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Abstract
This paper presents the stochastic analysis of a two unit parallel system model with the

concept of correlation between time to preventive maintenance and preventive maintenance time.
The joint distribution of time to preventive maintenance and preventive maintenance time is
taken bivariate exponential. Using regenerative point technique, various measures of system
effectiveness useful to system managers are obtained. For a more concrete study of the system
graphical behaviour of MTSF and profit function have also been studied.
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1.  Introduction
Two unit parallel systems have attracted the attention of many researchers in

the field of reliability theory due to their prevalence in modern business and industrial
systems. Various authors including (3, 4) have analysed two-unit parallel system
models under different sets of assumptions such as administrative delay in repair,
subject to degradation, slow switching device, abnormal weather conditions, etc. A very
few authors including (6, 8) have analysed system models with the concept of
preventive maintenance i.e. after working for a random amount of time, a unit goes for
its preventive maintenance. A common assumption in the analysis of these system
models is that the time to preventive maintenance and preventive maintenance time are
uncorrelated random variables. However, in real existing situations we observe that
some sort of correlation exists between the time to preventive maintenance and
preventive time of a unit i.e. if a unit is sent for its preventive maintenance after
working for a long time then the server takes more time for its preventive maintenance
and vice versa.

 Keeping this fact in view, we, in the present paper analyse a two unit parallel
system model introducing the concept of correlation between time to preventive
maintenance and preventive maintenance time. The system description and assumptions
are as follows:
(i)  System consists of two identical units arranged in parallel configuration. Initially

the system starts its operation from state S0 in which both the units are operative.
(ii)  After working for some time, the operative unit goes for preventive maintenance.
(iii)  A single repairman is always with the system to repair a failed unit and for

preventive maintenance of an operating unit. The repair and preventive
maintenance is done on FCFS basis.

(iv)  The failure and repair time distributions are taken exponential with different
parameters.
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(v)  The time to preventive maintenance and time taken in preventive maintenance are
assumed to be correlated random variables following the bivariate exponential
distribution with the density given by

f(x, y) = αβ(1 – r) e – αx – βy I0 ( )rxy2 αβ α, β, x, y > 0; 0 ≤ r ≤ 1

Where,      I0(z) =∑
∞

=0k
2

k2

)!k(
)2/z(

is the modified Bessel function of type-I and order zero.

2.  Notations and States of the System

Notations:
    E         : set of regenerative states.
   X  : r.v. representing time to preventive maintenance of an operative unit.

   Y  : r.v. representing time taken in preventive maintenance of an operative
unit.

   f(x, y)  : joint p.d.f. of (X, Y)
  = αβ(1 – r) e – αx – βy I0 ( )rxy2 αβ α, β, x, y > 0; 0 ≤ r ≤ 1

   g (.) : marginal p.d.f. of X = x
    = α (1 – r) e α(1 – r)x; x > r

   k (y|x) : conditional p.d.f. of Y/X = x
 = βe –βy –α r xI0 ( )rxy2 αβ

λ : constant failure rate of a unit.

 µ : constant repair rate of a unit.

   qij (.) : p.d.f. of direct transition from regenerative state Si to Sj.
)k(

ij(.)q  : p.d.f. of transition from regenerative state Si to  Sj via non-

regenerative state Sk.
   pij : steady state direct probability of transition from state Si to Sj such that

∫
∞

=
0

ijij du)u(qp

   Zi (t) : probability that the system sojourns in state Si up to time t.

φi : mean sojourn time in state Si.

,  s  : symbols for ordinary and Stieltjes convolution.

A(t)  B(t) = ∫ −
t

0

du)ut(B)u(A
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          and       A(t)  s  B(t) = ∫ −
t

0

du)ut(B)u(A

Symbols
We define the following symbols for the states of the system.

