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          In the present communication, we review the existing measures of fuzzy information. We
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1. Introduction
           Fuzzy entropy measures the degree of fuzziness of a fuzzy set. It is peculiar to
mathematics, information theory, and computer science. It is an important concept in
fuzzy set theory and has been successfully applied to pattern recognition, image
processing, classifier design and neural network structure, etc. Wang adopted fuzzy
entropy as a fast processing for segmentation results as obtained on using cost function.
It utilizes the information of regions and achieves better segmentation results than as if
we use only cost function.

           The concept of entropy was developed by Shannon (1948) to measure the
uncertainty of a probability distribution. The concept of fuzzy set was introduced by
Zadeh (1965) who also developed his own theory to measure the ambiguity of a fuzzy
set.

            A fuzzy set is a class of objects with a continuum of grades of membership;
such a set is characterized by a membership function which assigns to each object a
grade of membership ranging between 0 and 1.

             More often the classes of objects encountered in the real physical world do not
have precisely defined criteria of membership e.g. the class of animals clearly includes
dogs, horses, birds, etc. as its members and clearly excludes such objects as rocks,
fluids, plants, etc. However, such objects as starfish, bacteria, etc. have an ambiguous
status with respect to the class of animals. Yet, the fact remains that such imprecisely
defined classes play an important role in human thinking, particularly in the domains of
pattern recognition, communication of information and abstraction.

            Let { }nxxxX ,...,, 21=  be a universe of discourse. A fuzzy set A in X is

characterized by a membership function ( )iA xµ   which associates each point in X
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with a real number in the interval [0, 1]. In fact )( iA xµ  associates with each

Xxi ∈  with a grade of membership on the set A. Thus

( ) [ ]{ }: 0,1 ,A x x x Xi A i iµ= ∈ ∀ ∈                                       (1.1)

 where ( )iA xµ  is a membership function defined as
follows:
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 Let nxxx ,...,, 21  be the members of the universe of discourse, then all

),( 1xAµ ),( 2xAµ … )( nA xµ  lie between 0 and 1, but these are not probabilities
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is a probability distribution. On considering (1.2) Kaufman (1980) defined entropy of a
fuzzy set A having n support points by

1( ) ( ) log ( ).
log 1

n
H A x xA i A in i

= − Φ Φ∑
=

                                                 (1.3)

            In Fuzzy set theory, the entropy is a measure of fuzziness which means the
amount of average ambiguity/difficulty in making a decision whether an element
belongs to a set or not. A measure of fuzziness H (A) of a fuzzy set A should satisfy at
least the following properties:
(P-1) ( )H A is minimum value if and only if A is a crisp set, i.e.

( ) 0 or  1 for all : 1, 2,... .x x i nA i iµ = =

(P-2) ( )H A is maximum value if and only if A is most fuzzy set, i.e.
( ) 0.5 for all : 1,2,...x x i nA i iµ = = .

(P-3) ( )H A ( )H A∗≥ , where ∗A  is sharpened version of A.

(P-4) ( )H A ( )H A= , where A  is the complement of A.

            Since )( iA xµ and 1  – )( iA xµ  for all i = 1,2,…n, gives the same degree of
fuzziness, therefore corresponding to Shannon’s (1948) entropy, Deluca. and Termini
(1971)  defined the following measure of fuzzy entropy:

( ) ( )[ ].)(1log)(1)(log)()(
1

∑
=
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iAiAiAiA xxxxAH µµµµ         (1.4)
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 It may be seen that (1.4) satisfies all four properties (P-1) to (P-4) and hence it
is   a valid measure of fuzzy entropy.

