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Abstract
The present paper deals with a hypothesis testing problem based on conditional

specification in a three-way random effect model. A sometimes pool test procedure using two
preliminary tests has been proposed for testing the main hypothesis. The power of the proposed
test has been proposed for test has been derived. Numerical study of the power and size has been
made for certain sets of degrees of freedom. It is found that the power of the proposed test
procedure is more than that of the test procedure proposed by Gupta and Singh (1977), for certain
set of values of the nuisance parameters. Thus, the proposed method is an improvement over the
existing test procedure, incorporating one preliminary test of significance.

Key words: Random-effects model (ANOVA model-Ii), test procedure, power nuisance
parameter, preliminary test of significance.

1. Introduction
Suppose that an agricultural equipment(s) producing concern is producing

some small parts to be used in the equipments say sprayer etc. The parts are being
produced, using a large number of machines of same make and model. The concern
may be interested in getting an answer to the questions: ‘Is there any difference
between the machines?’ Since the total number of machines in use is very large, it is
not possible to make such a study by taking samples of output of all machines.
Therefore, keeping this and other related problems in mind the following experiment is
performed.

A random sample of I machines from the lot of machine and J workers from
the totality of workers has been selected independently. Each worker is assigned to
work on a machine for one day. A random sample of K batches of materials produced
by each worker on a machine from the total output is selected. Since for any machine or
worker or batch of material, there may be considerable variation, we will treat the
output as a continuous random variable. The situation is expressed by a model in
equation (2.1).

Many investigations have been made in fixed and random effects model to
study the power of the test procedures incorporating one or two preliminary tests by
Paull (1950), Bechhofer (1956), Bozivich, Bancroft and Hartely (1956), Srivastava and
Bozivich (1961), Gupta and Srivastava (1968), Saxena and Srivastava (1970), Gupta
and Singh (1976), Gupta and Agarwal (1981).
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 Srivastava and Tanna (2001) have studied the problem of estimation of error
variance in a three – way layout for ANOVA model –II incorporating two preliminary
tests of significance for testing presence / absence of first order interaction(s).

In the present paper we have described the model in section 2, derived the
expressions for the power function of the test procedure incorporating two preliminary
tests of significance in section 3. Series formulae for power of the tests based on PTS
are generally lengthy and tedious. An attempt has been made to derive approximate
formulae for power of the test procedure which are much easier and give quite
satisfactory results. In section 4, we have derived some mathematical results. Section 5
comprises of numerical computation for power under proposed set – up and a
comparison has been made with test procedure incorporating one preliminary test of
significance, proposed by Gupta and Singh (1977). Power has been computed
numerically for some preliminary level(s) of significance and combinations of degrees
of freedom, for certain range of nuisance parameters. A comparison of these values,
have been made with the power of the test procedure proposed by Gupta and Singh.

2. The Model under Investigation and Conditional Specification
Let ijklY  denotes the lth observation in the kth batch of material produced by jth

worker if he uses ith machine. The sample observations can well be represented by a
complete three – way layout, designating machines as factor A, workers as factor B and
batches as factor C. Thus, we can assume that

A B C AB BC AC abc
ijkl i j k ij jk ik ijk ijklY a a a a a a a eµ= + + + + + + + +                                 (2.1)

    i=1, …, I; j=1, …, k; l=1, … , L

 The random variables A
ia  are uncorrelated and have ( )20, AN σ  distribution.

Similarly B
ja  have ( )20, BN σ ,  … ABC

ijka  have ( )20, ABCN σ  distributions. The error

eijkl are independently and identically distributed with mean zero and variance 2
eσ .

We are interested in testing the main hypothesis 2: 0A AH σ =  against the alternative
' 2: 0
A AH σ >  i.e. we are interested in examining whether there is any significant

difference between the machines from which these I machines have been drawn at
random beyond their variation from lth one batch to another or in their use by different
workers. If 2 0ACσ ≥  and 2 0ABσ ≥ , then (2.1) is called an incompletely specified
random model.