N0 : Unit is in normal (N) mode and operative.
Npm/Nwpm : Unit is in N-mode and under preventive maintenance/waiting for

 preventive maintenance.
Fr/Fw : Unit is in failure (F) mode and under repair/waiting for repair.

Using these symbols and assumptions stated earlier, the transition diagram of
the system model along with all transition time variables/rates is shown in Fig. 1. The
epochs of transition from S2 to S5, and S2 to S6 are non regenerative.

Fig. 1 : The transition diagram of the system model along with all transition time
variables/ rates

3.  Transition Probabilities and Sojourn Times
First, we obtain the direct and indirect conditional probabilities i.e. pij| x and pij

as follows:

p20| x = K~ [{λ + α(1 – r)}|x] = K*[{λ + α(1 – r)}| x]
Similarly,

)r1(
p

)6(

x21 −α+λ
λ

=  [1 – K*{λ + α(1 – r))| x}]
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)r1(
)r1(p

)5(

x22 −α+λ
−α

=  [1 – K*{λ + α(1 – r))| x}]                                    (1 – 3)

It can be easily verified that

     p20| x  +
)6(

x21p +
)5(

x22p = 1                                                                                (4)

 The unconditional direct and indirect steady state transition probabilities are
given by

                                       p01 =2λ∫ −α+λ−
t

0

u)}r1(2{e du

                                             =
)1(2

2
r−+ αλ

λ

Similarly,                       p02 =
)r1(2

)r1(
−α+λ

−α

                                       p10 =
)r1( −α+λ+µ

µ

                                       p13 =
)r1(

)r1(
−α+λ+µ

−α

                                       p14 =
)r1( −α+λ+µ

λ

                                       p20 =
)r1)((

)r1(
−β+α+λ

−β

)r1)((
p

)6(

21 −β+α+λ
λ

=

)r1)((
)r1(p

)5(

22 −β+α+λ
−α

=

                                      p32 = 1 = p41                                                               (5 – 14)
It can be easily verified that

p01 + p02 = 1; p10 + p13 + p14 = 1

                             p20 +
)6(

21p (= p26) +
)5(

22p (= p25) = 1                                  (15 – 17)
The mean sojourn times in various states are as follows:

φ0 =∫ −α+λ− t)}r1(2{e dt = [2λ + α(1 – r)]–1

Similarly, φ1 = [λ + α(1 – r)]–1

φ2x = [λ + α(1 – r)]–1[1 – K*{λ + α(1 – r))| x}]
So that φ2 = [λ + (α + β) (1 – r)]–1
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φ3 =µ–1 = φ4

φ5x =
β
α+ rx1

So that φ5 = [β (1 – r)]–1                                                                       (18 – 25)

4.   Analysis of Characteristics
(a)  Reliability and MTSF

Using the technique of regenerative point, expression of reliability, in terms of
its Laplace transform (L.T.), is given by

)s(q)s(q)s(q)s(q)s(q1
)s(Z)s(q)s(Z)s(q)s(Z)s(R *
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++

=                                 (26)

Where, )s( Zand)s( Z),s(Z *
2

*
1

*
0 are the Laplace transforms of

                                          Z0(t) = e – [2λ + α(1 – r)]t

                                          Z1(t) = e – [µ + λ + α(1 – r)]t

and                Z2(t) = e – [λ + α(1 – r)]t K (t/x).

Taking inverse Laplace transform of relations (26), we can get the reliability of the
system when it initially starts from state S0. Now the expression of mean time to system
failure (MTSF) is given by

E(T) =
20021001

2021010*
00s pppp1

pp)s(Rlim
−−

φ+φ+φ
=

→
                                                       (27)

(b)  Availability Analysis
 Let us define Ai(t) as the probability that the system is up (operative) at epoch
‘t’ when initially the system starts from the state Si∈E. Using the regenerative point
technique and the tools of Laplace transform one can obtain the value of A0(t) in terms

of its Laplace transform i.e. *
0A (t).