            Later on corresponding to Renyi’s (1961) entropy, Bhandari and Pal (1993)
suggested the following measure of fuzzy entropy:

( )1 log ( ) 1 ( )
1 1

n
x xA i A ii

ααµ µ
α

 
+ −∑  

−  =  
, 1, 0α α≠ >                             (1.5)

Corresponding to Pal and Pal (1989) exponential entropy, Bhandari and Pal (1993)
introduced the fuzzy entropy as given below:

( )1 ( ) ( )1 log ( ) 1 ( ) 1
1 1

x xn A i A ix e x eA i A in e i

µ µ
µ µ

− 
+ − − ∑

−  =  
       (1.6)

             Harvda and Charvat (1967) characterized entropy of a discrete probability
distribution given by

( )H Pβ = 1 1
1 12 1

n
pii

β
β

  
 − ∑ −  =−   

0, 1β β> ≠                             (1.7)

Corresponding to Harvda and Charvat (1967) entropy Kapur (1986) has proposed the
following measure of fuzzy entropy:
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Sharma and Mittal (1975) characterized non-additive entropy of a  discrete
probability distribution given by

( )H Pβ
α

=

1
11 11 12 1

n
pii

β
αα

β

− 
   − − ∑ −  =−    

, .1,0,0, ≠>>≠ αβαβα                    (1.9)

Hooda (2004) suggested the following measure of fuzzy entropy
corresponding to Sharma and Mittal’s (1975) non-additive entropy of a discrete
probability distribution:
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where .1,0,0, ≠>>≠ αβαβα

 Sharma and Taneja (1977) characterized the following entropies of complete
probability distribution:

[ ] 0,log)(2)(
1

1 >= ∑
=

− αααα
n

i
iiii pxpPH                                  (1.11)
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 These entropies are called sub-additive entropies as these are neither additive
nor non-additive.

In this paper we define fuzzy entropy of typeα corresponding to (1.11) in
section 2 and verify its validity. In section 3 we define fuzzy entropy of type ( )βα ,
corresponding to (1.12) and verify its validity. We study their monotonic behavior in
section 4 and 5 respectively.

2.  Sub Additive Fuzzy Information Measure of type α
Corresponding to sub-additive entropy (1.11) of a complete   probability

distribution we define the following sub additive fuzzy entropy:

( ) ( ) ( )( )1( ) 2 ( ) log ( ) 1 ( ) log 1 ( )
1

n
H A x x x xA i A i A i A ii

αα αµ µ µ µ
α

−= − + − −∑
−

            (2.1)
where 0.5 2 0 log 0 0.andα< < =
          In information theory, entropy symbol H (or information entropy or Shannon
entropy) is an approximate measure of information measured in units of bits in an
electrical signal or message. It is worth mentioning that fuzzy entropy and fuzzy
information measure are synonymous. Hence we shall use fuzzy information measure
instead of fuzzy entropy in our research work.

Theorem 1.  The fuzzy information measure given by (2.1) is a valid measure.

Proof.  To prove that the given measure is a valid measure of fuzzy information, we
shall show that (2.1) satisfies the four properties (P-1) to (P-4).

(P-1): ( ) 0H A
α

=  if only if A is non fuzzy set or crisp set.

   We know that

( ) ( )( )log ( ) 0 1 ( ) log 1 ( ) 0x x and x xA i A i A i A i
ααµ µ µ µ= − − =  if only if

( ) 0xA iµ = or ( ) 1xA iµ =  : i = 1,2,…n, which implies ( ) 0H A
α

=  if only if A is non

fuzzy or crisp set.

 (P-2): ( )H A
α

 is maximum if and only if A is the most fuzzy set, i.e. ( ) 0.5xA iµ = for

all 1, 2,....,i n= .
Differentiating )(AHα  with respect to )( iA xµ , we have

( ) ( )
( ) ( )

11 1( )log ( ) ( ) 1 ( )
12

1( ) 1 log 1 ( ) 1 ( )

dH A x x x xn A i A i A i A i
d x iA i x xA i A i

αα ααµ µ µ α µα α
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− − −+ − − 
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− = − − − 
 

                (2.2)
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which vanishes at ( )xA iµ =0.5.

