
Journal of Reliability and Statistical Studies (ISSN: 0974-8024)
Vol. 2, Issue 2(2009): 11-30

ESTIMATION OF THE RELIABILITY FUNCTION FOR A
FAMILY OF LIFETIME DISTRIBUTIONS UNDER TYPE I

AND TYPE II CENSORINGS

   Ajit Chaturvedi1, Kuldeep Chauhan2 and Md. Wasi Alam3

1, 3: Department of Statistics, University of Delhi, Delhi-110007, India.
E Mail: 3. wasif_alam3@yahoo.co.in

2:  Department of Statistics, Meerut College, Meerut-250005, India.

Abstract
A family of lifetime distributions is proposed. The problems of estimating the reliability

function R(t)=P(X>t) and P=P(X>Y) are considered under  type I and II censorings. Uniformly
minimum variance unbiased and maximum likelihood estimators are derived.         A comparative
study of the performance of the two methods of estimation is done. Simulation study is
performed.
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1. Introduction
The reliability function R(t) is defined as the probability of failure-free

operation until time t. Thus, if the random variable (rv) X denotes the lifetime of an
item, then R(t)=P(X>t). Another measure of reliability under stress-strength set-up is
the probability P=P(X>Y), which represents the reliability of an item of random
strength X subject to random stress Y. Many researchers have considered the problems
of estimation of R(t) and ‘P’ in the literature under censoring and complete sample case.
Uniformly minimum variance unbiased estimators (UMVUES) and maximum
likelihood estimators (MLES) for R(t) and ‘P’ have been derived for various lifetime
distributions, like, exponential,  gamma, Weibull, half-normal, Maxwell, Rayleigh, Burr
and others. For a brief review, one may refer to Pugh (1963), Basu (1964),
Bartholomew (1957, 1963), Tong (1974, 1975), Johnson (1975), Chaturvedi and
Surinder (1999), Sinha (1986), Kelly, Kelly and Schucany (1976), Chao (1982), Sathe
and Shah (1981), Constantine, Karson and Tse (1986), Tyagi and Bhattacharya (1989),
Awad and Gharraf (1986) and others.

In the present paper, we consider a family of distributions, which covers many
lifetime distributions as specific cases. The UMVUES and MLES of R(t) and ‘P’ are
derived under type I and  II censorings. In order to obtain these estimators, the major
role is played by the estimators of the powers of the parameter(s) and the functional
forms of the parametric functions to be estimated are not needed. It is worth mentioning
here that, in order to estimate ‘P’, in the literature, the authors have considered the cases
when X and Y follow the same distributions, may be with different parameters. We
have generalized the result to the case when X and Y may follow any distribution from
the proposed family of distributions. Simulation study is carried out to investigate the
performance of the estimators.
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In Section 2, we introduce the family of lifetime distributions. In Section 3, we
derive the UMVUES of R(t) and ‘P’ under type I and  II censorings. In Section 4, we
obtain the MLES of R(t) and ‘P’ under two types of  censorings. Finally, in Section 5,
the simulation study is performed.

2. The Family of Lifetime Distributions
Let the rv X follow the distribution having the probability density function (pdf)
f(x;a, )= G (x;a, )exp{- G(x;a, )};′ x>a 0≥ , >0 .                                           (2.1)

 Here, G(x;a, )  is a function of x and may also depend on the parameters ‘a’
and - may be vector-valued. Moreover, G(x;a, )  is monotonically increasing in x with
G(a;a, ) =0, G( ;a, )=∞ ∞  and G (x;a, )′ denotes the derivative of G(x;a, ) with respect to x.

      We note that (2.1) represents a family of lifetime distributions as it covers the
following lifetime distributions as specific cases:

i. For G(x;a, ) x=  and a=0, we get the one-parameter exponential distribution
 [Johnson and Kotz (1970, p.166)].

ii. For pG(x;a, ) x=  (p>0) and a=0, it gives Weibull distribution [Johnson and Kotz
 (1970, p.250)].

iii. For 2G(x;a, ) x=   and a=0, it leads us to Rayleigh distribution [Sinha (1986,
 p.200)].

iv. For G(x;a, ) = blog(1+x )  (b>0) and a=0, it turns out to be Burr distribution [Burr
 (1942) and Cislak and Burr (1968)].

v. For G(x;a, ) = xlog( )
a

, it is known as Pareto distribution [Johnson and Kotz

 (1970, p.233)].

vi. For G(x;a, ) = xlog(1+ )
v

, v>0 and a=0, we get Lomax (1954) distribution.

vii. For G(x;a, ) =
bxlog(1+ )

ν
, b>0, v>0 and a=0, it gives Burr distribution with scale

 parameter v [see Tadikamalla (1980)].
viii. For G(x;a, ) = x exp( x),  >0, >0  and a=0, it leads us to the modified Weibull

 distribution of Lai et al. (2003).

ix. For xG(x;a, ) = exp( -1), >0, >0  and a=0, it turns out to be a modified form of

 Weibull distribution considered by Xie et al. (2002). If we also take =1, this
 reduces to the lifetime distribution considered by Chen (2000).

x. For x+G(x;a, )=(x-a)+ log( ),v>0, >0
a+

 , we get the generalized Pareto

 distribution of Ljubo (1965).

3. UMVUE's of R(t) and ‘P’ under Type I and Type II Censorings
Throughout this section, we assume that  is unknown, but ‘a’ and  are

known. First we consider the estimation based on type II censored data. Suppose n items
are put on a test and the test is terminated after the first r ordered observations are
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recorded. Let ...(1) (2) (r)a X X   X≤ ≤ ≤ ≤ , 0<r<n, be the lifetimes of first r ordered

observations. Obviously, (n-r) items survived until (r)X .

