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Abstract

In the present communication, we review the existing measures of fuzzy information. We
define and characterize two fuzzy information measures which are sub additive and different
from known measures of fuzzy information. We aso study monotonic behavior and particular
cases of these fuzzy information measures.
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1. Introduction

Fuzzy entropy measures the degree of fuzziness of a fuzzy set. It is peculiar to
mathematics, information theory, and computer science. It is an important concept in
fuzzy set theory and has been successfully applied to pattern recognition, image
processing, classifier design and neural network structure, etc. Wang adopted fuzzy
entropy as a fast processing for segmentation results as obtained on using cost function.
It utilizes the information of regions and achieves better segmentation results than as if
we use only cost function.

The concept of entropy was developed by Shannon (1948) to measure the
uncertainty of a probability distribution. The concept of fuzzy set was introduced by
Zadeh (1965) who also devel oped his own theory to measure the ambiguity of a fuzzy
Set.

A fuzzy set is a class of objects with a continuum of grades of membership;
such a set is characterized by a membership function which assigns to each object a
grade of membership ranging between 0 and 1.

More often the classes of objects encountered in the real physical world do not
have precisely defined criteria of membership e.g. the class of animals clearly includes
dogs, horses, birds, etc. as its members and clearly excludes such objects as rocks,
fluids, plants, etc. However, such objects as starfish, bacteria, etc. have an ambiguous
status with respect to the class of animals. Yet, the fact remains that such imprecisely
defined classes play an important rolein human thinking, particularly in the domains of
pattern recognition, communication of information and abstraction.

Let X ={X1, Xz,...,xn} be a universe of discourse. A fuzzy set A in X is
characterized by a membership function m, (Xi) which associates each point in X
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with a real number in the interval [0, 1]. In fact M, (X;) associates with each
X; T X with agrade of membership on the set A. Thus

A:{xi :mA(xi)I [0.1]." x.1 x} (1.1)
wherem, (Xi ) is a  membership function defined as
follows:
: o If x does not belongs to A and has no ambiguity
mA(X|) =:' 1 if X does not bdongs to A and has no ambiguity
i
t

0.5 if X belongs to A and has maximum ambiguity

Let X, X,,...,X, be the members of the universe of discourse, then all

Ma (X1), MaA(X2), ... Ma(Xp) lie between 0 and 1, but these are not probabilities
because their sum is not unity. However,
m, (%)
- AVl =
FA(XI)— - ., 1=12,..,n. (12

a4 m (x)
i=p A

is a probability distribution. On considering (1.2) Kaufman (1980) defined entropy of a
fuzzy set A having n support points by
1 n
H(A=-— & F ,(x)logF , (x). 13
(=" fogn & F AO§I09F 5 (0) (13)
In Fuzzy set theory, the entropy is a measure of fuzziness which means the
amount of average ambiguity/difficulty in making a decison whether an element
belongs to a set or not. A measure of fuzziness H (A) of afuzzy set A should satisfy at
least the following properties:
(P-1) H(A)is minimum vaue if and only if A is a crisp s, i.e
mA(X|):O or 1foral|x| =12,

(P-2) H(A)is maximum value if and only if A is most fuzzy s, i.e
mA(X|):O'5 forallxI i=12,..n.

(P-3)  H(A) ® H(A"), where A" is sharpened version of A.
(P-4)  H(A) =H(A), where A isthe complement of A.
Since m, (X, )and 1 — m,(X;) for al i = 1,2,...n, gives the same degree of

fuzziness, therefore corresponding to Shannon’s (1948) entropy, Deluca. and Termini
(1971) defined the following measure of fuzzy entropy:

H(A) =- & [ma(x)logma(x) +@- ma(x))logl- ma(x))l (14
i=1
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It may be seen that (1.4) satisfies all four properties (P-1) to (P-4) and hence it
is avalid measure of fuzzy entropy.