Again differentiating ( )H A
α

 with respect to ( )xA iµ , we have

( )
( )

( ) ( )

( )

2 21 ( )log ( ) ( )
2

1 2 22 1 ( ) 1 (1 ( )) log(1 ( ))
2( ) 1

2 2(1 ( )) 1 (1 ( ))
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 − − −= − − + − − −∑  
 −

− − + − + − −  

                                                                                                                                     (2.3)
Putting 5.0)( =iA xµ in (2.3), we have

( )2
24 3 1]

2( ) 1
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= <  if 0.5 2.α< <

Hence )(AHα  is maximum if and only if A is most fuzzy set i.e. ( ) 0.5xA iµ = : i =

1,2, ..,n and 0.5 2.α< <

(P-3): Sharpening reduces the value of Information measure.  Let us consider
( )

12
( )

dH A
N

d xA i

α α
µ

−=−                                                                                                     (2.4)

where

( ) ( ) ( )11( ) log ( ) 1 1 ( ) log 1 ( ) 1
1
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           (2.5)
Substituting ( )y xA iµ=   in (2.5), we have
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1
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( ) ( ) ( ) ( ) ( )1 1 11log 1 1 log 1 2 2 1
11
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            (2.6)

Using 1log ≤− uuu  in (2.6) we get
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( ) ( )
( )
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− − −= =

            (2.7)
Hence (2.7) gives N <0, where 5.00 << y . Thus

( ) 12 0
( )

dH A
N

d xA i

αα
µ

−= − >                                                  (2.8)

 Hence )(AHα  is an increasing function of )( iA xµ  in the

region 5.0)(0 << iA xµ .Similarly, we can prove that )(AHα  is a decreasing

function of )( iA xµ  in the region 1)(5.0 ≤≤ iA xµ . Hence we can conclude that

)(AHα  is a concave function.
        Next we prove that sharpening reduces the value of information measure.
            Let A* be sharpened version of A which means that
if 5.0)( <iA xµ , then )()(* iAiA xx µµ ≤  for all i= 1,2, ….n and

if 5.0)( >iA xµ , then )()(* iAiA xx µµ ≥  for all i = 1,2, ….n.

Since )(AHα  is increasing function of )( iA xµ  in the region 5.0)(0 << iA xµ
and decreasing function of )( iA xµ  in the region 1)(5.0 ≤≤ iA xµ , therefore

(i) )(*)()()(* AHAHxx iAiA ααµµ ≤⇒≤  in [0,0.5)                   (2.9)

(ii) )(*)()()(* AHAHxx iAiA ααµµ ≤⇒≤  in [0.5, 1)                                (2.10)

Hence (2.9) and (2.10) together give )(*)( AHAH αα ≤ .

(P-4): It is evident from the definition that )()( AHAH αα = .

 Hence )(AHα  satisfies all the essential four properties of fuzzy information
measure. Thus it  is a valid measure of sub additive fuzzy information measure. It may
be noted that if 1=α , (2.1) reduces to (1.4).

3. Sub Additive Fuzzy Information Measure of Type ( )βα ,
Corresponding to Sharma and Taneja’s (1977) entropy (1.12) of a complete

probability distribution we define the following sub additive fuzzy information measure
of type ( )βα , :

( ) ( )1( ) ( ) 1 ( ) ( ) 1 ( )
1

n
H A x x x xA i A i A i A ii

α ββ βαµ µ µ
α β α

 
= + − − − −∑ 

−  − 
,            (3.1)

where 10 << α and 1≥β    or 10 << β and .1≥α
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Theorem 2: Fuzzy information measure given by (3.1) is a valid sub additive measure
of type ( )βα , .

Proof: The proposed measure ( )H Aβ
α

 will be valid if and only if it satisfies all the

four postulates (P-1) to (P- 4). So we prove these postulates on by one as follows:

 To prove this , we  consider

( ) ( ) ( ),H A F A G Aβ
α

= +                                                                                          (3.2)

where

( )1( ) ( ) 1 ( ) 1
1

n
F A x xA i A ii

ααµ µ
β α

= + − −∑
− =

                                                       (3.3)

and

( )1( ) ( ) 1 ( ) 1
1

n
G A x xA i A ii

ββµ µ
α β

= + − −∑
− =

                                                       (3.4)

To show that

( )H Aβ
α

is a valid  fuzzy information measure, it is sufficient to show that (3.3) satisfies

the four postulates (P-1) to (P- 4).

(P-1): ( )F A =0 if and only if A is a crisp set, i.e. )( iA xµ  =0 or 1 for all i = 1, 2…,n.