To test the hypothesis 2: 0A AH σ =  against ' 2: 0A AH σ >  about the effect
A, the abridge ANOVA table is given below.
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Source of
Variation

Degrees of
freedom

Mean
Squares

Expected Mean Squares

A

AB

AC

ABC

n4=(I-1)

n3=(I-1)(J-1)

n2= (I-1)(K-1)

n1=(I-1)(J-1)(K-1)

V4

V3

V2

V1

2 2 2 2
4

2 2
e ABC AB

AC A

L KL
JL JKL

σ σ σ σ

σ σ

= + +

+ +
2 2 2 2
3 e ABC ABL KLσ σ σ σ= + +
2 2 2 2
4 e ABC ACL JLσ σ σ σ= + +
2 2 2
4 e ABCLσ σ σ= +

Table 2.1: Analysis of Variance Table for 2 0ABσ > , 2 0ACσ >
From the table 2.1 it is evident that no interaction mean square is adequate to

be taken as error mean square unless the interaction AC and/or AB are/is zero. So, first
it is necessary to test the existence of AC and/or AB by testing two hypotheses, viz.,

2
01 : 0ACH σ =  and ' 2

01 : 0ACH σ >  against 2
02 : 0ABH σ =  and ' 2

02 : 0ABH σ > . The
final test depends upon the outcome of preliminary tests of significance. Such tests are
called test based on conditional specification.

Test procedure:

32 4
1 1

1 12 123

32 4
2 1 2

1 1 2

32 4
3 3

1 12 3

32 4
4 1 4

1 1

:

:

:

:
A

VV VA and and
V V V

VV VA and and
V V V

VV VA and and
V V V

VV VA and and
V V V

β δ β

β δ β

β δ β

β δ β

 
< < ≥ 

 
 

≥ < ≥ 
 
 

< ≥ ≥ 
 
 

≥ ≥ ≥ 
 

                                                                                                                                   (2.2)
where,

( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 1 3 12 2 1 3 1 3

1 4 123 4 2 4 2 5 3 4 3 6 3 4 7

1 1 2 2 3 3 1 1 2 2
123 12 3 2 1

1 2 3 1 2

, , , , , , , ,

, , , , , , , , , , *,

, , A

F n n F n n F n n

F n n F n n F n n F n n
nV n V n V nV n VV V V V V V

n n n n n

β α δ α δ α

β α β α β α β α

= = =

= = = =

+ + +
= = = + −

+ + +

( ) 22 2 2
3 2 1

4 4 4
3 2 1

3 2 1

*ijk i j kn n n n and n

n n n

σ σ σ

σ σ σ

+ −
= + + =

 
+ + 

 
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It may be noted that ( )2 1, 2,3 4i i andσ =  are in general, unknown and in

practice n* is estimated by replacing 2
iσ ’s by their unbiased estimates Vi’s. It is to be

noted that n* may be fractional, in this case F-value may be obtained by using Mathcad
(version 7).
 The mean squares Vi’s (i=1,2,3, and 4) are independently distributed as

2 2
i i

in
σ χ

, where 2
iχ  is a central chi – square statistic with ni degrees of freedom.

 The power of the test procedure ‘P’, the probability of rejecting HA is the sum
of the probabilities associated with the four mutually exclusive events which are given
above.

Now, ( )
4

1
Pr . ,i

i
P A

=

= ∑
Since i jA A φ=I  for all i j≠

( )

( )

( )

( )

32 4
11

1 12 123

32 4
2 1 2

1 1 2

32 4
3 3

1 12 3

32 4
4 1 4

1 1

: Pr .

: Pr .

: Pr.