Lemma 1: Let
r

r (i) (r)
i=1

S G(X ;a, )+(n-r)G(X ;a, ).= ∑    Then, rS is complete and sufficient for

the family of distributions given at (2.1). Moreover, the pdf of rS is
r-1

r
r r

rsg(s ;a, ) exp(- s )
(r)

=                                                                                            (3.1)

Proof:  From (2.1), the joint pdf of ...(1) (2) (n)a X X   X≤ ≤ ≤ ≤  is
n n

n
(i) (i)(1) (2) (n)

i=1i = 1

*(x ,x ,...,x ;a, )=n! G (x ;a, ) exp{- G(x ;a, )}.f ′ ∑∏                                          (3.2)

Integrating out (r+1) (r+2) (n)x ,x , ..., x from (3.2) over the region (r) (r+1) (n)x x ... x≤ ≤ ≤ , the
joint pdf of ...(1) (2) (r)a X X   X≤ ≤ ≤ ≤   comes out to be

r
r

(i) r(1) (2) (r)
i = 1

 h(x ,x ,...,x ;a, )= n(n-1) ... (n-r+1) G (x ;a, ) exp(- s )′∏ .                                  (3.3)

It follows easily from (2.1) that the rv U= G(X;a, )   follows exponential distribution
with mean life1/  . Moreover, if we consider the transformation

i (i) (i-1) 0=(n-i+1){U -U }, i=1,2,...,r; U =0,Z

then iZ ’s are independent and identically distributed (iid) rv’s, each having exponential

distribution with mean life1/ . It is easy to see that
r

i r
i=1

Z S=∑ . Result (3.1) now follows

from the additive property of gamma distribution [see Johnson and Kotz (1970, p.170)].
It follows from (3.3) that rS is sufficient for the family of distributions given at (2.1).
Since the distribution of rS belongs to exponential family of distributions, it is also
complete [see Rohatgi (1976, p.347)].

The following lemma provides the UMVUE's of the powers (positive, as well
as, negative) of .

Lemma 2:  For q ( , ),∈ −∞ ∞  the UMVUE of q  is

-q
rq

II

(r)    (q<r)S
(r-q)=

0, otherwise.






Proof: From (3.1),
r

q r-q-1
r r r r

0

E( ) exp( s )dsS s
(r)

∞
− = −∫
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          =
q(r-q)

(r)
 
 
 

and the lemma follows from Lehmann-Scheffé theorem [see Rohatgi (1976, p.357)].

In the following lemma, we provide the UMVUE of the sampled pdf (2.1) at a
specified point ‘x’.

Lemma 3: The UMVUE of f(x;a, )  at a specified point ‘x’ is
r-2

r
II r r

(r-1)G (x;a, ) G(x;a, ) ;G(x;a, )<S1-f (x;a, )= S S
0, otherwise.

 ′




 
  

Proof: We can write (2.1) as
i

i i+1

i = 0

(-1)f(x;a, )=G (x;a, ) (x;a, ) . Gi!
∞

′ ∑                                                                        (3.4)

Using Lemma 1 of Chaturvedi and Tomer (2002) and Lemma 2, from (3.4), the
UMVUE of f(x;a, )  at a specified point ‘x’ is

IIf (x;a, ) =
i

i+1i
II

i = 0

(-1)G (x;a, ) (x;a, ) Gi!
∞

′ ∑

    = { }
i

r-2 i

i = 0r r

r-2(r-1)G (x;a, ) G(x;a, )(-1)
  iS S

′  
∑  

 

and the lemma holds.
 In the following theorem, we obtain UMVUE of R(t).

Theorem 1: The UMVUE of R(t) is given by
r-1

r
II r

G(t;a, )1- ,      G(t;a, )<SR (t) = S
0,  otherwise.

 
  



Proof:   Let us consider the expected value of the integral II
t
f (x;a, ) dx

∞

∫ with respect to

rS  i.e.

{ }II r r
0 t

f (x;a, ) dx g(s ;a, ) ds
∞ ∞

∫ ∫ { }IIrt
f (x;a, )  dxEs

∞
 =∫  

t
f(x;a, ) dx

∞
= ∫

                                                     = R(t).                                                                    ( 3.5)

We conclude from (3.5) that the UMVUE of R(t) can be obtained simply integrating
IIf (x;a, ) from t to ∞ .

Thus, from Lemma 3,
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( ) r-2

II
tr r

r-1 G(x;a, )R (t)= G (x;a, ) 1- dx
S S

∞  
′∫  

 
and the theorem follows.

Let X and Y be two independent rv’s following the classes of distributions
1 1 1 1f (x;a , )  and 2 2 2 2f (y;a , ),  respectively, where

1 1 1 1 1 1 1 1 1 1 1 1f (x;a , )= G (x;a , )exp{- G(x;a , )}; x>a 0, 0′ ≥ >

and

2 2 2 2 2 2 2 2 2 2 2 2f (y;a , )= H (y;a , )exp{- H(y;a , )}; y>a 0, 0.′ ≥ >

We assume that 1 and 2  are unknown, but 1 2 1 2a ,  a ,  and  are known. Let n items on

X and m items on Y are put on a life test and the truncation numbers for X and Y are 1r
and 2r , respectively. Let us denote by

1

1 1

r

(i) 1 1r 1 (r ) 1 1
i = 1

S = G(x ;a , )+(n-r )G(x ;a , )∑

and
2

2 2

r

(j) 2 2r 2 (r ) 2 2
j = 1

T = H(y ;a , )+(m-r )H(y ;a , ).∑

In what follows, we obtain the UMVUE of ‘P’.

Theorem 2: The UMVUE of ‘P’ is given by
1

22
1 2

r1 1

r2

1

22
2 1

1

r 1-11 r -1 -1r -1
2 r r

-1H( (S ))G r
1-

T
II

r 1-11
r -1r -2 -1

2 r r
0 r

G(H ((1-z)T ))
(r 1) 1- dz, G (S ) <H (T )z

S
P

G(H ((1-z)T ))
(r 1) 1- dz,               (T )< (S ).Gz HS

−

−

  
 −  ∫   = 
   −  ∫   

Proof:  It follows from Lemma 3 that the UMVUES of 1 1 1 1f (x;a , ) and 2 2 2 2f (y;a , )  at
specified points ‘x’ and ‘y’, respectively, are

1

1

1 1

(r -2)

1 1 1 1 1
1 1

1II 1 1 1

(r -1)G (x;a , ) G(x;a , )1- ,G(x;a , )<Srf (x;a , )= S Sr r
0,  otherwise

  ′  
 
 



                                 (3.6)

and
2(r -2)

2 2 2 2 2
2 2

22II 2 2 2
2 2

(r -1)H (y;a , ) H(y;a , )1- ,H(y;a , )<Trf (y;a , )= T Tr r
0,  otherwise.

