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Abstract
We propose a bivariate Weibull regression model with frailty which is generated by

power variance function distribution. We assume that the bivariate survival data follow bivariate
Weibull of Hanagal (2005a) and distribution of censoring variable is independent of the two life
times. There are some interesting situations like survival times in genetic epidemiology, survival
times of dental implants of patients and survival times of twin births (both monozygotic and
dizygotic) where genetic behavior (which is unknown and random) of patients follows a power
variance function frailty distribution. These are the situations which motivate to study this
particular model. We propose two stage maximum likelihood estimation procedure for the
parameters and develop large sample tests for no frailty and the significance of regression
parameters in the proposed model.

Key words: Bivariate Weibull, Parametric regression, Power variance function frailty,
Simultaneous failures, Survival times.

1. Introduction
The shared gamma frailty model was suggested by Clayton (1978) for the

analysis of the correlation between clustered survival times in genetic epidemiology.
An advantage is that without covariates its mathematical properties are convenient for
estimation (Oakes, 1982, 1986). However, when adjusting for environment risk factors
the analysis of the clustering is more difficult (Parner, 1998). In a frailty model, it is
absolutely necessary to be able to include some known explanatory variables to be able
to estimate the aspects of the frailty distribution which represents the effect of unknown
covariates. The reason is that the frailty describes the influence of common unknown
factors. If some covariates are included in the model, the variation owing to unknown
covariates should be reduced. Some covariates are indeed common for all members of
the group. For monozygotic twins, examples are gender and any other genetically based
covariate. Both monozygotic and dizygotic twins share date of birth and common pre-
birth environment. By measuring some potentially important covariates, we can
examine the influence of the covariates, and we can examine whether they explain the
dependence, that is, whether the frailty has no effect (or more correctly, no variation),
when the covariate is included in the model.

There are some situations where the lifetimes of the two components, T1 and
T2 are dependent, for example, the timing of failure of paired organs like kidneys,
lungs, eyes, ears, dental implants, etc. are dependent on each other. The covariates here
may be the age of the patient, sex of the patient, smoking or alcoholic habits of the
patient, diabetic or no-diabetic conditions of the patient, some specific diseases of the
patient, etc. These covariates are risk factors to the paired organs of an individual and
are not different for each organ in the same patient and so we have common covariates.
There are some situations where we find some non-identical covariates in addition to
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identical covariates for paired components in a system, for example, failure times (in
months) of a pair of dental implants in a jaw of a patient. Here the identical covariates
are age and sex of a patient and non-identical covariates may be (1) different materials
(ceramic, metal) of dental implant, (2) different shapes (screw, anchor, pillar, hollow
cylinder) of dental implant, (3) dental implants in different locations (front, premolar,
molar) of a jaw, (4) dental implants in different jaws (lower, upper).

The regression model is derived conditionally on the shared frailty (Y).
Conditionally on Y , the cumulative hazard function of lifetimes (T1, T2) is assumed to
be of the form

Y M(t1,t2)
where M(t1,t2) = log S(t1, t2) is the bivariate cumulative or integrated hazard function
of (T1,  T2) with the bivariate survival function S(t1,  t2) and that the value of Y is
common to several individuals in a group. When there is no variability in the
distribution of Y , implies that Y has a degenerate distribution. When the distribution is
not degenerate, the dependence is positive. The value of Y can be considered as
generated from unknown values of some explanatory variables. Conditional of Y , the
bivariate survival function is

S(t1, t2| y) = exp{ yM(t1, t2)}             (1)

When T1 and T2 are independent, M(t1, t2) = M1(t1)+M2(t2), where Mi(ti), i = 1, 2 are the
integrated hazards of T1 and T2 respectively. From this, we immediately derive the
bivariate survival function by integrating Y out

S(t1, t2) = E exp[ YM(t1, t2)] = L(M((t1, t2))
where L(.) is the Laplace transform of the distribution of Y . Thus, the bivariate
survivor function is easily expressed by means of the Laplace transform of the frailty
distribution, evaluated at the total integrated conditional hazard.