Later on corresponding to Renyi’s (1961) entropy, Bhandari and Pa (1993)
suggested the following measure of fuzzy entropy:

n é au
L a Iogé’rfi(x)+(1- m (x)) g,atl a>0 (1.5)
l-aj=y g A AT

Corresponding to Pal and Pal (1989) exponential entropy, Bhandari and Pal (1993)
introduced the fuzzy entropy as given below:

n é 1- m (x) m (x) U
—~ & logém, (x)e Al +(1- m (x))e AT g (1.6)
ne-1j-1 @A [ AY Q

Harvda and Charvat (1967) characterized entropy of a discrete probability
distribution given by

Hb(P)— pzlg b>0, b1 (L7)
1% =1' 5 #
Corresponding to Harvda and Charvat (1967) entropy Kapur (1986) has proposed the

following measure of fuzzy entropy:

a>0 a1l (1.8)

1
HE ()= (1- a)" 14 [ 04) + (1 maG) -
i=1
Sharma and Mittal (1975) characterized non-additive entropy of a discrete
probability distribution given by

¢ bl
&en u
HO(P)= 1§ a pafa L xath a>0b>0atl (19)
ol a&=1'p
e u

Hooda (2004) suggested the following measure of fuzzy entropy
corresponding to Sharma and Mittal’s (1975) non-additive entropy of a discrete
probability distribution:

L Ao mooy)” -
|‘16
wheea * b, a >0,b>0,a* 1.

HE (A) =

: (1.10)

o Ec

Sharma and Taneja (1977) characterized the following entropies of complete
probability distribution:

He(R)=2""§ [p? (x)10g p] a >0 (1)
i=1
-1 n « ~

H (Fi>)=§§1‘a-21'bg 5 gpf‘()ﬁ)-qb(ﬁ)aalb, a>0 b>0 (112)

i=1
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a-1 n
sf} 2 [p2(x)sn(b1og p)] b * kp,k =012...
i=1

H®(R) =
(1.13)
These entropies are called sub-additive entropies as these are neither additive
nor non-additive.
In this paper we define fuzzy entropy of typea corresponding to (1.11) in

section 2 and verify its validity. In section 3 we define fuzzy entropy of type (a ) b)

corresponding to (1.12) and verify its validity. We study their monotonic behavior in
section 4 and 5 respectively.

2. Sub Additive Fuzzy I nformation M easur e of type a
Corresponding to sub-additive entropy (1.11) of a complete  probability
distribution we definethefollowing sub additive fuzzy entropy:

NGCES 13 ma(x)log (mA(xl)) " (1- mA(xl))a Iog((l- mA(xl)))

(2.1
where 05<a < 2 and 0log0=0.

In information theory, entropy symbol H (or information entropy or Shannon
entropy) is an approximate measure of information measured in units of bits in an
electrica signal or message. It is worth mentioning that fuzzy entropy and fuzzy
information measure are synonymous. Hence we shall use fuzzy information measure
instead of fuzzy entropy in our research work.

Theorem 1. The fuzzy information measure given by (2.1) isavalid measure.

Proof. To prove that the given measure is a vaid measure of fuzzy information, we
shall show that (2.1) satisfies the four properties (P-1) to (P-4).
(P-1): Ha (A) =0 if only if A isnon fuzzy set or crisp set.
We know that
i (x)l 0 ad (1 % logl1 0 i i
% (0)logm,(x)=0 and (1-m,00)| loglt- mx))=0 it anly it
mA(X|):O or mA(X|):1 ti1=1,2,...n, whichimplies Ha (A) =0 if only if A isnon
fuzzy or crisp set.
(P-2): Ha (A) ismaximum if and only if A isthe most fuzzy set, i.e. mA(X| ) =0.5for
ali=12,..,n
Differentiating H, (A) with respect tom, (X;) , we have

N
H (A 2 8 ooieom, ) 430~ a1 myo0
=Alge y (2.2)
dmA(X|) =16 a-1 u
gooft- my0)- - ) y
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which vanishes at mA(X|) =0.5.
Again differentiating Ha (A) with respect to mA(X|) , we have