: Pr .
A

VV VP A and and
V V V

VV VP A and and
V V V

VV VP A and and
V V V

VV VP A and and
V V V

β δ β

β δ β

β δ β

β δ β

 
< < ≥ 

 
 

≥ < ≥ 
 
 

< ≥ ≥ 
 
 

≥ ≥ ≥ 
 

                                                                                                        (2.3)
3. Approximate Power of the Test Procedure

The sum of squares 2
i i

i

nV
σ

 (i=1,2,3 and 4) are independently distributed as

central 2
iχ  with ni degrees of freedom. The joint probability distribution function of V1,

V2, V3 and V4 is given by

( )
31 2 41 1 1 1

2 2 2 2
1 2 3 4 1 1 2 3 4

3 31 1 2 2 4 4
1 2 3 42 2 2 2

1 2 3 4

, , , .

1exp
2

nn n n

f V V V V K V V V V

n VnV n V n V dV dV dV dV
σ σ σ σ

− − − −
=

  
− + + +  

  
                                                                                                (3.1)



On Power Function of A Sometimes Pool Test Procedure… 5

where,

31 2 4

1234

22 2 2
31 2 4

2 2 2 2
1 2 3 4

1
31 2 422

2 2 2 2

nn n n

n

nn n n

K
nn n n

σ σ σ σ
      
      

      =
      

      
      

, 1234 1 2 3 4n n n n n= + + +

Making the following transformations in (3.1)

3 31 1 4 4 2 2
4 3 14 2 13 1 122

1 1 1 1 1 1 1

, , ,n VnV n V n Vy y y y
nV nV nV

θ θ θ
σ

= = = =

            (3.2)

where,
2 2 2
1 1 1

12 13 142 2 2
2 3 4

, , ,σ σ σ
θ θ θ

σ σ σ
= = =  are the nuisance parameters.

 The joint probability distribution function of 1 2 3 4, ,y y y and y  is given by

( )

( )

3 12342 41 1 1 1
2 2 2 2

1 2 3 4 1 2 3 4

4
1 2 3 1 2 3 4

, , , .

exp 1
2

n nn n

f y y y y Ky y y y

y y y y dy dy dy dy

− − − −
=

 − + + +  
                                                                                                                                   (3.3)

where,
1234

31 2 42

1

2
2 2 2 2

n
K

nn n n
=

      
      
      

 Let the probability of the four steps be denoted by

( ) ( )1,2,3 4iP A i and=  respectively. The probability of test procedure which in
turn represents the power of the same is given by

( ) ( ) ( ) ( )1 2 3 4P P A P A P A P A= + + +                    (3.4)
Derivation of the approximate power formulae is based on the following

assumptions as suggested by Bozivich (1956).

 Letting n2 and 3n → ∞  in such a way that 2

1

n
n

 and 3

1

n
n

 are finite. Hence Vi

tends to 2
iσ  (i=1,2,3, and 4).

Thus, the probability of A1 is

( ) 32 4
11

1 12 123

: Pr . VV VP A and and
V V V

β δ β
 

< < ≥ 
 

                  (3.5)

Now, on making use of the assumptions given above
22

3 32 2
2 2

1 1 12 1

, VV
V V

σσ
σ σ

→ →  and
2

4 4
2

123 1

V
V

σ
σ

→ . Obviously the three solitary test statistics

are independent.
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Therefore, ( ) 32 4
1 1

1 12 123

VV VP A P P P
V V V

β δ β
    

= < < ≥    
     

               (3.6)

To evaluate the above probabilities  we make use of the following standard results:

( )
0, 0 ; ,

2 2p q X
p qP F F I X < =  

 
                                    (3.7)

( )
0, 0 1 ; ,

2 2p q X
p qP F F I X ≥ = −  

 
                                 (3.8)

where,

0
0

0

pFX
q pF

=
+

 and
0

; ,
2 2X
p qI X 

 
 

 is the normalised incomplete beta function. The

probabilities given in (3.6) can be reduced to the form of (3.7) and (3.8) in the
following manner.