The positive stable model (Hougaard, 1986) is a useful alternative to gamma
model, in part because it has the attractive feature that predictive hazard ratio decrease
to 1 over time (Oakes, 1989). The property is observed in familial associations of the
ages of onset of diseases with etiologic heterogeneity, where genetic cases occur early
and longterm survivors are weakly correlated. The positive stable model has the
advantage that it fits proportional hazards which means that if the conditional model
has proportional hazards, so does the marginal distribution. This is an advantage, when
considering the model as a random effects model. Hanagal (2005b, 2006b) also
proposed bivariate Weibull (BVW) regression models for the survival data with
positive stable and gamma frailty distributions respectively. These BVW models are
based on the extension of bivariate exponential of Marshall-Olkin (1967).

The power variance function is a three parameter family uniting gamma and
positive stable distributions. That is, gamma and positive stable distributions are sub
models of power variance function distribution. In this paper, we study more general
distribution as a frailty instead of its sub models.

The most natural parametric distribution to consider is the Weibull model
because it allows for both the proportional hazard and the accelerated failure time
model. There is no unique natural extension of Weibull distribution in the bivariate or
multivariate situations. So, there are different versions of bivariate or multivariate
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Weibull distributions, each has its own merits and demerits. These distributions have
been derived from the exponential distribution by taking power transformation.
Hanagal (2005a) proposed a bivariate Weibull (BVW) distribution which is the Weibull
extension of bivariate exponential of Proschan-Sullo (1974). The main feature of this
model is that it allows for simultaneous failures of the components and failure of one
component changes the failure rate of other component. BVW models of Hanagal
(2004) and Hanagal (2006a) are the sub models of BVW of Hanagal (2005a). There are
some biometrical applications which motivate to study bivariate Weibull (BVW)
regression model in this particular situation. For example, twin births and another
example is paired organs in an individual (or patient) as a two component system. It is
quit common that simultaneous failures of twin births may occur due to an accident and
also simultaneous failures of paired organs within a patient may occur. We are very
sorry to say that unfortunately we did not get any suitable data for our present model
but in future if someone get a data, the present model which is more general can be
applied. In order to compensate the real data, we use simulated data and do the
estimation and testing procedures.

The focus of this paper is inference for the power variance function (PVF)
frailty parameters with family of paired units following BVW regression model which
are randomly censored and estimate the regression parameters and test the significance
of the regression parameters. In Section 2, we present PVF distribution. In Section 3,
we introduce the BVW regression model with PVF frailty and in Section 4, we obtain
estimation of the parameters in the proposed model. In Section 5, we present test
procedures for testing no frailty and the significance of regression parameters. In
Section 6, we present a simulation study and Section 7 contains some discussions.

2. The Power Variance Function Distribution
The power variance function distribution is denoted PVF(α ,δ ,θ ). For α  =

0, the gamma distributions are obtained, with same parameterization. Some formulas
are valid, but many are others are different in this case. For θ  = 0, the positive stable
distributions are obtained. For α  = 1, a degenerate distribution is obtained. For α  =
1/2, the inverse Gaussian distributions are obtained. For α  = 1, the non-central
gamma distribution of shape parameter zero is obtained.

The parameter set is (α  1, δ  > 0), with (θ  0 for α  > 0), and (θ  > 0 for α
 0). The distribution is concentrated on the positive numbers for α  0, and is

positive or zero for α  < 0.

In the case α > 0, the p.d.f. of PVF is given by [See Hougaard(2000), p. 504].

1 ( 1) 1 1( ) exp{ / } ( ) sin( ), 0
!1

k kf y y k y
k yk

αα αθ δ α α π
π

∞ Γ + += − + − >∑
=

               (2)

In the case α <0, the Γ -term in the density is not necessarily defined, and
therefore we can use the alternative expression for p.d.f. of PVF as [See
Hougaard(2000), p. 504].