  ′  
 
 



                              (3.7)
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From the arguments similar to those adopted in proving Theorem1, it can be shown that
the UMVUE of ‘P’ is given by

2

1II 1 1 1 2II 2 2 2II
y = a x = y

P f (x;a , )f (y;a , )
∞ ∞

= ∫ ∫ dx dy,

which on using (3.6) and (3.7) gives that
1 2-1

r2

2
1 2 1 2

r -2 r -2-1G (S )H (T ) r1
1 2 1 1 2 2

1 1 2 2II
y = a x = y

(r -1)(r -1) G(x;a , ) H(y;a , )P = G (x;a , )H (y;a , ) 1- 1- dxdy
S T S Tr r r r

   
   ′ ′∫ ∫
      

  =
2-1

r r1 2

2
2 2

r -2-1 1min{ (S ),H (T )}G
2 1 1 2 2

2 2
y = a

1

r -1
(r -1) G(y;a , ) H(y;a , )1- H (y;a , ) 1- dy.
T S Tr r r

   
   ′∫
     

                    (3.8)

The theorem now follows from (3.8).

Corollary 1: In the case when 1a = 2a =a, say, 1 = 2 = , say, G(x; a, )=H(x; a, ),
but 1 ≠ 2 ,

2
1

1 2

2

1
2

2 1

1

i+1
r -2 i 2

12
i = 0

II i
r -1

i 1
2 2

i = 0

Sr -2 r(r -1)  B(i+1, ),        S <T(-1)  r r rT   i rP =
Tr -1 r(r -1)    B(i+1, r -1),     T <S .(-1) r rS   i r

     ∑       

      ∑        

Proof:  From Theorem 2, for
1 2

S <T ,r r
1

2

r1

r2

r -1

1
r -2

II 2
S

1- 1T

Tr2P = (r -1) 1- (1-z) dzz Sr

 
 ∫  
 

r 11
r2

2 2

1

S r -1
T

r -2
2

0

Tr= (r -1) 1- u du(1-u)
Sr

 
 ∫
  

( )
2

1

i+1

r -2 1 r -1i 2 1
2

i = 0 0
2

Sr -2 r= (r -1) 1-v dv(-1)
  i T

r

iv
 

∑ ∫ 
 

 
 
 

and the first assertion follows. Furthermore, for
2

T
r

<
1

S
r

,

1

22

1

r -1
1

r 2
II 2

0

TrP = (r -1) 1- (1-z) dz
Sr

z −
 
 ∫
  

1
2

i

r -1 1i i1 r 22
2

i = 0 0
1

Tr -1 r= (r -1) ( du(-1) 1-u)u  i S
r

− 
∑ ∫ 

 

 
 
 

and the second assertion follows.
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Now we consider estimation based on type I censored data.
Let ...(1) (2) (n)a X X   X≤ ≤ ≤ ≤  be the failure times of n items under test from (2.1). The
test begins at time (0)X a=  and the system operates till (1) (1)X x= when the first failure
occurs. The failed item is replaced by a new one and the system operates till the second
failure occurs at time (2) (2)X x= , and so on. The experiment is terminated at time ot .

Lemma 4: If oN(t )    be the number of failures during the interval [0, ot ], then

{ }r
o

o o o

G(t ;a, )
P[N(t )=r|t ]= exp{ n G(t ;a, )}.

r!
−

Proof: Let us make the transformations = =1 (1) 2 (2) (1)W G(X ;a, ), W G(X ;a, ) - G(X ;a, ),  …,
 =n (n) (n-1)W G(X ;a, )-G(X ;a, )  . The pdf of 1W  is

( ) ( )1 1h w n exp -n w= .
Moreover, 2W , … , nW are independent and identically distributed as 1W . Using the

monotonicity property of G(x; a, ),

o (r) o (r+1) oP[N(t) = r|t ] = P[X t ] P[X t ]≤ − ≤

                       = (r) o (r+1) oP[G(X ;a, ) G(t ;a, )] P[G(X ;a, ) G(t ;a, )]≤ − ≤

            = ... ...1 2 r o 1 2 r+1 oP[W W W G(t ;a, )] - P[W W W G(t ;a, )].+ + + ≤ + + + ≤                          (3.9)
From the additive property of exponentially distributed rv’s [see Johnson and Kotz

(1970), p.170], U=
r

i
i = 1

n W∑  follows gamma distribution with pdf

r-1 -u1h(u)= u e
(r)

;u>0                                                                                        (3.10)

Using (3.10) and a result of Patel, Kapadia and Owen (1976, p.244), we obtain from
(3.9) that

o o

-u r -u r-1
o o

G(t ;a, ) n G(t ;a, )

1 1P[N(t )=r|t ]=  du due u e u
(r+1) (r)

∞ ∞

−∫ ∫

=
j jr r-1

o o
o

j = 0 j = 0

{n G(t ;a, )} {n G(t ;a, )}exp{ n G(t ;a, )}
j! j!

 
− −∑ ∑ 

 
and the lemma follows.

In the following lemma, we derive the UMVUE of q , where q is a positive
integer.

Lemma 5:  For q to be a positive integer, the UMVUE of q   is given by

[ ]-q
oq

I

r! nG(t ;a, ) (q r)
(r-q)!
0,  otherwise.

 ≤= 


Proof: It follows from Lemma 4 and Fisher-Neyman factorization theorem [see Rohatgi
(1976, p.341)] that r is sufficient for estimating . Moreover, since the distribution of r
belongs to exponential family, it is also complete [see Rohatgi (1976, p.347)]. The
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lemma now follows from the result that the qth factorial moment of distribution of r is
given by
E{r(r-1) …(r-q+1)} ={ }q

on G(t ;a, ) .

In the following lemma, we obtain the UMVUE of the sampled pdf (2.1) at a
specified point ‘x’.

Lemma 6: The UMVUE of f(x;a, ) at a specified point ‘x’ is
r-1

o
I o o

G(x;a, )rG (x;a, ) 1- ;   G(x;a, )<nG(t ;a, )f (x;a, )= nG(t ;a, ) nG(t ;a, )
0,  otherwise.

  ′
    



Proof: Using Lemma 1 of Chaturvedi and Tomer (2002) and Lemma 5, from (3.4), the
UMVUE of f(x;a, ) at a specified point ‘x’ is

ir-1 i+1i
I I

i = 0

(-1)f (x;a, ) G (x;a, ) (x;a, ) G
i!

