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Abstract
Integrative thinking patterns have brought about a significant change in our approach

towards analysis and applications of various statistical-informatics techniques in our
surroundings. The present human society transforming into Information Society has undergone a
tremendous metamorphosis from a mundane and monotonous survival to a more exotic and
challenging existence. This has revolutionized the overall scenario to the extent that the whole
living system can now be thought of as a large-scale complex synergetic system constituting of N
dimensional vistas. Rural Agro System has always been the lifetime of the human civilization.
Giving continuation to this trend, the present paper puts forward Bayesian-informatics approach
dealing with socio-economic coordinates of Rural- Agro System.

The present study attempts in the direction of examining posterior risk and their
analysis with the hope that the Bayesian aggregate model would simulate behaviour of the real
system at the highest level of accuracy possible under the employed modeling strategy. It has
been demonstrated that the Bayesian aggregate models are recursive in nature and they minimize
the posterior risk with respect to the time of the system at present. It has also been depicted that
the time of minimum posterior risk does not correspond to the time of minimum relative risk, as
compared with General State Vector Linear Model (GSVLM) stated by Efraim Halfon [4]in
Theoretical Systems Ecology: Advances and Case Studies.
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1. Introduction
    The world of computing has been changing at a tremendous pace. The change
is enormously rapid, the coordinates related to the various technologies along with the
computing environments and other methodologies, and techniques are getting new
dimensions at the core of all sorts of Bayesian computational activities. The explosion
of data and prior information has obviously brought about significant changes in the
overall scenario that deals with the retrieval, manipulation and usage of data. Data
Warehouse is one such concept that has truly brought about metamorphosis and
providing prior information that are so much required in today's changing world of
Bayesian computing that is facing more and more complex and intricate problems with
mega-dataset movement across various systems thus paving the way for paradigm shift
from linear to non-linear environment, from static to dynamic programming.

Like any other system, Rural Agro System is no exception, unlike a Cartesian
model, it is now projected as a living and well-connected network of such systems
which are defined in terms of various parameters in the paper. Since these parameters
are related in a linear fashion, therefore, a contextual Bayesian relation is established
among these multiconnected parameters for a dynamic analytical interpretation.
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In case of RAS, the Data Warehouse, as suggested by Neil Raden [7] works as
a repository for data elements associated with the system. The central repository would
help to increase large pool of data in terms of quality and consistency. Such sequential
Data Based (DB) prior information provides a clear and unambiguous definition of
every key entity, describing the way, each is used in RAS, as well as defining
derivation, formulae, aggregation categories and refreshment time periods. This model
linked with the system   information architectures, as described by Alan Perkins [1] and
Information Discovery [6].

2. General Formulation
In this section, we shall develop some formulae which are prerequisites for the

development of a model. Let us denote a system composed of 'p' distinct systems:

                             Si, i = 1, 2,... .p  i.e. S = U

p

i
iS

1=

       (2.1)

A set S  = {S} of systems will denote a collection of systems, each member S of the
collection will necessary contain the same distinct subsystems in order to be in S.
For the real world problem being discussed in our work, the subsystems shall consists
of (1) Spatial location; (2) Human recourse; (3) Male; (4) Female; (5) Household items;
(6) Land preparation; (7) Energy consumption; (8) Farm machinery and equipments;
(9) Settlement; (10) Live Stock; It is obvious that here p = 10.

Each subsystem Si is also composed of set of distinct subsystems elaborated
under set of systems mention above. Symbolically, we may represent them as Sij, where
j=1, 2,..., m  i.e.
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For the sake of illustration, it may be cited that
S11 shall correspond to space.
S12 shall correspond to Longitude.
S22 shall correspond to Female.
S34 shall correspond to migration.
S84 shall correspond to cultivated land holding.
S(11)9 has been used for wood species for home construction under S11(Settlement) and
likewise for other.

The genesis of subsystems and their distinct subsystem can be understood on
the basis of set theoretic properties, e.g. U 22212 SSS = Human recourse Inventory =

U FemaleMale

Similarly UUUUUUU 98979695949392919 SSSSSSSSS = ,

where the symbols have their usual meanings. Now let S' denote the Modeled system,
then from (2.1)
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 It is obvious that p may not be equal to p' in the model, nor will the selection of
subsystems be identical. But since
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where UU
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'  are small and / or relatively unimportant in the analysis where

S is used instead of '
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The relationships have been marked as M:1 (Many to One) which symbolizes that to
each system the left there is one system in the right and M:M (Many to Many) as a
complex relationship glorifies the right that of the sub system on the left correspond to
a number of elements of the subsystem on the right and vice versa. It suggest the within
entities relationship as depicted is the Fig. I  between the elements of these subsystems.

Fig. I

Spatial Location # (Space, longitude, latitude, additional variation, area, density,
succession)
Human Recourse # Human Recourse Inventory
Male # (Male, age, education, marital status, migration, occupation, health and
nutrition)
Female # (Female, age, education, marital status, migration, occupation, health and
nutrition, fertility behavior)

                 Human Resource #
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House # (Household items, kitchen ware, entertainment items)
Land # (Land holding, own land, leased in, leased out, cultivated, Unirrigated, irrigated,
abandon, fallow, protected etc.)
Energy # (Energy consumption, fuel wood, crop residues, electricity unit, kerosene,
dung cake, L.P.G. cylinder, etc.)
H & t # Harvesting; I # Irrigation; C# (Cleaning of food grains)
F.M.I. # (Farm Machinery Implements Wooden plough, mud settler (Mai) spray pump,
Storage bins); Settle# (Settlement); LI. # (Land Inventory); LP # (Land Preparation);
W # (Weeding); L.S. # (Live Stock) milking no., non-milking no., breading, initial
investment, source of finance, fodder requirement, total; dung product, present value,
Milk and milk products.

