ (x; a, λ , $\hat{\mathbf{y}}$), $\hat{R}_{\text{II}}(t)$, $\hat{R}_{\text{II}}(t)$, \hat{P}_{II} and \hat{P}_{II} are consistent estimators. In order to verify these results, we have drawn sample of size n= 50 from (2.1) with $G(x;p) = x^p$, a=0, p=2 and $\lambda = 1$. In

Fig.1 and Fig.2, respectively, we have plotted $\hat{f}(x; a, \lambda, \theta)$ and $\hat{f}(x; a, \lambda, \theta)$ for different values of r=5(5)30 and 50 under type II censoring. We conclude from the figures that as r increases, the curves of $\hat{f}_{\pi}(x; a, \lambda, \underline{\theta})$ and $\oint_{\pi}(x; a, \lambda, \underline{\theta})$ come close to the curve of $f(x; a, \lambda, \underline{\theta})$. This justifies the consistency property of the estimators.

Fig.1: The curves of $f(x; a, \lambda, \underline{\theta})$. (bold) and $\hat{f}_{\pi}(x; a, \lambda, \underline{\theta})$ (dotted)

For the case when λ is unknown, we have conducted a simulation experiments using bootstrap resampling technique of the following sample of size 50, generated from (2.1) with $G(x; a, \theta) = x$, a=0 and $\lambda = 0.0004$.

Fig.2: The curves of $f(x; a, \lambda, \underline{\theta})$. (bold) and $\oint_{\mathbb{I}} (x; a, \lambda, \underline{\theta})$ (dotted)

Assuming that the data represents life spans of items in hours. For different values of t and r, we have computed $\mathbf{\hat{R}}(t)$, $\hat{R}(t)$, bias, variance/ mean sum of squares (MSES), 95% confidence length and corresponding coverage percentage under type I and type II censorings. All the computations are based on 500 bootstrap replications and the results under type I and type II [for $t_0 = \text{Maximum}(x_r)$] censorings are reported in Table 1 and Table 2 respectively.