( )
22 2

3 32 2 4 4
1 12 13 1 142 2 2

1 1 12 1 123 1

// /
/ / /

VV VP A P P P
V V V

σσ σ
βθ δθ β θ

σ σ σ
    

= < < ≥    
     

   (3.9)

or,

( ) ( ){ } ( ){ } ( ){ }1 2 1 12 3 12 13 4 123 1 14, , ,P A P F n n P F n n P F n nβθ δθ β θ= < < ≥

1 2 3

3 1232 1 12 4, , 1 ,
2 2 2 2 2 2X X X

n nn n n nI I I     = −      
      

                (3.10)

where,

3 132 12 4 1 14
1 2 3

1 2 12 12 3 13 123 4 1 14

; ;nn nX X X
n n n n n n

δθβθ β θ
βθ δθ β θ

= = =
+ + +

                (3.11)

 Proceeding in the same manner and making similar assumptions as in the case
of ( )1P A , we obtain the probabilities ( )2P A , ( )3P A  and ( )4P A .

( ) 32 4
2 1 2

1 1 2

VV VP A P P P
V V V

β δ β
     

= ≥ < ≥     
     

                              (3.12)

22 2
3 32 2 4 4

12 1 13 2 242 2 2
1 1 1 1 2 2

// /
/ / /

VV VP P P
V V V

σσ σ
βθ δ θ β θ

σ σ σ
     

= ≥ < ≥     
     

( ) ( ){ } ( ){ } ( ){ }2 2 1 12 3 1 1 13 4 2 2 24, , ,P A P F n n P F n n P F n nβθ δ θ β θ= ≥ < ≥
making use of relation (3.7) we obtain

( )
1 4 3

32 1 1 4 2
2 1 , , 1 ,

2 2 2 2 2 2X X X
nn n n n nP A I I I       = − −       

       
                (3.13)

 In (3.13) X1 is same as given in (3.11) and

3 1 13 4 2 24
4 5

12 3 1 13 2 4 2 24

;n nX X
n n n n

δ θ β θ
δ θ β θ

= =
+ +

;            where
2
2

24 2
4

σ
θ

σ
=                (3.14)
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The probability of A3 under the similar assumption as discussed in case of ( )1P A  is

( ) 32 4
3 3

1 12 3

VV VP A P P P
V V V

β δ β
    

= < ≥ ≥    
     

                 (3.15)

( )
22 2

3 32 2 4 4
3 12 13 3 342 2 2

1 1 12 1 3 3

// /
/ / /

VV VP A P P P
V V V

σσ σ
βθ δθ β θ

σ σ σ
    

= < ≥ ≥    
     

or,

( ) ( ){ } ( ){ } ( ){ }3 2 1 12 3 12 13 4 3 3 34, , ,P A P F n n P F n n P F n nβθ δθ β θ= < ≥ ≥
                                                                                                                                  (3.16)
Applying the relation (3.7) and (3.8) we get

( )
1 2 6

3 32 1 12 4
3 , 1 , 1 ,

2 2 2 2 2 2X X X
n nn n n nP A I I I       = − −        

        
                (3.17)

where X1 and X2 are given earlier and

4 3 34
6

3 4 3 34

nX
n n

β θ
β θ

=
+

                     (3.18)

where,
2
3

34 2
4

σ
θ

σ
=

Similarly the probability of A4 is

( ) 32 4
4 1 4

1 1 A

VV VP A P P P
V V V

β δ β
     

= ≥ ≥ ≥     
     

                 (3.19)

( ) ( )

22
3 32 2

12 1 132 2
1 1 1 1

2
4 4

4 34 24 142 2 2
3 2 1

// .
/ /

/
/A

VVP P
V V

VP
V

σσ
βθ δ θ

σ σ

σ
β θ θ θ

σ σ σ

   
= ≥ ≥   

   
 
 ≥ + −
 + − 

( ) ( ){ } ( ){ }
( ) ( ){ }

4 2 1 12 3 1 1 13

4 4 34 24 14

, , .