1 ( / )( ) exp{ / } , 0
! ( )1

kyf y y y
y k kk

αδ ααθ δ α
α

∞ −
= − + >∑

Γ −=
      (3)
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 This expression is valid for all α  values, except 0 and 1, with the convention
that when the Γ -function in the denominator is undefined (which happens when kα  is
a positive integer), the whole term in the sum is zero. For α  < 0, there is probability

)/exp( αδθ α of the random variable being zero. For ≥α 0, the distribution is

unimodal. If Y1 and  Y2 are independent, and Yi follows PVF(α , iδ ,θ ), i = 1, 2 the

distribution of Y1 +Y2 is PVF(α , 21 δδ + ,θ ). So, PVF distribution is infinitely

divisible. When θ  > 0, all (positive) moments exist, and the mean is 1−αδθ . The
variance is 2)1( −− αθαδ .

The Laplace transform of PVF distribution is
]/}){(exp[)( αθθδ αα −+−= ssL

In frailty model, it is common to take the mean expectation of the frailty
distribution equal to 1 and to limit the parameter space of this distribution in such a way
to attain this constraint in order to avoid identifiability problems in the model. In order
to avoid this identifiability problem, we assume δ  = θ  = 1 and the mean and variance
will become 1 and variance (1 α ) respectively. The Laplace transform of PVF
distribution with the restriction δ  = θ  = 1 is

]/}1)1{(exp[)( αα −+−= ssL    (4)
This model extends both the positive stable and the inverse Gaussian models

and thus is useful for testing either of the models. It can also be used as a flexible way
to describe dependence.

The unconditional bivariate survival function with PVF frailty is given by

( , ) exp[ {1 ( ) ( )} / 1/ ]1 2 1 1 2 2S t t M t M t α α α
α

= − + + +                  (5)

3. Bivariate Weibull Regression With Power variance Function Frailty
Freund (1961) proposed BVE as a model for failure time distribution of a

system with lifetimes (X1,X2) operating in the following manner. Initially X1 and X2 are
independent exponential with failure rates 1λ  and 2λ  respectively, 1λ , 2λ , > 0. The
interdependence of the components is such that failure of a component changes the
failure rate of other component from 1λ  to 11λ  ( 2λ  to 22λ ) which is called load
sharing. The BVE of Freund (1961) with its joint pdf is given by

exp{ ( ) };1 22 22 2 1 2 22 1 1 2( , )1 2 exp{ ( ) };2 11 11 1 1 2 11 2 2 1

x x x x
f x x

x x x x

λ λ λ λ λ λ

λ λ λ λ λ λ

− − + − <=  − − + − <
(6)

where .0,,, 221121 >λλλλ
Proschan-Sullo (1974) proposed BVE which is the combination of both

Marshall-Olkin and Freund models and the two component system operate in the
following manner. Initially X1 and X2 follow BVE of Marshall-Olkin (1967). When a
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component fails the failure of a component changes the failure rate of other component
from 1λ + 3λ  to 11λ + 3λ  ( 2λ + 3λ  to 22λ + 3λ ) (or load sharing). The BVE of
Proschan-Sullo (1974) with its p.d.f. is given by

( ) exp{ ( ) ( ) };1 22 3 22 3 2 1 2 22 1 1 2
( )exp{ ( ) ( ) };( , ) 2 11 3 11 3 1 1 2 11 2 2 11 2
exp{ ( },3 1 2 3 1 2

x x x x

x x x xf x x

x x x x

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ

+ − + − + − <
 + − + − + − <= 
 − + + = =

                                                                                                                               (7)
where .0,,,, 2211321 >λλλλλ

Taking transformation cXT 11 =  and cXT 22 = , c > 0 we get bivariate Weibull model
(BVW) which was introduced by Hanagal (2005a) with p.d.f. given by

2 1( ) ( ) exp{ ( ) ( ) };1 22 3 1 2 22 3 2 1 2 22 1 1 2
2 1( , ) ( ) ( ) exp{ ( ) ( ) };1 2 2 11 3 1 2 11 3 1 1 2 11 2 2 1

exp{ ( ) },3 1 2 3 1 2

c c cc t t t t t t

c c cf t t c t t t t t t

ct t t t

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ

− + − + − + − <
 −= + − + − + − <

 − + + = =

                                                                                                                                (8)
Reparametrize 22221111 , λφλλφλ ==  and rewrite the above p.d.f.