	r		5		8		10		15		20
t	R(t)	\mathbf{R}_{I}	$\hat{\mathbf{R}}_I$	\mathbf{R}_{I}	\hat{R}_I	\mathbf{R}_{I}	\hat{R}_I	\mathbf{R}_{I}	$\hat{\mathbf{R}}_I$	\mathbf{R}_{I}	\hat{R}_{I}
		0.9709	0.9708	0.9671	0.967	0.9683	0.9683	0.9673	0.9673	0.9698	0.9698
100	0.9604	0.0104	0.0104	0.0067	0.0066	0.0079	0.0079	0.0069	0.0069	0.0094	0.0094
		0.00012	0.00012	7e-05	7e-05	8e-05	8e-05	5e-05	5e-05	9e-05	9e-05
		0.0089	0.009	0.0114	0.0115	0.0078	0.0079	0.0055	0.0055	0.0024	0.0024
		72.7895	72.7874	71.3972	71.3954	60.8975	60.8832	71.196	71.1952	50.3915	50.386
		0.8888	0.8875	0.8747	0.8737	0.8792	0.8784	0.8751	0.8746	0.8842	0.8839
400	0.8508	0.038	0.0367	0.0239	0.0229	0.0284	0.0276	0.0243	0.0238	0.0334	0.0331
		0.00155	0.00146	0.00088	0.00084	0.00105	0.00101	0.00064	0.00062	0.00116	0.00114
		0.0325	0.0333	0.041	0.0417	0.0284	0.0288	0.0197	0.0199	0.0088	0.0089
		72.2166	72.2082	71.1796	71.1792	62.3227	62.2741	73.3461	73.3434	47.0879	47.065
		0.8625	0.8605	0.8472	0.8457	0.8512	0.8501	0.8464	0.8456	0.8571	0.8566
500	0.8171	0.0454	0.0434	0.0301	0.0286	0.0341	0.033	0.0293	0.0285	0.04	0.0395
		0.00222	0.00206	0.00133	0.00126	0.00151	0.00144	0.00093	0.00089	0.00168	0.00164
		0.0393 72.9396	0.0405 72.9283	0.0494 70.8813	0.0504 70.8821	0.0343 63.1625	0.0349 63.1079	0.0238 73.0971	0.0241 73.0955	0.0118 49.916	0.0119 49.8934
		0.8375	0.8348	0.819	0.8168	0.8265	0.8249	0.8196	0.8185	0.8311	0.8304
600	0.7848	0.0527	0.05	0.0342	0.0321	0.0417	0.0402	0.0349	0.0338	0.0463	0.0456
		0.00299	0.00273	0.00174	0.00163	0.00218	0.00207	0.0013	0.0012	0.00224	0.00218
		0.0457	0.0473	0.0572	0.0586	0.0399	0.0406	0.0276	0.028	0.0124	0.0126
		73.1803	73.1667	71.2108	71.212	62.7205	62.6612	72.2089	72.2049	47.2747	47.2447
		0.7436	0.7368	0.7155	0.7103	0.7262	0.7224	0.7185	0.7158	0.7365	0.7348
1000	0.6677	0.076	0.0691	0.0479	0.0427	0.0585	0.0547	0.0508	0.0482	0.0688	0.0671
		0.00695	0.00613	0.00352	0.00315	0.00427	0.00389	0.00275	0.0025	0.00489	0.00466
		0.0669	0.0707	0.0826	0.0858	0.0582	0.0598	0.04	0.0408	0.0183	0.0186
		59.8607	59.3552	71.6969	71.701	65.9724	65.9095	71.2692	71.2643	52.4815	52.4427
1300	0.5915	0.6804	0.6698	0.6516	0.6516	0.6624	0.6566	0.6495	0.6454	0.671	0.6683
		0.0889	0.0783	0.0601	0.0601	0.0709	0.0651	0.0581	0.054	0.0796	0.0769
		0.00863	0.00696	0.00515	0.00515	0.0063	0.00561	0.00365	0.0032	0.00656	0.00615
		0.0789	0.0845	0.0965	0.0965	0.0684	0.0708	0.0469	0.048	0.0217	0.0221
		72.5518	72.5343	71.1847	71.1847	63.0157	62.9366	71.3247	71.32	51.8713	51.831
1500	0.5456	0.6421	0.6288	0.6078	0.5979	0.623	0.6158	0.6074	0.6023	0.6308	0.6274
		0.0966	0.0832	0.0622	0.0523	0.0774	0.0702	0.0619	0.0567	0.0853	0.0819
		0.01013	0.00785	0.00579	0.00486	0.00719	0.00622	0.00413	0.00353	0.00754	0.00698
		0.0854	0.0922	0.1037	0.109	0.0739	0.0767	0.0505	0.0518	0.0235	0.024
		72.5543	72.533	70.9945	70.996	66.7749	66.7266	72.875	72.8696	52.6228	52.5837
2000	0.4458	0.5557	0.5352	0.5184	0.5037	0.5315	0.5204	0.516	0.5082	0.5407	0.5355
		0.1099	0.0894	0.0726	0.0579	0.0857	0.0746	0.0702	0.0625	0.0949	0.0897
		0.01305	0.00916	0.00737	0.00571	0.00878	0.00714	0.00525	0.00425	0.00939	0.00845
		0.0969	0.1062	0.1157	0.1228	0.0834	0.0873	0.0565	0.0583	0.0269	0.0275
		72.0098	71.9947	72.0225	72.0314	68.5306	68.5065	72.3871	72.3839	50.3065	50.2683

Table 1: Simulation results for estimation of R(t) under Type I censoring

First row indicates the average estimates, the second row indicates the bias, the third row indicates MSE / Variance, the fourth row indicates 95% bootstrap confidence length and the fifth row indicates the coverage percentage.