, *

P A P F n n P F n n

P F n n

βθ δ θ

β θ θ θ

= ≥ ≥

≥ + −
                                                                                                                                  (3.20)
Making use of the relation (3.7) we obtain

( )
1 4 7

32 1 1 4
4

*1 , 1 , 1 ,
2 2 2 2 2 2X X X

nn n n n nP A I I I        = − − −        
        

                                                                                                       (3.21)

where X1 and X4 are given earlier and
( )

( )
4 4 34 24 14

7
4 4 34 24 14*

n
X

n n
β θ θ θ

β θ θ θ
+ −

=
+ + −
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 Thus the power of the test procedure is the sum of the probabilities ( )1P A ,

( )2P A , ( )3P A  and ( )4P A  given by (3.10), (3.13), (3.17) and (3.21) respectively.

Special Checks:
 To check the final expression of power we consider the following cases:
I.  Taking the limits that 1,β δ  and 4β  tend to 0 in (3.10), (3.13), (3.17) and (3.21) we
obtain

( ) 0 ; 1,2,3
1 ; 4

iP A i
i

= =

= =
 Then from (3.4) we obtain P=1.
 The case when we let 1,β δ  and 4β  tend to 0 i.e. we always reject the

hypothesis 2: 0A AH σ =  and in this case we use: VA as an estimator of 2σ .

II.  Taking the limits that β  and δ  tend to ∞  and 1β  tends to 0 in (3.10), (3.13),
(3.17) and (3.21) we obtain

( ) 1 ; 1
0 ; 2,3, 4

iP A i
i

= =

= =
 Then from (3.4) we obtain P=1.
 The case when we let β  and δ  tend to ∞  and 1β  tends to 0 i.e. we never

reject the hypothesis 2: 0A AH σ =  and in this case we use: V123 as an estimator of 2σ .

4. Mathematical Results
Result 1: For a given set of degrees of freedom, as ,β δ and 1δ  tend to ∞ , the
sometimes pool test procedure approaches the exact F-test, the power which depends
only on the values of 14 24 34, ,θ θ θ  and the final level of significance 4α , is always

greater or equal to 4α .

Proof: As ,β δ and 1δ  tend to ∞  the power ‘P’ which has the components as

( )2P A , ( )3P A  and ( )4P A  of the sometimes pool test procedure tends to zero and

( )1P A  tends to 1eP  (say).
Where

22 2
3 32 2 4 4

1 12 2 2
1 1 12 1 123 1

// /, ,
/ / /e

VV VP P
V V V

σσ σ
β

σ σ σ
 

≥ < ∞ < ∞ ≥ 
 

Using the relation (3.8) we get

1 4eP α≥                                                                                                                    (4.1)
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Result 2: For 12 13 1θ θ= = , the lower bound and upper bound for size of the

sometimes pool test procedure are respectively ( ) ( )1 2 41 1α α α− −  and

( )( )1 2 41 1α α α− − + ( ) ( )3 5 1 6 71 1α α α α α− + − + .
Proof: Under the conditions of the theorem, the size of the sometimes pool test

procedure is given by
4

1
i

i
S S

=

= ∑ .

Since Si (i=1,2,3,4);                 hence, 1S S≥ .
We have

22 2
3 32 2 4 4

1 12 2 2
1 1 12 1 123 1

// /
/ / /

VV VS P P P
V V V

σσ σ
β δ β

σ σ σ
    

≥ < < ≥    
     

( ) ( )1 1 2 41 1S α α α≥ − −                     (4.2)
By using the relations (3.7) and (3.8), we have

( )( )1 2 41 1S α α α≥ − − , which is the lower bound of the test procedure.