2 1( ) ( ) exp{ ( )1 2 2 3 1 2 2 2 3 2

( ) },1 2 2 2 1 1 2
2 1( , ) ( ) ( ) exp{ ( )1 2 2 1 1 3 1 2 1 1 3 1

( ) },1 2 1 1 2 2 1

exp{ ( ) },3 1 2 3 1 2

c cc t t t

ct t t

c cf t t c t t t

ct t t

ct t t t

λ λ φ λ λ φ λ

λ λ λ φ

λ λ φ λ λ φ λ

λ λ λ φ

λ λ λ λ

− + − +


− + − <

 −= + − +

 − + − <



− + + = =
                                                                                                                                 (9)

As we know in BVE of Proschan-Sullo (1974), the marginals are weighted
combinations of two exponential distributions. Here in the BVW also, the marginals are
weighted combinations of two Weibull distributions with same weights. The min(T1,T2)
is Weibull with scale parameter ( 321 λλλ ++ ) and shape parameter c. When 3λ  = 0,

the BVW in Eqn (9) reduces to BVW of Hanagal (2006a) and when 121 == φφ , it

reduces to BVW of Hanagal (2004). When 121 == φφ and 3λ  = 0 then T1 and T2 are
independent.

The probabilities in the three regions are given by
P[T1 <  T2]  = )/( 3211 λλλλ ++ , P[T1>T2]  = )/( 3212 λλλλ ++  and P[T1=T2]  =

)/( 3213 λλλλ ++ .
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The survival function of this BVW is given by

(1 ) ( ). 1 2 2 1 2 2 3 22(1 )2 2 1 ; 1 2(1 )1 2 2( , )1 2 (1 ) ( ). 2 1 1 2 1 1 3 11(1 )1 1 2 ; 2 1(1 )1 2 2

c cc t tt
e e

t t

S t t
c cc t tt

e e
t t

λ λ φ λ φ λλ
λ φ λ

λ λ φ

λ λ φ λ φ λλ
λ φ λ

λ λ φ

 − + − − +− − + < + −= 
 − + − − +−
 − +
 <
 + −


Where 321 λλλλ ++= .                                                                                 (10)

Now the conditional survival function of BVW given the frailty (Y=y) is given by

[ (1 ) ( ) ]. 1 2 2 1 2 2 3 22(1 )2 2 1 ; 1 2(1 )1 2 2( , | )1 2 [ (1 ) ( ) ]. 2 1 1 2 1 1 3 11(1 )1 1 2 ; 2 1(1 )1 2 2

c cc y t ty t
e e

t t

S t t y
c cc y t ty t

e e
t t

λ λ φ λ φ λλ
λ φ λ

λ λ φ

λ λ φ λ φ λλ
λ φ λ

λ λ φ

 − + − + +− − + < + −= 
 − + − + +−
 − +
 <
 + −


(11)
Assuming Y follows PVF distribution given in (2) and then integrating over Y , we get
unconditional survival function and is given by
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Substituting 3λ  = 0 in all the above expressions we get the corresponding
expressions for the Weibull extension of BVE of Freund (1961).

The above bivariate survival function (12) has three types of dependencies,
one is due to simultaneous failures, the second is due to load sharing, and the third is
due to frailty. Now we develop a regression model for the two component system as
follows. As we have seen in the univariate Weibull regression, the scale parameter of
the univariate Weibull distribution can be expressed in terms of regression coefficients.
If λ  is the scale parameter of the exponential distribution, then ze 'βλ −=  or
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ze 'βλ =  where β  is the vector of regression parameters and z is the vector of
regressors or covariates. The exponent term in the above expression, we can take either
positive or negative but in either case λ  > 0. In the similar manner, the scale
parameters ),,( 321 λλλ can be expressed in terms of regression parameters in the
following way.
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0 zβ  corresponds to the term containing identical covariates for both components.