	r		5		8		10		15		20
t	R(t)	\mathbf{R}_{II}	\hat{R}_{II}	\mathbf{R}_{II}	\hat{R}_{II}	\mathbf{R}_{II}	\hat{R}_{II}	\mathbf{R}_{II}	\hat{R}_{II}	\mathbf{R}_{II}	\hat{R}_{II}
		0.9658	0.9691	0.9629	0.9646	0.9589	0.9605	0.9562	0.9576	0.9591	0.9601
100	0.9604	0.0054	0.0087	0.0024	0.0042	$-.0015$	$1e-04$	-0.0042	$-.0028$	$-.0013$	$-3e-04$
		5e-05	9e-05	$1e-05$	$2e-05$	$1e-05$	$\boldsymbol{0}$	$2e-05$	$1e-05$	$2e-05$	$2e-05$
		0.0096	0.0087	0.0059	0.0056	0.0067	0.0064	0.0065	0.0063	0.0125	0.0122
		67.7959	67.7643	79.536	79.525	89.0394	89.0373	88.2244	88.2228	86.4103	86.406
		0.8707	0.882	0.859	0.8651	0.8452	0.8504	0.836	0.8406	0.846	0.8492
400	0.8508	0.0199	0.0312	0.0082	0.0143	$-.0056$	$-4e-04$	-0.0148	-0.0102	-0.0048	-0.0016
		0.00061	0.00116	0.00015	0.00028	$9e-05$	6e-05	0.00028	0.00017	0.00022	$2e-04$
		0.0331	0.0306	0.0222	0.0214	0.0244	0.0238	0.0245	0.0239	0.0467	0.0459
		71.4846	71.3959	75.7701	75.7177	87.8636	87.8528	87.1718	87.16	87.4368	87.425
		0.8419	0.8554	0.8272	0.8344	0.8105	0.8166	0.7998	0.8051	0.8126	0.8163
500	0.8171	0.0248	0.0383	0.0101	0.0173	$-.0066$	$-5e-04$	-0.0173	-0.012	$-.0046$	$-8e-04$
		0.00093	0.00174	0.00021	4e-04	0.00012	8e-05	0.00037	0.00021	3e-04	0.00028
		0.0396	0.0369	0.0276	0.0267	0.0295	0.0288	0.0266	0.0261	0.0572	0.0563
		71.1054	70.9898	80.8538	80.8105	89.0464	89.0375	88.5789	88.5727	88.9917	88.9786
		0.8119	0.8273	0.7967	0.8048	0.7775	0.7844	0.7651	0.7711	0.7791	0.7833
600	0.7848	0.0271	0.0425	0.0119	0.02	-0.0072	$-3e-04$	-0.0197	-0.0137	$-.0057$	-0.0014
		0.00125	0.00227	0.00026	0.00052	0.00014	8e-05	0.00049	0.00029	0.00036	0.00032
		0.0473	0.0444	0.0299	0.029	0.0297	0.0291	0.0316	0.031	0.0594	0.0586
		68.4233	68.2488	81.462	81.4136	88.5451	88.5352	87.8483	87.8423	86.7835	86.7658
		0.7047	0.7256	0.6844	0.695	0.6577	0.6666	0.6392	0.6467	0.6607	0.6661
1000	0.6611	0.0371	0.0579	0.0167	0.0274	-0.0099	-0.0011	-0.0285	-0.021	-0.007	-0.0016
		0.00245	0.00436	0.00053	0.00099	0.00026	0.00016	0.00102	0.00065	0.00061	0.00056
		0.0667	0.0642	0.0423	0.0417	0.0425	0.0421	0.0465	0.0461	0.0827	0.0822
		68.2689	67.9516	80.8597	80.7876	89.056	89.0427	88.9408	88.9332	89.7527	89.7345
1300	0.5915	0.6387	0.6617	0.6122	0.6237	0.5801	0.5895	0.5607	0.5685	0.5842	0.59
		0.0472	0.0702	0.0207	0.0323	-0.0113	-0.002	-0.0308	-0.023	-0.0073	-0.0015
		0.00334	0.006	0.00081	0.00142	0.00035	0.00023	0.00117	0.00075	0.00086	0.00081
		0.0779	0.0762	0.0468	0.0465	0.0487	0.0486	0.0474	0.0473	0.1	0.0999
		73.1837	72.9807	76.8806	76.7637	89.0756	89.0611	88.7632	88.7516	89.4526	89.4265
1500	0.5456	0.5944	0.6181	0.5681	0.5799	0.532	0.5414	0.5122	0.5199	0.5375	0.5433
		0.0489	0.0726	0.0225	0.0343	-0.0136	-0.0042	-0.0334	-0.0256	-0.0081	-0.0023
		0.00377	0.00664	0.00084	0.00151	0.00047	$3e-04$	0.00141	0.00095	0.00094	0.00089
		0.0815	0.0807	0.0504	0.0503	0.0562	0.0564	0.0532	0.0534	0.099	0.0992
		71.1787	70.9292	82.4645	82.3787	89.434	89.4178	87.7553	87.7359	88.6226	88.5911
2000	0.4458	0.5044	0.5281	0.4696	0.4809	0.4327	0.4413	0.411	0.4179	0.4361	0.4414
		0.0586	0.0823	0.0238	0.0351	-0.0131	-0.0045	-0.0347	-0.0279	-0.0097	-0.0044
		0.00491	0.00831	0.00104	0.00172	0.00049	0.00034	0.00153	0.00111	0.00126	0.00121
		0.0928	0.0944	0.0583	0.059	0.0588	0.0596	0.0593	0.0601	0.1135	0.1145
		73.7833	73.5675	81.1842	81.0605	88.3596	88.3405	89.7384	89.7273	88.5678	88.5335