“(a- )fy” 2(x)logm (x)+anf” 2(x)+
2 e
4, (4 10 € -2 a-2
d—()2: 2- a §(a Yrfl " “(x)+a(a- 1)@ m,(x ) “log- m, (%))
m, (X -
A g+a(1 m R ™ 2 +(a- 1)@ m, (x))R 2

2.3)
Putting M, (X;) = 0.5in (2.3), we have

2
d“H_ (A n .
#(2)=45 gaz-3a+1].
dmA(X|) i-1
It implies that

2

d Ha(A)

— 3 " _—.pif 05<a < 2
dm, (x)2

Hence H, (A) is maximum if and only if A is most fuzzy set i.e. m, (x)=05:i =
12, ..,nand 05<a < 2

(P-3): Sharpening reduces the value of Information measure. Let us consider

H (A
a_ - Ay (2.4)
dm (x)
where
é 1 v a-1¢é a oo
: émi (x)elog(m (x)) +15- (1- mA(xl)) glog(l- m, (% )) 1E§
(2.5)
Substituting y:mA(xl) in (2.5), we have
N :_glya “Lliogy@ - (1- y)a i lIog(l- y)a +ya 1. (1- y)a -1,
| =
Itimplies
n.q -1 O, oA - -
N= aly(y’i A |og;F)- . y?- y2- (1 yP log(1- y)arg;zy’i Lo yp 1
1=
(2.6)

Using U- ulogu £1lin (2.6) we get

(o Y ey enly eny e} ey end
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YEP +(1- yP 2P
NP L Lyl AL P C g <

0
iz1y Ly i=1Y(-) y(Z-y)
@2.7)
Hence (2.7) givesN <0, whereQ < y < 0.5. Thus
dH_ (A
A:-zﬂ-l;\po (2.8)
dm, (x)

HenceH, (A) is an inceasing function of m,(X) in the
region0<m, (X ) <0.5.Similarly, we can prove that H_ (A) is a decreasing
function of m,(X;) in the region0.5£ m, (X;) £1. Hence we can conclude that

H, (A) isaconcave function.

Next we prove that sharpening reduces the value of information measure.
Let A* be sharpened version of A which meansthat

ifmy (%) <0.5, thenmy (%) Em, (%) forali=12, ... and
ifmy (%) >0.5, then My (%) 3 My(X) forali=12 ...n.

Since H, (A) isincreasing function of M, (X;) in the region0<m, (%) <0.5
and decreasing function of M, (X;) intheregion0.5£ m, (X;) £1, therefore

M) My (X)EmMy(x)P H, (A)EH, (A) in[005) (2.9)
(i) My (%) EM, (%) P H, (A)EH, (A) in[05,1) (2.10)
Hence (2.9) and (2.10) together giveH , (A*) £ H, (A).

(P-4): Itis evident from the definition that H, (A) = H, (A).

Hence H, (A) satisfies all the essential four properties of fuzzy information

measure. Thusit isa valid measure of sub additive fuzzy information measure. It may
be noted that ifa =1, (2.1) reduces to (1.4).

3. Sub Additive Fuzzy I nformation Measure of Type (a : b)

Corresponding to Sharma and Tangja’s (1977) entropy (1.12) of a complete
probability distribution we define the following sub additive fuzzy information measure

of type(a,b):

a b
om0 R0 (10 ,00) 0 @D

Hb(A): 1 gg nft (x)+
a a | g

b-ag.; A
whee 0<a<l andb 31 oo O<b<land a 3 1.
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Theorem 2: Fuzzy information measure given by (3.1) is a valid sub additive measure
of type(a b )

Proof: The proposed measure H: (A) will bevalid if and only if it satisfies all the
four postulates (P-1) to (P- 4). So we prove these postulates on by one as follows:

To provethis, we consider

HY (M= F(A)+G(A), (32
where

_ 1 a
F(A)_b-aiilnﬁ(x'”(l_ mA(xl)) 1 33)
and

_ 1 Dy b
G(A) = b, ilmA(xl)+(1- mA(X|)) -1 (3.9
To show that

H: (A) isavdid fuzzy information measure, it is sufficient to show that (3.3) satisfies

the four postulates (P-1) to (P- 4).
(P-1): F(A)=0if and only if Aisacrispset,i.e My(X;) =0or Lforali=1,2..n
" nf a
For mA(X|) and a>0, we have A(x|)+(1- mA(X|)) >1 and

a
nﬁ(xl)+ 1- mA(X|)) =1 if and only if A isnon-fuzzy set i.e. if mA(X|) =0or1l

forali=1,2,...,n. Hence F(A)=0if and only if Aisnon fuzzy seti.e. at m,(x) =0

orl
(P-2): F(A)is maximum if and only if A is most fuzzy seti.e. M, (X;)=05:i=1,

2...n.
Differentiating F (A) with respect tom, (X, ) , we have

dF(A) _ 1 D alipo
dmA(ﬁ)_b-aiilan’?A (5 a(l Tal%)

)a -t (3.5)

which vanishesat m, (X; ) = 0.5.
Again differentiating (3.5) with respect tom, (X; ) . We have
d?F(A) 1
2 Dp-a;
dmA(X|) [

or

n -2
é’ila (a- l)m”‘A 2(x|)+a (a- l)(l- m, (x ))a
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; Py
= g a(a-l)grﬁ”‘A' 2(x|)+(l- mA(xl))a g:bl a(a-1s
2 i

[E
™

né
& &y
i=18

Two cases arise:

“2x)+

a- 2@_ } }
1- mA(X| )) E_S>Q mA(X|) ad "a>0

Casel. When0 < a < 1 and b >1, wehave >0 and afa - 1)<0.

b-a
d2F(A)
Hence —2<0.
dmA(Xi)
Case2. When O<b<landa >1,Wehaveb1 <0 and af(a-1)>0.
-a
2
d“F(A
Hence—()2<0.
dmA(X|)

Thus in both the cases, (3.3) is maximum if and only if A is most fuzzy set i.e. at
M, (X )=05forali=12,....,n

(P-3): Sharpening reduces the value of Information measure.
From (3.5), we have

OF(A _ 1 8 aa
dmA(Xi)_b_aia:-lamA (%) a(l mA(X|)) .

LetO<m,(X; ) <0.5, then two cases arise:
Caselwhen 0< a <1 and b >1, wehave

a-1 a a-16
T >0andan?A' 1(xl)- a (1— mA(X|)) =a§n§\' 1(x|)- (1- mA(X|)) g>0
Itimpli6M>O.

m, (X)

Case2. When O<b<l and a >1, wehave

a-1 @& a-16
o <0andani'1(xl)—a(1— mA(X|)) :agnﬁ\'l(xl)— (1— mA(Xi)) Iia<0
Itimplies dr (A) >0.

dm, (X)
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Hence in both the cases F (A) is an increasing function of M, (X;) in the
region [0, 0.5). Similarly we can prove that F(A) is a decreasing function of
M, (X;) intheregion0.5£ m, (X;) £1. Hence F(A) isa concave function.

Let A* be sharpened version of A, i.e. if My (%) <0.5, then My (X, ) £ My (X%;)
and ifm, (%) >0.5, then My (%) 3 My(X).

Since F(A) isincreasing function of mj, (X;) intheregionO < mj,(x ) <0.5 and
decreasing function of M, (X;) intheregion0.5£ m, (X;) £1, therefore

My (%) EMy(x)P F(A)EF(A) in[0,05) (3.6)
and
My (X% )3 My(x)P F(A)EF(A) in[05,1). (3.7)

From (3.6) and (3.7) we can concludethat F(A*) £ F(A).

(P-4): It is evident from the definition that F (A) = F(A) .

Hence (3.3) satisfies all the essential properties of fuzzy information measure. Similarly
we can show that G(A) satisfies al the four properties (P-1) to (P-4) of fuzzy
information measure.