′= ∑

                  = { }
ir-1 (i+1)i

o
i = 0

r!(-1)G (x;a, ) (x;a, ) nG( ;a, )G t
i! (r-i-1)

−   ′ ∑   
   

                  =
i

r-1 i

i = 0o o

r-1rG (x;a, ) G(x;a, )
(-1)

  inG(t ;a, ) nG(t ;a, )
 ′    

∑   
    

and the lemma follows.
In the following theorem, we derive the UMVUE of R(t).

Theorem 3: The UMVUE of R(t) is given by
r

o
I o

G(t;a, )1- ;  G(t;a, ) nG(t ;a, )
R (t) nG(t ;a, )

0, otherwise.

 
 < =  



Proof: From the arguments similar to those adopted in the proof of Theorem 1, using
Lemma 6,

I I
t

R (t) f (x;a, )dx
∞

= ∫

         =
o

-1 r-1(nG(t ;a, ))G

o ot

r G(x;a, )G (x;a, ) 1- dx
nG(t ;a, ) nG(t ;a, )

 
′  

 
∫

         = ( )
o

1
r-1

G(t;a, )
nG(t ;a, )

r 1-y dy∫

and the theorem follows.

 In what follows, we obtain UMVUE of ‘P’. Suppose n items on X and m items
on Y are put through a life test and ot  and oot  are their truncation times, respectively.
Let 1r  items on X and 2r  items on Y fail before times ot  and oot , respectively.
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Theorem 4: The UMVUE of ‘P’ is given by
1

2

1-1 1

2

r-11
r 1oo 2 2

2
0 o 1 1

-1 -1
ooo 2 2 1 1

I r-1H(G (nG
r -1oo 2 2

2
0 o 1 1

G(H (mH(t ;a , )z))r 1- dz,(1-z)
nG(t ;a , )

       H (mH(t ;a , )) <G (nG( ;a , ))tP
G(H (mH(t ;a , )z))r 1- dz (1-z)

nG(t ;a , )

−

−  
∫  
  

=
  
 
  

{ }o 1 1 oo 2 2( ;a , ))) mH(t ;a , )t

-1 -1
ooo 1 1 2 2

,

       G (nG(t ;a , ))<H (mH( ;a , )).t









∫




Proof: Using the arguments similar to those applied in the proofs of Theorem 1 and
Lemma 6,

2

1I 1 1 1I 2I 2 2 2
y = a x = y

P = f (x;a , ) f (y;a ,  ) dx dy
∞ ∞

∫ ∫

-1
o 1 1

2

1 2

G (nG(t ;a , ))
1 2

1 1 2 2
y = a x = yo 1 1 oo 2 2

r -1 r -1

1 1 2 2

o 1 1 oo 2 2

r r G (x;a , ) H (y;a , )
nmG(t ;a , )H(t ;a , )

G(x;a , ) H(y;a , )    . 1- 1- dx dy
nG(t ;a , ) mH(t ;a , )

∞
′ ′= ∫ ∫

   
   
   

    =
2

1

1 12

o 1 1

r -1
1 r -1 2 21 2

2 2
G(y;a , )y = aoo 2 2 oo 2 2u=

nG(t ;a , )

H(y;a , )r r H (y;a , ) 1- du dy(1 u)
mH(t ;a , ) mH(t ;a , )

∞  
′−∫ ∫  

 

1 -1
o 1 1 oo 2 2

2

min{ (nG(t ;a , )),  H (mH(t ;a , ))}
2

2 2
 aoo 2 2

r H (y;a , )
mH(t ;a , )

G−

′= ∫

1 2r r -1

1 1 2 2

o 1 1 oo 2 2

G(y;a , ) H(y;a , ). 1- 1- dy.
nG(t ;a , ) mH(t ;a , )

   
   
   

                                                       (3.11)

The theorem now follows from (3.11).

Corollary 2: In the case when 1 2a a= = a, say, 1 = 2 = , say, 1 1 2 2G(x;a , )=H(x;a , ), ot
= oot , but 1 2≠ ,

1

2-1

ir
i 1

2 2
i = 0

I i+1r
i 2

2 1
i = 0

r mr  B(i+1, r ),                m<n(-1)
n i

P =
r 1 nr  B(i+1, r +1),     n<m.(-1)

m   i

    
∑    

   


−   ∑       

Proof: From Theorem 4, for m<n,
1

2

r1
r 1

I 2
0

mP r 1- z dz(1-z)
n

− =   ∫

     =
1

2

i 1r i r 11 i
2

i = 0 0

r mr  dz(-1) (1-z)zn i
−   ∑    

  
∫
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and the first assertion follows. For n<m,
1

2

rn/m
r 1

I 2
0

mP r 1- z dz(1-z)
n

− =   ∫

     = ( )
2

1

r 11
r

2
0

n nr 1-u 1- u du
m m

−
   
      ∫

     =
2

1

i+11r -1
i r2 i

2
i = 0 0

r -1 nr  du(-1) (1-u)um i
   ∑    

  
∫

and the second assertion follows.

4.  MLE's of R(t) and ‘P’ under Type I and Type II Censorings
In order to compare the performance of UMVUES and MLES, we consider the

case when ‘a’ and  are known, but   is unknown.
 We first consider estimation based on type II censoring.

Lemma 7: The MLE of  is

II
r

r = .
S

%

Proof: From (3.3), the log-likelihood is
r

(i) r
i = 1

logL( | x) = log{n(n-1)...(n-r+1)}+rlog + log{G (x ;a, )}- S′∑ .                                       (4.1)

The result now follows on differentiating (4.1) with respect to , equating the
differential coefficient to zero and solving the equation for .

Lemma 8:  The MLE of f(x; a, , ) at a specified point ‘x’ is

II
r r

r rf (x; a, , )= G (x;a, ) exp - G(x;a, )
S S

     ′     
     

% .

Proof: The proof follows from (2.1), Lemma 7 and one-to-one property of the MLE.

       Theorem 5: The MLE of R(t) is given by

II
r

rR (t)= exp - G(t;a, ) .
S

   
  
   

%

Proof:  From one- to-one property of MLE,

IIII
t

R (t)= f (x; a, , ) dx
∞

∫ %% ,

which, on using Lemma 8, gives that

II
tr r

r rR (t)= G (x;a, )exp - G(x;a, ) dx
S S

∞      ′∫     
     

%

           =

r

y

r G(t;a, )
S

 dye
∞

−

 
  
 

∫

and the theorem follows.
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Theorem 6: The MLE of ‘P’ is given by

1 2
II

0 2
1

Tr r-1 -vP exp - G(H ( v)) dveS rr

∞     = ∫      

% .