Table 2: Simulation results for estimation of R(t) under type II censoring

* First row indicates the average estimates, the second row indicates the bias, the third row indicates MSE / variance, the fourth row indicates 95% bootstrap confidence length and the fifth row indicates the coverage percentage.

In order to estimate P, when X and Y follow the same distribution, for the case when λ_1 and λ_2 are unknown but the other parameters are known, we have conducted simulation experiments using bootstrap resampling technique for sample sizes (n, m) = (40, 30), (40, 40), (50, 40) and (50, 50) across different $(r_1, r_2) = (10, 10)$, (10, 15), (15, 15) and (25, 25). The samples are generated from (2.1) with $G(x;p_1) = x^{p_1}$, $H(y; p_2) = y^{p_2}$, $a_1 = a_2 = 0$, $p_1 = p_2 = 2$, $\lambda_1 = 1$ and $1/\lambda_2 = 2$. The computations are based on 500 bootstrap replications. We have computed \hat{P}_{II} , \hat{P}_{II} , bias/ variance, MSES, 95% confidence length and corresponding coverage percentage under type II censoring and the results are presented in Table 3.

$r_1 r_2$	10, 10			10, 15		15, 15	25, 25		
n, m									
$P=0.33$	\mathbf{p}_{II}	$\hat{\mathbf{P}}_{\text{II}}$	\mathbf{p}_{II}	$\hat{\mathbf{P}}_{\text{II}}$	\mathbf{p}_{II}	\hat{P}_{II}	\mathbf{p}_{II}	$\hat{\mathbf{P}}_{II}$	
	0.3435	0.3353	0.3974	0.3969	0.3566	0.3518	0.3404	0.3373	
50, 50	0.0101	0.002	0.0641	0.0636	0.0232	0.0184	0.007	0.004	
	0.00043	0.00036	0.00434	0.0043	0.00073	0.00054	$2e-04$	0.00017	
	0.0546	0.0568	0.045	0.047	0.0409	0.0421	0.0399	0.0405	
	86.2663	86.3479	85.8556	85.92	86.3665	86.3825	90.0565	90.0595	
	0.3838	0.3774	0.4467	0.4485	0.4035	0.4001	0.379	0.3766	
50, 40	0.0504	0.0441	0.1134	0.1151	0.0701	0.0667	0.0456	0.0432	
	0.00312	0.00258	0.01315	0.01357	0.00517	0.00472	0.00229	0.00209	
	0.0907	0.0953	0.056	0.0587	0.0504	0.0521	0.0479	0.0487	
	87.4411	87.3628	89.8405	89.8427	88.1438	88.1469	89.9056	89.9088	
	0.3065	0.2972	0.3644	0.3625	0.3382	0.3329	0.3283	0.3252	
40, 40	-0.0268	-0.0362	0.0311	0.0292	0.0048	$-4e-04$	-0.005	-0.0082	
	0.00111	0.00173	0.00114	0.00104	0.00043	0.00042	0.00023	0.00028	
	0.0731	0.0755	0.0427	0.0444	0.0741	0.0757	0.047	0.0476	
	82.4706	82.3555	88.8581	88.8519	91.367	91.406	89.5136	89.5144	
	0.3347	0.3262	0.4093	0.4094	0.3817	0.3776	0.3627	0.36	
40, 30	0.0013	-0.0071	0.076	0.076	0.0484	0.0443	0.0293	0.0267	
	0.00013	0.00019	0.00596	0.00597	0.00287	0.00252	0.00123	0.00109	
	0.0332	0.0344	0.0456	0.0477	0.0802	0.0825	0.0599	0.0609	
	85.0491	85.0051	91.0323	91.0297	89.1871	89.2229	88.1111	88.1093	