For ( )xA iµ∀  and 0α∀ > , we have ( )( ) 1 ( ) 1x xA i A i
ααµ µ+ − >  and

( )( ) 1 ( ) 1x xA i A i
ααµ µ+ − =  if and only if A is non-fuzzy set i.e. if ( )xA iµ  = 0 or 1

for all i = 1,2,…,n. Hence )(AF = 0 if and only if A is non fuzzy set i.e. at ( )xA iµ  = 0

or 1.

(P-2): )(AF is maximum if and only if A is most fuzzy set i.e. )( iA xµ = 0.5: i = 1,
2…,n.
Differentiating )(AF  with respect to )( iA xµ , we have

( ) 1( ) 1 1( ) 1 ( )
( ) 1

ndF A x xA i A id x iA i

αααµ α µ
µ β α

−−= − −∑
− =

,                                       (3.5)

which vanishes at )( iA xµ = 0.5.

Again differentiating (3.5) with respect to )( iA xµ . We have

( ) ( ) ( )
2 2( ) 1 21 ( ) 1 1 ( )

2( ) 1

nd F A x xA i A id x iA i

ααα α µ α α µ
β αµ

−−= − + − −∑
− =

or
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( ) ( ) ( )
2 2( ) 1 121 ( ) 1 ( ) 1

2( ) 1

nd F A x x SA i A id x iA i

ααα α µ µ α α
β α β αµ

− −= − + − = −∑  
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where

( ) 22( ) 1 ( ) 0, ( ) 0.
1

n
x x S x andA i A i A ii

ααµ µ µ α
− − + − = > ∀ ∀ >∑  

 =  
Two cases arise:

Case1. When 0 1α< < and 1>β , we have ( ) 0101
<−>

−
αα

αβ
and .

Hence
2 ( ) 0

2( )

d F A

d xA iµ
< .

Case 2.  When 10 << β and 1>α , we have ( )1 0 1 0and α α
β α

< − >
−

.

 Hence
2 ( ) 0

2( )

d F A

d xA iµ
< .

Thus in both the cases, (3.3) is maximum if and only if A is most fuzzy set i.e. at
)( iA xµ = 0.5 for all i = 1,2,….,n.

 (P-3): Sharpening reduces the value of Information measure.
From (3.5), we have

( )∑
=

−− −−
−

=
n

i
iAiA

iA
xx

xd
AdF

1

11 )(1)(1
)(

)( αα µααµ
αβµ

.

Let 5.0)(0 << iA xµ , then two cases arise:

Case 1.when 10 << α and 1>β , we have

( ) ( )1 11 1 10 ( ) 1 ( ) ( ) 1 ( ) 0and x x x xA i A i A i A i
α αα ααµ α µ α µ µ

β α

− − − −> − − = − − >  −  

It implies ( ) 0
( )

dF A
d xAµ

> .

Case 2.  When 10 << β  and 1>α ,  we have

( ) ( )1 11 1 10 ( ) 1 ( ) ( ) 1 ( ) 0and x x x xA i A i A i A i
α αα ααµ α µ α µ µ

β α

− − − −< − − = − − <  −  
.

It implies 0
)(
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>
xd

AdF

Aµ
.



Sub Additive Measures of Fuzzy … 47

 Hence in both the cases )(AF  is an increasing function of )( iA xµ  in the

region [0, 0.5). Similarly we can prove that )(AF  is a decreasing function of

)( iA xµ  in the region 1)(5.0 ≤≤ iA xµ . Hence )(AF  is a concave function.

Let A* be sharpened version of A, i.e.   if 5.0)( <iA xµ , then )()(* iAiA xx µµ ≤

and     if 5.0)( >iA xµ , then )()(* iAiA xx µµ ≥ .

Since )(AF  is increasing function of )( iA xµ  in the region 5.0)(0 << iA xµ  and

decreasing function of )( iA xµ  in the region 1)(5.0 ≤≤ iA xµ , therefore

)(*)()()(* AFAFxx iAiA ≤⇒≤ µµ  in [0, 0.5)                                (3.6)
and

)(*)()()(* AFAFxx iAiA ≤⇒≥ µµ  in [0.5, 1).                                (3.7)

From (3.6) and (3.7) we can conclude that )(*)( AFAF ≤ .