Proof: From one-to-one property of MLE,

2

1II 1 1 1II 2II 2 2 2
y = a x = y

P = f (x;a , ) f (y;a ,  ) dx dy
∞ ∞

∫ ∫ % %% ,

which, on using Lemma 8, gives that

21 2

1 2 1
1 1 1 1II

y = a x = yr r
1

2
2 2 2 2

2

r r rP G (x;a , ) exp - G(x;a , )
SS T r

r       . H (y;a , ) exp - H(y;a , ) dx dy
Tr

∞ ∞
        ′=   ∫ ∫            

      ′       

%

     =
2 12 2

1 1
r1

2 2
2 2 2 2

y = a rr ru= G(y;a , )
S

r r-u  H (y;a , )exp - H(y;a , ) du dye
T T

∞ ∞

 
 
 
 

     ′   ∫ ∫          

     =
22 2

2 21
1 1 2 2 2 2

y = ar r
1

r rrexp - G(y;a , ) H (y;a , ) exp - H(y;a , ) dy
ST Tr

∞             ′   ∫                 
 and the theorem follows.

Corollary 3: In the case when 1 2a a= = a, say, 1 = 2 = , say, 1 1G(x;a , )

2 2= H(x;a , ), but 1 2≠  ,

1

1 2

2 r
II

2 r 1 r

r S
P .

r S +r T

 
=   

 
%

 Now we consider estimation base on type I censoring.

Lemma 9:  The MLE of   is

I
r

=
nG(t ;a, )o

% .

Proof: From Lemma 4, the log-likelihood is
o ologL( | r) = rlogn+rlogG(t ;a, ) log ! rlog -n G(t ;a, )r− +

and the result follows.

       Lemma 10:  The MLE of f(x;a, ) at a specified point ‘x’ is

I
o o

rG (x;a, ) rG(x;a, )f (x;a, )= exp - .
nG(t ;a, ) nG(t ;a, )

   ′
   
   

%

Proof: The Lemma follows from (2.1) and Lemma 9.
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Theorem 7: The MLE of R(t) is given by

I
o

rG(t;a, )R (t) = exp - .
nG(t ;a, )

 
 
 

%

         Proof: From Lemma 10,

I I
t

R (t) = f (x;a, ) dx
∞

∫ %%

          =
o ot

r rG(x;a, )G (x;a, )exp - dx
nG(t ;a, ) nG(t ;a, )

∞   
′   

   
∫

        =

o

-y

rG(t;a, )
nG(t ;a, )

 dye
∞

∫

 and the theorem follows.

 Theorem 8: The MLE of ‘P’ is given by

1 oo 2 2
-v2

I
o 1 10

m-1r G(H ( H(t ;a , )v))
rP exp - dv.enG(t ;a , )

∞
 
  =  
 
  

∫%

 Proof: From Lemma 10,

2

1I 1 1 1I 2I 2 2 2
y = a x = y

P = f (x;a , ) f (y;a ,  ) dx dy
∞ ∞

∫ ∫ % %%

2

1 2
1 1

y = a x=yo 1 1 oo 2 2

1 1 1 2 2 2
2 2

o 1 1 oo 2 2

r r G (x;a , )
nmG(t ;a , )H(t ;a , )

r G(x;a , ) r H(y;a , )   .exp - H (y;a , ) exp - dxdy
nG(t ;a , ) mH(t ;a , )

∞ ∞ 
′= ∫ ∫ 

 
   

′   
   

      =
1 1 12

o 1 1

-u2 2 2 2
2 2

r G(y;a , )y = aoo 2 2 oo 2 2u=
nG(t ;a , )

r r H(y;a , ) H (y;a , ) exp - dudye
mH(t ;a , ) mH(t ;a , )

∞ ∞   
′∫ ∫   

   

      =
2

2 1 1 1 2 2 2
2 2

 aoo 2 2 o 1 1 oo 2 2

r r G(y;a , ) r H(y;a , )exp - H (y;a , ) exp - dy
mH(t ;a , ) nG(t ;a , ) mH(t ;a , )

∞     
′∫     

     

        and the theorem follows.
Corollary 4: In the case when 1 2a a= =a, say, 1 = 2 = , say, 1 1 2 2G(x;a , ) = H(x;a , ),

ot  = oot , but 1 2≠ ,

2
I

2 1

r nP .
r n+r m

=%
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Remarks 1:

(i) In the literature, researchers have dealt with the estimation of R(t) and ‘P’,
separately. If  we look at the proofs of Theorems 1-8, we observe that the
UMVUE(S) / MLE(S) of power(s) of parameter(s) is (are) used to obtain
UMVUE(S) / MLE(S) of the sampled pdf(s), which is (are) subsequently
used to estimate R(t) and ‘P’. Thus, for both the estimation problems, the
basic role is played by the estimator(s) of power(s) of parameter(s). In this
way, we have justified estimation of power(s) of parameter(s).

(ii) We have established an interrelationship between the estimation of R(t)
and ‘P’.

(iii) In the literature, the researchers have derived the UMVUES / MLES of
‘P’ for the case when X and Y follow the same distribution (may be with
different parameters). We have obtained these estimators for all the three
situations, when X and Y follow the same distribution having all the
parameters same other than 's , when X and Y have the same distribution
with different parameters and when X and Y follow different
distributions.

(iv) In the present approaches of obtaining UMVUES and MLES, one does
not need the expressions of R(t) and ‘P’.

(v) The problems of obtaining MLES when more parameters are unknown
can be dealt on similar lines. One just needs as many differentials (with
respect to unknown parameters) of likelihood function as the number of
unknown parameters and their simultaneous solutions. The MLE of any
parametric function can be obtained by plugging the MLES in place of
unknown parameters.

(vi) It follows from Lemma 2 that Var( II ) =
( )

2

0
r-2

→  as r → ∞ . Moreover,

from Lemma7,
( )IIE(
r-1

= →%  as r → ∞  and
2 2

II 2Var( ) 0
(r-2)(r-1)

= →%

as r → ∞ . Thus, II and II
%  are consistent estimators of . Since

II IIf (x; a, , ), f (x; a, , ),%
IIR (t) , IIR (t)%  , IIP  and IIP%  are continuous

functions of consistent estimators, they are also consistent estimators.