Table 3: Simulation results for estimation of P on Type-II censoring

***** First row indicates the average estimates, the second row indicates the bias, the third row indicates MSE / Variance, the fourth row indicates 95% bootstrap confidence length and the fifth row indicates the coverage percentage.

For the case when X and Y follow the different distributions, when all the parameters are unknown, the following samples (each of size 50) are generated from the distributions of X and Y. The samples are generated from (2.1) with $G(x; a, \underline{\theta}) = x^p$, $p=3$, $1/\lambda_1 = 2000$, $H(y; a, \underline{\theta}) = \log(\frac{y}{a})$, $a = 1000$ and $\lambda_2 = 2$. X: 675.631, 696.691, 772.670, 814.196, 816.689, 919.121, 934.893, 955.100,

1008.590, 1103.114, 1140.375, 1336.660 ,1373.238, 1463.133, 1479.120, 1488.223, 1498.410, 1498.800, 1520.379, 1579.157, 1604.472, 1606.427, 1664.502, 1686.000, 1689.984, 1724.849, 1732.414, 1733.658 ,1821.057 ,1834.874, 1838.607, 1857.158, 1903.130, 2114.485 ,2164.578, 2169.304, 2176.311, 2230.114, 2261.894, 2327.029, 2355.698, 2360.320, 2408.375, 2542.200, 2573.111, 2784.734 ,2888.644 ,3014.000, 3087.838, 3203.454.

Y: 1002.180, 1007.831, 1014.529, 1032.043, 1035.586, 1049.101, 1050.847, 1060.742, 1077.574, 1132.504, 1141.820, 1143.473, 1162.935, 1165.665, 1191.798, 1222.211, 1227.363, 1251.771, 1282.447, 1368.168, 1413.533, 1414.386, 1506.587, 1509.096, 1525.781, 1558.127, 1589.134, 1676.492, 1709.565, 1725.422, 1825.827, 1839.870, 1863.492, 1940.611, 2012.242, 2069.430, 2276.403, 2439.215, 2591.761, 2690.088, 2837.542, 2841.985, 3103.432, 3617.702, 3855.677, 4030.920, 4058.424, 4565.295, 5286.151, 5693.574.

Let t_o =1500 be the truncation time for X and t_{oo} =1300 for Y, so we have $r_1 = 18$ and r_2 =19. The MLES of the parameters of X are ϕ = 0.72 and $\hat{\mathcal{N}}_1$ = 0.002 and the MLES of the parameters of Y are $\hat{\mathbf{X}}_2 = 1.4605$ and $\hat{\mathbf{A}} = 1002.18$. We have P = 0.5142. Using Theorem 8, $\mathbf{p}_1 = 0.6036$ (with absolute error < 4.8e-05).