 The steady state availability (probability in the long run that the system is
operative) of the system when it initially starts from state S0, is given by

A0 =
∞→t

lim A0 (t) =
0s

lim
→

 s *
0A (s) = N1/D1                                                                    (28)

Where,

 N1 = φ0 ( ) 



 





 −−− 32p)6(

21p13p)5(
22p141p14p1   +

φ1 
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       (29)
and
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D1 = φ0 ( ) 



 −− )6(

21p10p14p120p + φ1 

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 − 20p02p)6(
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21p20p01p14p4
)6(

21p13p3
(30)

The expected uptime of the system during (0, t) is given by

µup(t) =∫
t

0

0A (u) du, so that *
upµ (s) = *

0A (s)/s

(c)   Busy Period Analysis
 Let R

iB (t) and P
iB (t) be the respective probabilities that the repairman is

busy at time ‘t’ in repair of a failed unit and in preventive maintenance of the operative
unit when initially system starts functioning from state Si∈E. Using the regenerative

point technique and the tools of Laplace transform one can obtain the values of R
0B (t)

and P
0B (t) in terms of their Laplace transforms i.e. *R

0B (s) and *P
0B (s).

 In the long run, the probabilities that the repair facility will be busy in the
repair of failed unit and in preventive maintenance of operative unit are respectively
given by

R
0B = N2/D1  and P

0B = N3/D1                                             (31 – 32)

Where, N2 = (φ1 + p14φ4 + p13φ3) 



 





 −− )6(

21p02p)5(
22p101p             (33)

and  N3 = φ2 [ p01φ13 + p02( 1 – p14)]                                                     (34)

 The value of D1 is same as in (30).

 The expected busy period of repairman when he is busy in repair of the failed
unit during (0, t) is given by

R
bµ (t) =∫

 t

0

R
0B (u) du, so that *R

bµ (s) = *R
0B (s)/s

Similarly, the expected busy period of repairman when he is busy in the preventive
maintenance of operative unit during internal (0, t) is given by

P
bµ (t) = ∫

t

0

P
0B (u) du, so that *P

bµ (s) = *P
0B (s)/s

(d)  Profit Function Analysis
 The expected profit incurred the system during (0, t) is given by
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P(t) = Expected total revenue in (0, t) – Expected total expenditure (0, t)

       = C0µup(t) – C1
R
bµ (t) – C2

P
bµ (t)                                                                         (35)

 Where C0 is the revenue per unit up time by the system due to operation while
C1 and C2 are the amounts paid to the repairman per unit time when he is busy in repair
of failed unit and in preventive maintenance of the operative unit respectively.
 The expected profit per unit time in steady state is give by

P = C0A0 – C1
R
0B  C2

P
0B                                                                                           (36)

Where, A0,
R
0B and P

0B have been already defined.

5.  Graphical Study of the System Behaviour
 For a more concrete study of the system we plot the graphs for MTSF and
profit function w.r.t. α for different values of    r (= 0.25, 0.50, 0.75) while the other
parameters are kept fixed as λ = .002, β = .003, µ = .10. The curves so obtained are
shown in Figures 2 and 3 respectively.

 From Fig. 2 it is clear that MTSF of the system decreases w.r.t. α irrespective
of other parameters. Also, for fixed value of α, MTSF is higher for higher values of r.
So we conclude that the high correlation (r) between time to preventive maintenance
and time taken in preventive maintenance of a unit increases the expected life time of
the system.

 Fig.3 represents the variation in profit w.r.t. α for different values of r (= 0.25,
0.50, 0.75) while in addition to the above parameters we fix C0 = 10000, C1 = 2000 and
C2 = 1000. From figure it is clear that profit decreases as α increases. Also for the fixed
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value of α, the profit is higher for high correlation (r). Thus, finally we conclude that
the high correlation between time to preventive maintenance and time taken in
preventive maintenance of a unit yields the better system performance.
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