(P-4): It is evident from the definition that )()( AFAF =  .
Hence (3.3) satisfies all the essential properties of fuzzy information measure. Similarly
we can show that ( )G A   satisfies all the four properties (P-1) to (P-4) of fuzzy
information measure.

         Since ( )F A  and ( )G A   satisfy   all the four properties of a valid fuzzy

Information measure, therefore we can say that ( )H Aβ
α

 also satisfy all the four

properties of a valid fuzzy Information measure. Hence ( )H Aβ
α

 is a valid measure of

fuzzy Information. We call it a generalized fuzzy Information measure of type ( )βα , .

Particular cases:

(i)        In case 1=α  in (3.1),   it reduces to

( )1( ) ( ) 1 ( ) 1
1 1

n
H A x xA i A ii

ββ βµ µ
β

= + − −∑
− =

,         which is (1.8).

(ii)      In case 1=β  in (3.1),   it reduces to

( )1( ) ( ) 1 ( ) 1
1 1

n
H A x xA i A ii

αα αµ µ
α

= + − −∑
− =

,  which is also (1.8).

(iii)     In case βα →  in (3.1) and 1, ≠βα , it reduces to

( ) ( )log ( ) (1 ( )) log(1 ( ))
1

n
H A x x x xA i A i A i A ii

α αµ µ µ µ= − + − −∑
=

           which further reduces to (1.4) when .1=α
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4. Monotonic Behavior of the Sub Additive Fuzzy Information Measure of
Typeα

          In this section we show that (2.1) is a monotonic decreasing function ofα .
 Differentiating (2.1) with respect toα , we get

( )

( )

( ) 2212 ( ) log ( ) (1 ( )) log 1 ( )
1

12 ( )log ( ) (1 ( )) log 1 ( )
1

dH A n
x x x xA i A i A i A id i

n
x x x xA i A i A i A ii

α α αα µ µ µ µ
α

α α αµ µ µ µ

  −   =− + − −∑       =  
 −− + − − ∑  =  

.(4.1)

( ) 12 ( ) log ( ) 1 log ( )
1

dH A n
x x xA i A i A id i

α αα µ µ µ
α

 −    = − +∑         =

( ) ( )(1 ( )) log 1 ( ) 1 log 1 ( )x x xA i A i A i
αµ µ µ  + − − + −      

                      (4.2)

using ( ) ( )
1 1+log -2 xA i xA i

µ
µ

≥  in (4.2), we get

( )(1 ( )) log 1 ( )( ) log ( )( ) 12
( ) (1 ( ))

x xx xdH A A i A iA i A i
d x xA i A i

αα µ µµ µ
αα

α µ µ

   − −     −= − − −∑
−

( )1 1 12 ( ) log ( ) (1 ( )) log 1 ( )x x x xA i A i A i A i
α α αµ µ µ µ − − − = + − −∑      

                        (4.3)
 Now since

( )1 1( ) log ( ) (1 ( )) log 1 ( ) 0x x x xA i A i A i A i
α αµ µ µ µ − −  + − − ≤∑    ≤   

,  therefore,

 from (4.3) we get
( )dH A

d
α
α

0≤ .

Hence )(AHα  is a monotonic decreasing function ofα .

Particular Case: If FA  is the most fuzzy set i.e. iiA xx
F

∀= 5.0)(µ , then simple

calculation shows that ( )H A nFα
=  which is independent of α  and

( )
0

dH AF
d
α

α
=  ,

where for all other fuzzy sets, ( )H A
α

   is a strictly monotonic decreasing function of

.α
             Let A =(0.3,0.4,0.4,0.2) be a standard fuzzy set. We plot the graph of ( )H A

α
with respect to α  where 25.0 ≤≤ α  on the basis of the following computed table:
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α 0.50 0.75 1.25 1.50 2.00
( )H A

α
3.952644 3.699308 3.435157 3.363963 3.322022

Table 4.1: The values of ( )H A
α

 for different values of α
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Fig. 4.1
               It can be concluded from the Table 4.1 and Fig. 4.1 that for 25.0 ≤≤ α ,
that ( )H A

α
decreases with respect to α .Hence in the given range ofα , ( )H A

α
 is a

monotonic decreasing function of α .