5. Simulation Studies
We have shown under Remarks 1(vi) that II , II

% , II IIf (x; a, , ), f (x; a, , ),%

IIR (t) , IIR (t)%  , IIP  and IIP%  are consistent estimators. In order to verify these results, we
have drawn sample of size n= 50 from (2.1) with ( ) pG x;p ,x=   a=0, p=2 and =1. In
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Fig.1 and Fig.2, respectively, we have plotted f(x;a, )  and f(x;a, )% for different values
of r=5(5)30 and 50 under type II censoring. We conclude from the figures that as r
increases, the curves of IIf (x;a, )  and IIf (x;a, )%   come close to the curve of f(x;a, ).
This justifies the consistency property of the estimators.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

x

IIf
(x

;a
,

)

           Fig.1: The curves of f(x;a, ).  (bold) and IIf (x;a, )  (dotted)

For the case when  is unknown, we have conducted a simulation experiments
using bootstrap resampling technique of the following sample of size 50, generated
from (2.1) with G(x;a, ) x, a=0= and =0.0004.

49.2611 251.1228 270.5831 313.1192 360.7416 383.3871 411.4322
534.8131 566.5359 683.0055 772.1821 793.6235 795.7669 872.7322
936.7485 971.3557 1059.5648 1238.8516 1271.1188 1342.7648 1404.8366

1410.5900 1413.3407 1525.9684 1568.4431 626.5130 1662.05 1851.8340
1863.1614 1875.8562 1962.0475 2169.4619 2230.3038 2442.2024 2758.2105
2784.7300 2795.5681 2932.7959 3913.2557 4080.1081 4209.9014 4653.3542
4748.0918 5132.9441 5401.5366 5408.7457 5444.3025 7241.4239 11681.5470

11705.1838.

r=50

r=15

r=30

r=25

r=20

r=10
r=5
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%

       Fig.2: The curves of f(x;a, ).  (bold) and IIf (x;a, )%  (dotted)

Assuming that the data represents life spans of items in hours. For different values of t
and r, we have computed R(t),% R(t),  bias, variance/ mean sum of squares (MSES), 95%
confidence length and corresponding coverage percentage under type I and type II
censorings. All the computations are based on 500 bootstrap replications and the results
under type I and type II [for ot = Maximum( rx )] censorings are reported in Table 1 and
Table 2 respectively.