3. General State Vector Linear Model
Chipman [2] developed the aggregate model which group "true model"

variables into sums or weighted averages. Zeigler [8] defined a base model to be a
complete conceptualization of a system at a particular level of resolution. Halfon and
Reggiani [5] discussed criteria for selecting an optimal model complexity which
describes the system's behaviour. They also include an analysis of those errors
introduced by using an aggregate model.

The General State Vector Linear Model (GSVLM) proposed by Halfon [4] in the
following differential equation

( ) ( ) ( ) ( )tutxtMtx +=        (3.1)

where ( )tM  and ( )tx  represents the optimized values generated by the matrix and

values in the present case respectively. ( )tu  represents a vector of input values as
given by

( ) 1
1
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=
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i
imtu                        (3.2)

The additive model of the state of system ( )tx , where ( )tx is given by solving (3.1)

for ( )txi ; i = 1, 2, ...,p Halfon [4] suggested that the linear model has constant
coefficients, then M  is diagonal matrix defined by
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where il , i = 1, 2,...,p denotes the turnover rate of one species. One can write
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for i = 1, 2,... ,p; state vector as well as the state of the system by substituting (3.3) in
(3.1) and thus, the equilibrium turnover rate is defined by
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where ( ) ( )∞= i
e
i xx 0  for the equilibrium state for i = 1, 2,... ,p.

4. Bayesian Aggregation model
Dhami et.al [3] has suggested that the modeling parametric exponential

function in (3.4) leads to a high degree of relative errors of approximated model and the
summation of a finite number of terms is always preferable as it is most likely that
summation of infinite number of terms of the exponential function may lead to wrong
results. Dhami et.al [3], therefore, further introduced an Aggregate Model that is
recursive in a more complicated form, as given by
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where ,  and  constraints can be worked out from Data Warehouse or the Pattern
Warehouse of the present state of the system. This model when we will use in other
location, will have no random effect of the present state of the system. We, therefore,
introduce here Bayesian Aggregation model with random white noise.
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Where )(tu white noise is normally distributed with zero mean and variance 2. Now
the constrains ,  and  can be worked out from the DB Prior, using Data warehouse or
pattern warehouse of the present state of the system. The unknown 2 plays a dominant
role, in turn depends on a number of members of complex elliptical family of shape
distribution. Without loss of generality, we can have complex Watson Distribution as a
special case to derive and develop the model of the system for the parameters involved
including variance 2. Let ( )

−
θπ  be the prior density for the model given in

(4.2), Θ∈
−
θ the parameter space in the Data Warehouse of the present state of the

system, consisting of input variables, as stated in (2.1).
Now the state of system for different values of 1,2,....,i p=  is defined as the posterior
state of the model, as given by
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Here, ( )txi has been aggregated using the Data Warehouse entities of the state of the

system in RAS. The relative posterior risk in using )(txA to approximate )(tx  shall be

defined by )(tqrpr

( )[ ]
−−
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where ( )[ ]
−−
θδθ ,r  is the Bayes risk i.e. the expected Loss in taking action ( )

−
θδ  in the

present state  and the posterior risk given by numeration can be worked out as
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where







 







__
, θδθL the loss function for the association of new status is affected

variables in the present state of the system.
Hence if plll === .......21 , then )(tbpr  shall be zero for all t. The values of

)(tbpr and )(tqrpr  shall also be zero if )()0( ∞= ii xx  for every value of

1, 2,..., .i p= At 0=t , we shall have
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and as ∞→t so that 0)( =∞q

Corresponding to value of‘t’ given by (2.2), we shall have the expression for minimum
posterior risk
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The time of minimum posterior risk does not correspond to the time of minimum
relative posterior risk, as‘t’  in this case is a solution of the quadratic equation.
Now, additive model can be generated as under
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Which is of recursive nature as above expression can be expressed in the following
form
                     [ )()(1 txtx pp +− ] [ ( )[ ]

−−
θδθ ,r                   (4.9)

where )(1 tx p− corresponds to
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and the remaining terms shall be covered in ).(tx p

The Bayesian aggregate model is also recursive as is evident from following expression
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which by the explanation given by the expression (4.11), shall assume the form
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Above equation can be written in recursive form as
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The Bayesian Aggregation model mentioned in (4.13) does provide a

navigational angle to the complex work of optimizing resources which are multiple
facets. The intent of finding posterior risk and its minimum value subject to value of 't'
given by equations (4.7) and (4.8) is to ultimately posterior risk so that the output from
this model may be more properly interpreted and from (4.8), it can be seen  that the
time of minimum posterior risk does not correspond to the time of minimum relative
risk, as compared with General State Vector Linear Model (GSVLM) stated by Efraim
Halfon [4] in Theoretical Systems Ecology: Advances and Case Studies, as given in
(3.1) and (3.4).
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