References

- 1. Awad, A. M. and Gharraf, M. K. (1986): Estimation of $P(Y < X)$ in the Burr case: A Comparative Study. Commun. Statist. - Simul., 15 (2), p. 389-403.
- 2. Bartholomew, D. J. (1957): A problem in life testing. Jour. Amer. Statist. Assoc., 52, p. 350-355.
- 3. Bartholomew, D. J. (1963): The sampling distribution of an estimate arising in life testing. Technometrics, 5, p. 361-374.
- 4. Basu, A. P. (1964): Estimates of reliability for some distributions useful in life testing. Technometrics, 6, p. 215-219.
- 5. Burr, I. W. (1942): Cumulative frequency functions. Ann. Math. Statist., 13, p. 215-232.
- 6. Chao, A. (1982): On comparing estimators of $Pr{X>Y}$ in the exponential case. IEEE Trans. Reliability, R-26, p. 389-392.
- 7. Chaturvedi, A. and Surinder, K. (1999): Further remarks on estimating the reliability function of exponential distribution under type I and type II censorings. Brazilian Jour. Prob. Statist., 13, p. 29-39.
- 8. Chaturvedi, A. and Tomer, S. K. (2002): Classical and Bayesian reliability estimation of the negative binomial distribution. Jour. Applied Statist. Sci., 11(1), p. 33-43.
- 9. Chen, Z. (2000): A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Statist. Prob. Letters, 49, p. 155-161.
- 10. Constantine, K., Karson, M. and Tse, S. K. (1986): Estimation of $P(Y < X)$ in the gamma case. Commun. Statist. - Simul., 15(2), p. 365-388.
- 11. Cislak, P. J. and Burr, I. W. (1968): On a general system of distributions; I. Its curve-shape charecteristics; II. The sample median. Jour. Amer. Statist. Assoc., 63, p. 627-635.
- 12. Johnson, N. L. (1975): Letter to the editor. Technometrics, 17, p. 393.
- 13. Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions-I. John Wiley and Sons, New York.
- 14. Kelly, G. D., Kelly, J.A. and Schucany, W. R. (1976): Efficient estimation of $P(Y \le X)$ in the exponential case. Technometrics, 18, p. 359-360.
- 15. Lai, C. D., Xie, M. and Murthy, D. N. P. (2003): Modified Weibull model. IEEE Trans. Reliability, 52, p. 33-37.
- 16. Ljubo, M. (1965): Curves and concentration indices for certain generalized Pareto distributions. Statist. Rev., 15, p. 257-260.
- 17. Lomax, K. S. (1954): Business failures. Another example of the analysis of failure data. Jour. Amer. Statist. Assoc., 49, p. 847-852.
- 18. Patel, J. K., Kapadia, C. H. and Owen, D. B. (1976): Handbook of Statistical Distributions. Marcel Dekker, New York.
- 19. Pugh, E.L. (1963): The best estimate of reliability in the exponential case. Operations Research, 11, p. 57-61.
- 20. Rohatgi, V. K. (1976): An Introduction to Probability Theory and Mathematical Statistics. John Wiley and Sons, New York.
- 21. Sathe, Y. S. and Shah, S. P. (1981): On estimating $P(X \le Y)$ for the exponential distribution. Commun. Statist. - Theor. Meth., A10, p. 39-47.
- 22. Sinha, S. K. (1986): Reliability and Life Testing. Wiley Eastern Limited, New Delhi.
- 23. Tadikamalla, P. R. (1980): A look at the Burr and related distributions. Inter. Statist. Rev., 48, p. 337-344.
- 24. Tong, H. (1974): A note on the estimation of $P(Y < X)$ in the exponential case. Technometrics, 16, p. 625.
- 25. Tong, H. (1975): Letter to the editor. Technometrics, 17, p. 393.
- 26. Tyagi, R. K. and Bhattacharya, S. K.(1989): A note on the MVU estimation of reliability for the Maxwell failure distribution. Estadistica, 41, p. 73-79.
- 27. Xie, M., Tang, Y. and Goh, T. N. (2002): A modified Weibull extension with bathtub-shaped failure rate function. Reliability Eng. Sys. Safety, 76, p. 279-285.