r=15

r=50

r=30

r=20

r=25

r=10

r=5
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r 5 8 10 15 20

t R(t) IR% IR IR% IR IR% IR IR% IR IR% IR

100 0.9604
0.9709
0.0104

0.00012
0.0089

72.7895

0.9708
0.0104

0.00012
0.009

72.7874

0.9671
0.0067
7e-05

0.0114
71.3972

0.967
0.0066
7e-05

0.0115
71.3954

0.9683
0.0079
8e-05

0.0078
60.8975

0.9683
0.0079
8e-05

0.0079
60.8832

0.9673
0.0069
5e-05

0.0055
71.196

0.9673
0.0069
5e-05

0.0055
71.1952

0.9698
0.0094
 9e-05
0.0024

50.3915

0.9698
0.0094
9e-05

0.0024
50.386

400 0.8508
0.8888

0.038
0.00155
0.0325

72.2166

0.8875
0.0367

0.00146
0.0333

72.2082

0.8747
0.0239

0.00088
0.041

71.1796

0.8737
0.0229

0.00084
0.0417

71.1792

0.8792
0.0284

0.00105
0.0284

62.3227

0.8784
0.0276

0.00101
0.0288

62.2741

0.8751
0.0243

0.00064
0.0197

73.3461

0.8746
0.0238

0.00062
0.0199

73.3434

0.8842
0.0334

0.00116
0.0088

47.0879

0.8839
0.0331

0.00114
0.0089
47.065

500 0.8171
0.8625
0.0454

0.00222
0.0393

72.9396

0.8605
0.0434

0.00206
0.0405

72.9283

0.8472
0.0301

0.00133
0.0494

70.8813

0.8457
0.0286

0.00126
0.0504

70.8821

0.8512
0.0341

0.00151
0.0343

63.1625

0.8501
 0.033

0.00144
0.0349

63.1079

0.8464
0.0293

0.00093
0.0238

73.0971

0.8456
0.0285

0.00089
0.0241

73.0955

0.8571
0.04

0.00168
0.0118
49.916

0.8566
0.0395

0.00164
0.0119

49.8934

600 0.7848
0.8375
0.0527

0.00299
0.0457

73.1803

0.8348
0.05

0.00273
0.0473

73.1667

0.819
0.0342

0.00174
0.0572

71.2108

0.8168
0.0321

0.00163
0.0586
71.212

0.8265
0.0417

0.00218
0.0399

62.7205

0.8249
0.0402

0.00207
0.0406

62.6612

0.8196
0.0349
0.0013
0.0276

72.2089

0.8185
0.0338
0.0012

0.028
72.2049

0.8311
0.0463

0.00224
0.0124

47.2747

0.8304
0.0456

0.00218
0.0126

47.2447

1000 0.6677
0.7436

0.076
0.00695
0.0669

59.8607

0.7368
0.0691

0.00613
0.0707

59.3552

0.7155
0.0479

0.00352
0.0826

71.6969

0.7103
0.0427

0.00315
0.0858
71.701

0.7262
0.0585

0.00427
0.0582

65.9724

0.7224
0.0547

0.00389
0.0598

65.9095

0.7185
0.0508

0.00275
0.04

71.2692

0.7158
0.0482
0.0025
0.0408

71.2643

0.7365
0.0688

0.00489
0.0183

52.4815

0.7348
0.0671

0.00466
0.0186

52.4427

1300 0.5915 0.6804
0.0889

0.00863
0.0789

72.5518

0.6698
0.0783

0.00696
0.0845

72.5343

0.6516
0.0601

0.00515
0.0965

71.1847

0.6516
0.0601

0.00515
0.0965

71.1847

0.6624
0.0709
0.0063
0.0684

63.0157

0.6566
0.0651

0.00561
0.0708

62.9366

0.6495
0.0581

0.00365
0.0469

71.3247

0.6454
0.054

0.0032
0.048
71.32

0.671
0.0796

0.00656
0.0217

51.8713

0.6683
0.0769

0.00615
0.0221
51.831

1500 0.5456 0.6421
0.0966

0.01013
0.0854

72.5543

0.6288
0.0832

0.00785
0.0922
72.533

0.6078
0.0622

0.00579
0.1037

70.9945

0.5979
0.0523

0.00486
0.109

70.996

0.623
0.0774

0.00719
0.0739

66.7749

0.6158
0.0702

0.00622
0.0767

66.7266

0.6074
0.0619

0.00413
0.0505
72.875

0.6023
0.0567

0.00353
0.0518

72.8696

0.6308
0.0853

0.00754
0.0235

52.6228

0.6274
0.0819

0.00698
0.024

52.5837

2000 0.4458 0.5557
0.1099

0.01305
0.0969

72.0098

0.5352
0.0894

0.00916
0.1062

71.9947

0.5184
0.0726

0.00737
0.1157

72.0225

0.5037
0.0579

0.00571
0.1228

72.0314

0.5315
0.0857

0.00878
0.0834

68.5306

0.5204
0.0746

0.00714
0.0873

68.5065

0.516
0.0702

0.00525
0.0565

72.3871

0.5082
0.0625

0.00425
0.0583

72.3839

0.5407
0.0949

0.00939
0.0269

50.3065

0.5355
0.0897

0.00845
0.0275

50.2683

Table 1: Simulation results for estimation of R(t) under Type I censoring

First row indicates the average estimates, the second row indicates the bias, the
third row indicates MSE / Variance, the fourth row indicates 95% bootstrap confidence
length and the fifth row indicates the coverage percentage.
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r 5 8 10 15 20