Since F(A) and G(A) satisfy al the four properties of a valid fuzzy

Information measure, therefore we can say that H: (A) dso sdtisfy al the four

properties of avalid fuzzy Information measure. Hence H: (A) isavalid measure of

fuzzy Information. We call it ageneralized fuzzy Information measure of type (a b ) .
Particular cases:

) Incasea =1in(3.1), itreducesto
HP(y=—1 & nf (x)+(1- m (x))IO -1, whichis(L8)
1-bj-q A Vi AVl ' -

(i) Incase b =1in(3.1), itreducesto

H (A):li A mi(xl)+(1- m, (x ))a -1, whichisalso (1.8).
-aj=1

(i) Incasea ® b in(31) and a,b * 1, itreducesto

A a
H(A) =-,alnﬁ\ (% )logm, (x ) +(L- m, (x ))* logd- m, (x))
i =
which further reducesto (1.4) when a =1.
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4. Monotonic Behavior of the Sub Additive Fuzzy Information M easur e of

Typea
In this section we show that (2.1) isamonotonic decreasing function ofa .

Differentiating (2.1) with respect toa , we get

T2 217 Fau0dam el 6 O e
& 278 ogan; @- m, ()P gog(-m(m)g_
) (41)
& a 0
214 ghoieamy(n) 6 et my ) :
dHa(A)_za-lpa?Tfi q u@l uo
da - 2.8 I (5) g0aMy (X ) ggt T109ma (¢ ) g2
a 6 ué u
+(1- m, () Jog{1- m, 06) L+ topf1- m, (o)) @2
using 1+I0g2mA(x)3 1 in (4.2), we get
| mA(X)
|
My By, TRODoIm0f (- m()” Gosfs ma ()8
da my(x) (- m(x))
=2 g 1x) Gogm, ¢) 8+ 1= m, (x )~ Gog1- m, ()
4.3)
Now since
anf,” l(xl)gogmA(xl)gﬂl- my 02" 1309(1- mA(x£i))E£0, therefore,
dH_(A)

from (43) weget —2—— £0.
da

Hence H, (A) isamonotonic decreasing function ofa .
Particular Case: If A isthemost fuzzy seti.e. My (%) =0.5 " X;, then simple

aH (A]:)
. S a
= ——— =0
calculation shows that Ha (AF) n which isindependent of & and i ,
where for all other fuzzy sets, Ha (A) isastrictly monotonic decreasing function of

a.
Let A =(0.3,0.4,0.4,0.2) be a standard fuzzy set. We plot the graph of Ha (A

withrespect to @ where 0.5£a £ 2 on the basis of the following computed table:
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a 0.50 0.75 1.25 1.50 2.00

Ha (A 3.952644 3.699308 3.435157 3.363963 3.322022

Table 4.1: The values of Ha (A) for different valuesof a

45
: $\
35

25

‘—0— Seriesl

15

0.5

Fig. 4.1
It can be concluded from the Table 4.1 and Fig. 4.1 that for 0.5£a £ 2,
that Ha (A) decreases with respect to @ .Hence in the given range of a Ha (A) isa

monotonic decreasing function of a .

Comparison Between Ha (P) and Ha (A):

(8 If Pisthe uniform distribution i.e. aellllEor P is a degenerate function,
&n’'n’'n""ng

and then Ha (P) given by (1.11) isindependent ofa . Similarly if A isthe most fuzzy

set or A iscrisp set then Ha (A) isasoindependent of a .

(b) It can be easily proved that Ha (P) is also monotonic decreasing function ofa .

Hence both Ha (P) and Ha (A) aremonotonic decreasing function of a .