Now, by taking the limit β  tends to zero in (3.12), the 2S  may be written as:
22 2

3 32 2 4 4
2 1 22 2 2

1 1 1 1 2 2

// /0
/ / /

VV VS P P P
V V V

σσ σ
δ β

σ σ σ
     

≤ ≥ < ≥     
     

By using the relations (3.7) and (3.8), we have

( )2 3 51S α α≤ −                                                   (4.3)

Now, by taking the limit δ  tends to zero in (3.15), the 3S  may be written as:
22 2

3 32 2 4 4
3 32 2 2

1 1 12 1 3 3

// /0
/ / /

VV VS P P P
V V V

σσ σ
β β

σ σ σ
    

≤ < ≥ ≥    
     

By using the relations (3.7) and (3.8), we have

( )3 1 61S α α≤ −                                                                                                      (4.4)

Now, by taking the limits β  and δ tends to zero in (3.19), the 4S  may be written as:

( )
22 2

3 32 2 4 4
4 42 2 2 2 2

1 1 1 1 3 2 1

// /0 0
/ / /A

VV VS P P P
V V V

σσ σ
β

σ σ σ σ σ

    
 ≤ ≥ ≥ ≥     + −     

By using the relation (3.8) we have

4 7S α≤                          (4.5)
On combining (4.2), (4.3), (4.4) and (4.5) we have

( )( ) ( ) ( )1 2 4 3 5 1 6 71 1 1 1S α α α α α α α α≤ − − + − + − + .
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5. Numerical Study of the Behaviour of the Size and Power of the Proposed
    Test Procedure
 Seven sets of degrees of freedom (d.f.) which have been taken for evaluation
of size and power of the test procedure are given in  Table 5.1.

   d.f.    Set 1    Set 2    Set 3    Set 4    Set 5    Set 6    Set 7

1n
     8      12      12         24      24      24      48

2n      4       6       4      12        8      12      16

3n      4       4       6       8      12      12      24

4n      2       2       2       4       4       6       8

Table 5.1:  Seven sets of degrees of freedom for evaluation of size and power of test

The values of size and power for set 5, set 6 and set 7 are summarised  in the
Appendix. The values for the other sets are not given here for the want of space.

From (3.10), (3.13), (3.17) and (3.21) we observe that the power of sometimes
pool test procedure is a function of 14 parameters, viz. 4 degrees of freedom 1n , 2n ,

3n  and 4n ; in all seven level of significance: out of which the preliminary level of

significance are 1α , 2α  and 3α  and the final level of significance are 4α , 5α , 6α
and 7α ; and the three nuisance parameters are 14θ , 24θ  and 34θ .

We have considered the values of 14θ , 24θ  and 34θ  ranging from .2(.2)1.0.

However, the nuisance parameters 14θ , 24θ  and 34θ  must satisfy the following
inequalities

34 24 14 1θ θ θ+ − ≤ , 24 14θ θ≥ , 34 14θ θ≥ ,
which is evident from the analysis of variance table 2.1 and considering the alternative
hypothesis:
 The power of the sometimes pool test procedure has been calculated only for
those combinations of values of the above relations. Besides these, three additional sets
of values of the nuisance parameters which satisfy the above inequalities, have also
been taken. These values are 14 24 34 14.002, .006, .006, .01θ θ θ θ= = = = ;

24 34.05, .01θ θ= =  and 14 .02,θ = 24 34.06, .08θ θ= = . For these values power

is more. The values of preliminary level of significance pα  which have been
considered for studying the behaviour of the size and power of sometimes pool test
procedure are (in %) 0, .01, .05, .10, .25, and 1.0. However the final levels of
significance have been fixed at 1%.

First we consider the size of the sometimes pool test procedure summarised  in
tables 1 - 2.  We observe from these tables that for 0pα = , the size, which is the size
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of the exact F – test procedure, is always greater than .05. For 1.0pα = , the size of the
sometimes pool test procedure reduces to the approximate F – test and its size is equal
to the pre – fixed nominal size. If we exclude these two extreme cases, we observe that
the size of sometimes pool test procedure decreases monotonically as we increase the
level of significance for given values of 14θ , 24θ  and 34θ .