Comparison Between ( )H P
α

 and ( )H A
α

:

(a)  If P is the uniform distribution i.e. 1 1 1 1, , ,...,
n n n n

 
 
 

or P is a degenerate function,

and then ( )H P
α

 given by (1.11) is independent ofα . Similarly if A is the most fuzzy

set or A is crisp set then ( )H A
α

is also independent ofα .

(b) It can be easily proved that ( )H P
α

  is also monotonic decreasing function ofα .

Hence both ( )H P
α

 and ( )H A
α

 are monotonic decreasing function of α .

5. Monotonic Behavior of Sub-Additive Fuzzy Information  Measure of
Type ( )βα ,

  In this section we study the monotonic behavior of the fuzzy information
measure of type ( )βα , given by (3.1) with respect to α and β .
Differentiating (3.1) with respect to α , we get
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( ) ( )( )

( ) ( ) ( ) ( )

( )

( ) 2 ( ) ( )log ( ) ( )
1

1 ( ) 1 ( ) log 1 ( ) 1 ( )

( ) 1 ( )

dH A n
x x x xA i A i A i A id i

x x x xA A i A i A i

x xA i A i

β
α ββ α β α βα β α µ µ µ µ

α

α β α β α ββ
µ µ µ µ

ββµ µ

 −− −−= − − + ∑
 − 

− − − 
+ − − − − + − 

  

− − −

                            (5.1)

  It implies

( ) ( )

( ) ( ) ( ) ( )

( )

2 ( )
( ) ( ) log ( ) ( )

1

1 ( ) 1 ( ) log 1 ( ) 1 ( )

( ) 1 ( )

dH A n
x x x xA i A i A i A id i

x x x xA A i A i A i

x xA i A i

ββ α α ββ α β α βα µ µ µ µ
α

α β α β α ββ
µ µ µ µ

ββµ µ

−  −− −= − +∑ 
 − 

− − − 
+ − − − − + − 

  

− − −

               (5.2)

 Since 1ulogu-u ≤ , therefore

( ) ( ) ( ) ( ) ( )( )2 ( ) 1 1 ( ) 1 ( ) 1 ( ) 0
1

dH A n
x x x xA i A i A i A id i

β
β ββ βαβ α µ µ µ µ

α
− ≤ + − − − − ≤∑

−
                      (5.3)

              From (5.3) we can conclude that (3.1) is a decreasing function ofα . Similarly
we can prove   expression (3.1) is a decreasing function of β also.

 Let A = (0.3, 0.4, 0.4, 0.5, 0.2) be a standard fuzzy set.  We compute the values of

( )H Aβ
α

 for different α  and 4=β  in the following table:
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α 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9

4 ( )H A
α 1.79080

5
1.63866

6
1.39438

1
1.29597

1
1.21009

4
1.13480

7
1.06849

8
1.00982

5

Table 5.1: The values of ( )H Aβ
α

 for different α  and 4=β

Next we draw the graph of table (5.1) in fig.(5.1).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8

Series1

Fig. 5.1

From Table (5.1) and Fig.(5.1) we can generalize that )(AH β
α  is monotonic

decreasing function of α ( )0 1α< < and fixed 1β > .
 Let A = (0.3, 0.4, 0.4, 0.5, 0.2) be a standard fuzzy set.  We compute the

values of )(AH β
α  for different α  and 0.9β =  in the following table:

α 10 100 1000 10000 100000
0.9 ( )H A
α

0.48553 0.053051 0.005262 0.000526 5.26E-05

Table 5.2: The values of ( )H Aβ
α

 for different α  and 0.9β =

Next we draw the graph of table (5.2) in fig.(5.2)
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Fig. 5.2
 From Table 5.2 and Fig. 5.2 we can generalize that the value of

)(AH β
α decreases with respect toα ( )1>α  when 1<β  and )(AH β

α tends to
zero as α tends to infinity.
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