t R(t) IIR% IIR IIR% IIR IIR% IIR IIR% IIR IIR% IIR

100 0.9604
0.9658
0.0054
5e-05

0.0096
67.7959

0.9691
0.0087
9e-05

0.0087
67.7643

0.9629
0.0024
1e-05

0.0059
79.536

0.9646
0.0042
 2e-05
0.0056
79.525

0.9589
 -.0015

1e-05
0.0067

89.0394

0.9605
1e-04

  0
  0.0064
89.0373

0.9562
-0.0042

2e-05
0.0065

88.2244

0.9576
 -.0028

1e-05
0.0063

88.2228

0.9591
 -.0013

2e-05
0.0125

86.4103

0.9601
 -3e-04

2e-05
  0.0122

86.406

400 0.8508
0.8707
0.0199

0.00061
0.0331

71.4846

0.882
0.0312

0.00116
0.0306

71.3959

0.859
0.0082

0.00015
0.0222

75.7701

0.8651
0.0143

0.00028
0.0214

75.7177

0.8452
 -.0056
 9e-05

 0.0244
87.8636

0.8504
 -4e-04

6e-05
0.0238

87.8528

0.836
-0.0148
0.00028

0.0245
87.1718

0.8406
-0.0102
0.00017

0.0239
87.16

0.846
-0.0048
0.00022

0.0467
87.4368

0.8492
-0.0016

2e-04
0.0459
87.425

500 0.8171
0.8419
0.0248

0.00093
0.0396

71.1054

0.8554
0.0383

0.00174
0.0369

70.9898

0.8272
0.0101

0.00021
0.0276

80.8538

0.8344
0.0173
4e-04

0.0267
80.8105

0.8105
 -.0066

0.00012
0.0295

89.0464

0.8166
-5e-04
8e-05

0.0288
89.0375

0.7998
-0.0173
0.00037

0.0266
88.5789

0.8051
 -0.012

0.00021
0.0261

88.5727

0.8126
 -.0046

3e-04
0.0572

88.9917

0.8163
 -8e-04

0.00028
0.0563

88.9786

600 0.7848
0.8119
0.0271

0.00125
0.0473

68.4233

0.8273
0.0425

0.00227
0.0444

68.2488

0.7967
0.0119

0.00026
0.0299
81.462

0.8048
0.02

0.00052
0.029

81.4136

0.7775
-0.0072
0.00014

0.0297
88.5451

0.7844
 -3e-04

8e-05
0.0291

88.5352

0.7651
-0.0197
0.00049

0.0316
87.8483

0.7711
-0.0137
0.00029

0.031
87.8423

0.7791
 -.0057

0.00036
0.0594

86.7835

0.7833
-0.0014
0.00032

0.0586
86.7658

1000 0.6611
0.7047
0.0371

0.00245
0.0667

68.2689

0.7256
0.0579

0.00436
0.0642

67.9516

0.6844
0.0167

0.00053
0.0423

80.8597

0.695
0.0274

0.00099
0.0417

80.7876

0.6577
-0.0099
0.00026

0.0425
89.056

0.6666
-0.0011
0.00016

0.0421
89.0427

0.6392
-0.0285
0.00102

0.0465
88.9408

0.6467
-0.021

0.00065
0.0461

88.9332

0.6607
-0.007

0.00061
0.0827

89.7527

0.6661
-0.0016
0.00056

0.0822
89.7345

1300 0.5915 0.6387
0.0472

0.00334
0.0779

73.1837

0.6617
0.0702
0.006

0.0762
72.9807

0.6122
0.0207

0.00081
0.0468

76.8806

0.6237
0.0323

0.00142
0.0465

76.7637

0.5801
-0.0113
0.00035

0.0487
89.0756

0.5895
-0.002

0.00023
0.0486

89.0611

0.5607
-0.0308
0.00117

0.0474
88.7632

0.5685
 -0.023

0.00075
0.0473

88.7516

0.5842
-0.0073
0.00086

0.1
89.4526

0.59
-0.0015
0.00081

0.0999
89.4265

1500 0.5456 0.5944
0.0489

0.00377
0.0815

71.1787

0.6181
0.0726

0.00664
0.0807

70.9292

0.5681
0.0225

0.00084
0.0504

82.4645

0.5799
0.0343

0.00151
0.0503

82.3787

0.532
-0.0136
0.00047

0.0562
 89.434

0.5414
-0.0042

3e-04
0.0564

89.4178

0.5122
-0.0334
0.00141

0.0532
87.7553

0.5199
-0.0256
0.00095

0.0534
87.7359

0.5375
-0.0081
0.00094

0.099
88.6226

0.5433
-0.0023
0.00089

0.0992
88.5911

2000 0.4458 0.5044
0.0586

0.00491
0.0928

73.7833

0.5281
0.0823

0.00831
0.0944

73.5675

0.4696
0.0238

0.00104
0.0583

81.1842

0.4809
0.0351

0.00172
0.059

81.0605

0.4327
-0.0131
0.00049

0.0588
88.3596

0.4413
-0.0045
0.00034

0.0596
88.3405

0.411
-0.0347
0.00153

0.0593
89.7384

0.4179
-0.0279
0.00111

0.0601
89.7273

0.4361
-0.0097
0.00126

0.1135
88.5678

0.4414
-0.0044
0.00121

0.1145
88.5335

Table 2: Simulation results for estimation of R(t) under type II censoring

* First row indicates the average estimates, the second row indicates the bias, the third
row indicates MSE / variance, the fourth row indicates 95% bootstrap confidence
length and the fifth row indicates the coverage percentage.
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In order to estimate P, when X and Y follow the same distribution, for the case
when 1 and 2  are unknown but the other parameters are known, we have conducted
simulation experiments using bootstrap resampling technique for sample sizes (n, m) =
(40, 30), (40, 40), (50, 40) and (50, 50) across different ( 1r , 2r ) = (10, 10), (10, 15),
(15, 15) and (25, 25). The samples are generated from (2.1) with ( ) 1p

1G x;p ,x=

2p
2H(y;p ) ,y= 1 2a a 0= = , 1 2p p 2= = , 1 =1 and 1/ 2 =2. The computations are based on

500 bootstrap replications. We have computed IIP , IIP%  , bias/ variance, MSES, 95%
confidence length and corresponding coverage percentage under type II censoring and
the results are presented in Table 3.

1r 2r

n, m

10,  10 10,  15 15,  15 25,  25

P=0.33
IIP% IIP IIP% IIP IIP% IIP IIP% IIP

50, 50
0.3435
 0.0101
0.00043
 0.0546

 86.2663

0.3353
0.002

0.00036
0.0568

86.3479

0.3974
0.0641

0.00434
0.045

85.8556

0.3969
0.0636
0.0043

0.047
85.92

0.3566
 0.0232
0.00073
0.0409

86.3665

0.3518
0.0184

0.00054
0.0421

86.3825

0.3404
0.007
2e-04

0.0399
90.0565

0.3373
0.004

0.00017
0.0405

90.0595

50, 40
0.3838
0.0504

 0.00312
 0.0907
87.4411

0.3774
 0.0441
0.00258
0.0953

87.3628

0.4467
0.1134

0.01315
0.056

89.8405

0.4485
0.1151

0.01357
0.0587

89.8427

0.4035
0.0701

0.00517
0.0504

88.1438

0.4001
0.0667

0.00472
0.0521

88.1469

0.379
0.0456

0.00229
0.0479

89.9056

0.3766
0.0432

0.00209
0.0487

89.9088

40, 40
0.3065

-0.0268
0.00111
 0.0731

 82.4706

0.2972
 -0.0362
0.00173
0.0755

82.3555

0.3644
0.0311

0.00114
0.0427

88.8581

0.3625
0.0292

0.00104
0.0444

88.8519

0.3382
0.0048

0.00043
0.0741
91.367

0.3329
 -4e-04

0.00042
0.0757
91.406

0.3283
-0.005

0.00023
0.047

89.5136

0.3252
-0.0082
0.00028
0.0476

89.5144

40, 30
0.3347
0.0013

0.00013
 0.0332
85.0491

0.3262
 -0.0071
0.00019
0.0344

85.0051

0.4093
0.076

0.00596
0.0456

91.0323

0.4094
 0.076

0.00597
0.0477

91.0297

0.3817
0.0484

0.00287
0.0802

89.1871

0.3776
0.0443

0.00252
0.0825

89.2229

0.3627
0.0293

0.00123
0.0599

88.1111

0.36
0.0267

0.00109
0.0609

88.1093

Table 3: Simulation results for estimation of P on Type-II censoring

* First row indicates the average estimates, the second row indicates the bias, the third
row indicates MSE / Variance, the fourth row indicates  95% bootstrap confidence
length and the fifth row indicates the coverage percentage.
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For the case when X and Y follow the different distributions, when all the
parameters are unknown, the following samples (each of size 50) are generated from
the distributions of X and Y. The samples are generated from (2.1) with

pG(x;a, ) x ,= p=3, 1/ 1 =2000, yH(y;a, ) log( ),
a

=  a = 1000 and 2 =2.

X:  675.631, 696.691,  772.670, 814.196, 816.689,  919.121,  934.893,  955.100,
1008.590, 1103.114, 1140.375, 1336.660 ,1373.238, 1463.133, 1479.120, 1488.223,
1498.410, 1498.800, 1520.379, 1579.157, 1604.472, 1606.427, 1664.502, 1686.000,
1689.984, 1724.849, 1732.414, 1733.658 ,1821.057 ,1834.874, 1838.607, 1857.158,
1903.130, 2114.485 ,2164.578, 2169.304, 2176.311, 2230.114, 2261.894, 2327.029,
2355.698, 2360.320, 2408.375, 2542.200, 2573.111, 2784.734 ,2888.644 ,3014.000,
3087.838, 3203.454.

Y: 1002.180, 1007.831, 1014.529, 1032.043, 1035.586, 1049.101, 1050.847, 1060.742,
1077.574, 1132.504, 1141.820, 1143.473, 1162.935, 1165.665, 1191.798, 1222.211,
1227.363, 1251.771, 1282.447, 1368.168, 1413.533, 1414.386, 1506.587, 1509.096,
1525.781, 1558.127, 1589.134, 1676.492, 1709.565, 1725.422, 1825.827, 1839.870,
1863.492, 1940.611, 2012.242, 2069.430, 2276.403, 2439.215, 2591.761, 2690.088,
2837.542, 2841.985, 3103.432, 3617.702, 3855.677, 4030.920, 4058.424, 4565.295,
5286.151, 5693.574.

Let ot  =1500 be the truncation time for X and oot =1300 for Y, so we have 1r =18 and

2r =19. The MLES  of  the parameters of X are p%  = 0.72 and 1
% =0.002 and the MLES

of the parameters of Y  are 2
% = 1.4605  and a% = 1002.18.   We have  P = 0.5142.

Using Theorem 8, IP% = 0.6036 (with  absolute error < 4.8e-05).
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