The four degrees of freedom 1n , 2n , 3n  and 4n  are determined completely
by the numbers of levels of factors A, B and C, therefore to study the behaviour of size
for variations in degrees of freedom we have considered the effect of variations in the
number of levels of the factors on the size. Comparing values of size for different data
sets (the tables of size not given), we notice that for 0.25pα =  if we increase the
number of levels of factor A then the size of sometimes pool test procedure decreases
for small values of the nuisance parameters (i.e 14 .4θ < ) however it increases for the
other values. Further, an increase in the preliminary level of significance widens the
range of nuisance parameters where the size decreases and/or comes closer (equal) to
the prefixed nominal size. A similar comparison for the other factors viz. B, C, A and B
and A and A and C can also be made.

Tables of the data sets 1, 2, 3 and 4 (not shown here) and the Table 5.2 (where
the values within parenthesis are those obtained by Gupta and Singh) shows that the
power of the proposed test procedure is more than that of the test procedure proposed
by Gupta and Singh. The other tables (not shown here) of the power of the proposed
test procedure for the 7 data sets reveal that, it in general decreases as pα  increases. In
general, as we increase number of levels for factor A, it is observed that power
increases with it for all the pα  considered here. We conclude that:

1. Power is more whenever 0.25pα ≤  for all the sets of degrees of freedom.

2. Size remains more or less under control whenever 0.25pα ≥  for certain

range of nuisance parameters, we recommend 0.25pα =  for a better control
over size and adequate power.

3. Power formulae incorporating two preliminary tests of significance though
difficult to compute, can be easily computed with the proposed method.

4. Power comparison demonstrates superiority of the proposed method over the
existing one.
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Preliminary level of significance
θ14 θ24 θ34 0.0 .01 .05 .10 .25 .50 1.0

.002 .006 .006 .9999
(.9987)

.9990 .9983
(.9981)

.9980
(.9978)

.9979
(.9986)

.9986 .9978
(.9978)

.001 .005 .001 .9987
(.9359)

.9541 .9943
(.9358)

.9409
(.9357)

.9974
(.9955)

.9354 .9935
(.9935)

.002 .006 .008 .9948
(.9138)

.8961 .8646
(.8378)

.8519
(.8328)

.8376
(.8282)

.8278 .8257
(.8257)

.002 .004 .002 .7238
(.2804)

.6544 .5643
(.2790)

.5044
(.2776)

.4057
(.2735)

.3232 .2533
(.2528)

.002 .004 .004 .7238
(.2804)

.5782 .4352
(.2306)

.3588
(.2140)

.2587
(.1888)

.1963 .1588
(.1588)

.002 .004 .006 .7235
(.2804)

.3923 .2491
(.1444)

.1934
(.1252)

.1348
(.1041)

.1057 .0893
(.0893)

.002 .006 .002 .7238
(.1466)

.5012 .3640
(.1463)

.2990
(.1461)

.2181
(.1452)

.1693 .1412
(.1411)

.002 .006 .004 .7238
(.1466)

.4440 .2534
(.1223)

.2161
(.1142)

.1429
(.1019)

.1056 .0872
(.0872)

.002 .008 .002 .7238
(.0829)

.3537 .2246
(.0828)

.0174
(.0827)

.1213
(.0826)

.0944 .0819
(.0818)

.004 .006 .004 .4007
(.1466)

.3846 .3501
(.1456)

.3202
(.1447)

.2588
(.1417)

.1944 .1275
(.1270)

.004 .006 .004 .4007
(.1466)

.3677 .3077
(.1332)

.2632
(.1258)

.1874
(.1111)

.1268 .0825
(.0825)

.004 .008 .004 .4007
(.0829)

.3509 .2861
(.0827)

.2434
(.0825)

.1743
(.0819)

.1194 .0793
(.0791)

.006 .008 .006 .2044
(.0829)

.1994 .1864
(.0825)

.1739
(.0821)

.1456
(.0810)

.1129 .0756
(.0754)

Table 5.2 : Power of sometimes pool estimation test procedure n1=24, n2=8, n3=12, n4=4,
α4=25=α6=α7=.05

The values within parentheses were given by Gupta and Singh (1977).
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