5. Monotonic Behavior of Sub-Additive Fuzzy Information Measure of
Type (a : b)
In this section we study the monotonic behavior of the fuzzy information
measure of type (a : b)given by (3.1) with respecttoa and b .
Differentiating (3.1) with respectto a , we get
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b
dH (A _ 2 p, €N a_p (@-b) a.p, U
e OURLACHLRLA (og(my 0] o)
b g a-b a-b a-b u
+(1' mA(X)) g(l' mA(Xl)) 'og(l' mA(XI)) +(1' M )) 5
- m/tl(x)' (1' M ))
(5.1)
Itimplies
(b'a)de:(A) pben a-b (a-b) a-bU
da =m0 501 My ()™~ logm, (%) RUNGY ;
bé a-b a-b a-bu
i ma) e (1m0 ofa- myo e mueo
b
- mA(Xl)b - (1' mA(XI))
(52)

Since U - ulogu £1, therefore

n{;(ﬁ)(1)+(1- mA(xl))b(l)- rrP(xI)- (1- m,(x ))b £0

(5.3
From (5.3) we can conclude that (3.1) is adecreasing function ofa . Similarly
we can prove expression (3.1) is adecreasing function of b also.

Let A = (0.3, 04, 04, 0.5, 0.2) be a standard fuzzy set. We compute the values of
H: (A) for different @ and b =4 in thefollowing table:
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a 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9

4
H a (A) | 179080 | 1.63866 | 1.39438 | 1.20597 | 1.21009 | 1.13480 | 1.06849 | 1.00982
5 6 1 1 4 7 8 5

Table5.1: Thevalues of HS (A) for different @ and b =4

Next we draw the graph of table (5.1) in fig.(5.1).

18 |«
1o |

1.4 \\’\‘
1.2

. \

0.8
0.6
0.4
0.2

Fig. 5.1

From Table (5.1) and Fig.(5.1) we can generdize that H: (A) is monotonic
decreasing function of & (0<a <1)andfixed b >1.

Let A = (0.3, 0.4, 0.4, 0.5, 0.2) be a standard fuzzy set. We compute the
val ues of H: (A) for different @ and D =09 in the following table:

a 10 100 1000 10000 100000

1 0.9 (A 0.48553 0.053051 0.005262 0.000526 5.26E-05
a

Table 5.2: Thevalues of H: (A) for different @ and b =0.9
Next we draw the graph of table (5.2) in fig.(5.2)
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0.6

0.5

0.4 X\
1\

0.2 \
0.1

Fig. 5.2

From Table 5.2 and Fig. 5.2 we can generdlize that the value of
(A) decreases with respect toa (a >l) when b <1 and H: (A) tends to

zero as A tendsto infinity.

References

1

2.

3.

10.

11.

12.

Bhandari, D. and Pdal, N.R. (1993). Some new information measures for fuzzy sets,
Information Science, 67, p. 204 —228.

Deluca, A. and Terminl, S. (1971). A definition of non-probabilistic entropy in the
setting of fuzzy set theory, Inform. and Control 20, p. 30— 35.

Havrda, J. H. and Charvat, F.(1967). Quantification method of classification
processes — concept of structural a- entropy, Kybernetika 3, p. 30 —35.

Hooda, D.S. (2004). On Generalized Measures of Fuzzy Entropy, Mathematica
Slovaca, 54, p. 315-325.

Kapur, JN. (1997). Measures of Fuzzy Information, Mathematical Science Trust
Society, New Delhi.

Kaufman, A. (1980). Fuzzy subsets. Fundamental Theoretical Elements 3,
Academic Press, New York.

Pal, N. R. and Pal, S. K. (1989). Object background segmentation using new
definition of entropy, Proc. IEEE 136, p. 284 —295.

Renyi, A. (1961). On measures of entropy and information, In: Proc. 4™ Berkeley
Symp. Math. Stat. Probab. 1, p. 547-561.

Sharma, B.D. and Mittal, D.P. (1975). New non-additive measures of entropy for
discrete probability distribution, J. Math. Sci. (Calcutta) 10, p. 28 —40.

Sharma, B.D. and Tangja, 1.J (1977). Three generalized Additive Measures of
Entropy, Elec.Inform. Kybern, 13, p. 419-433.

Shannon, C. E. (1948). The Mathematical theory of Communication, Bell System.
Tech. Journal 27, p. 423 — 467.

Zadeh, L.A.(1966). Fuzzy Sets, Inform. And Control 8, p. 94 —102.