1
'

1 zβ  corresponds to the term containing covariates for first component and

2
'
2 zβ corresponds to the term containing covariates for second component. The

parameters ),,( 210 βββ  are not the same in ),,( 321 λλλ . 1λ  which is related to

component 1 has combination of ),( 10 ββ , 2λ  which is related to component 2 has

combination of ),( 20 ββ , and 3λ  which is related to the simultaneous failures of both

components has combination of ),,( 210 βββ . For example, age is common covariate
for the two dental implants in an individual. The influence of age is same on both the
life times of the implants. Suppose out of the two implants in an individual, one implant
is metal and the other is ceramic. Here the influence of two types of materials is
different on the life times of implants. Therefore 1λ  contains only ),( 10 ββ  which

indicates age and metal (for component 1), 2λ  contains only ),( 20 ββ  which

indicates age and ceramic (for component 2), and 3λ  contains ),,( 210 βββ  which
indicates age, metal, and ceramic (for both components). We denote this model as
power variance function frailty bivariate Weibull (PVFFBVW) regression model with
survival function S(t1, t2 | Z).

4. Estimation of the Parameters
For the bivariate life time distribution, we use univariate censoring scheme

given by Hanagal (1992a, 1992b) because the individuals do not enter at the same time
and withdrawal or death of an individual or termination of the study will censor both
life times of the components. Here the censoring time is independent of the life times of
both components. Here the two components may be paired organs or dental implants in
an individual and death or withdrawal of an individual censors both the life times of the
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organs or dental implants. This is the standard univariate right censoring for both failure
times T1 and T2. Suppose that there are n independent pairs of components under study
and i-th pair of the components have life times (t1i, t2i) and a censoring time (wi). The
life times associated with i-th pair of the components are given by

),( 21 ii TT    = ),,( 21 ii tt iii wtt <),max( 21

      = ),,( 1 ii wt iii twt 21 <<
       = ),,( 2ii tw iii twt 12 <<       (14)

                 = ),,( ii ww ).,min( 21 iii ttw <

Discarding factors which do not contain any of the parameters, we want to estimate the
parameters in the proposed model. Now the likelihood of the sample of size n is given
by
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54321 ,,,, nnnnn  and 6n  is the random number of observations observed to fail in the

range space corresponding to iiiii fffff 54321 ,,,,  and F  respectively. if1  and if 2

are the p.d.f. with respect to Lebesgue measure in 2R  and ii ff 43 ,  and if5  are the

p.d.f. with respect to Lebesgue measure in 1R  in their respective regions. ),,( 321 λλλ
are expressed in terms of regression parameters as in Eq. (13).

The likelihood equations can be obtained by taking first order partial
derivatives of the loglikelihood and equating to zero. The likelihood equations are not
easy to solve. It may not be possible to obtain maximum likelihood estimators (MLEs)
by Newton-Raphson procedure. But we came to know from the simulation study in
Section 6, and also from the paper by Hanagal(2005a, 2006a) the likelihood equations
sometimes do not converge in the Newton-Raphson procedure and the method of
maximum likelihood (ML) fails to estimate all the parameters simultaneously. One can
obtain estimates of the parameters by two stage MLE method or conditional MLE
method. In the first stage, estimate the parameters αφφ ,,, 21 c  by ML method under

the base line model by conditioning 0210 === βββ  (which implies

1321 === λλλ ) and then in the second stage, estimate the parameters 210 ,, βββ
by ML method after substituting MLEs of αφφ ,,, 21 c  obtained from the first stage.
These are conditional MLEs. When (i) it is not possible to obtain MLEs in closed form
(ii) iterative procedures fail to converge, one can adopt two stage MLE procedure for
estimating the parameters. We are mainly interested in estimating and testing the
regression parameters and the other parameters ( αφφ ,,, 21 c ) are involved in the base
line model which are here nuisance parameters.

The observed information matrix, 1I  with appropriate second order partial
derivatives based on the first stage is
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1I   = -
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The observed Fisher information matrix 2I  which is of order
)2()2( qpqp +×+  with appropriate second order partial derivatives based on the

second stage is

2I  = -
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The inverse of the above observed information matrix ( 2I ) is the observed

variance-covariance matrix ( 1
11

−=∑ I ) of the MLEs
'

221111001
' ),.....,,,....,,,....,( qqp βββββββ =  of the parameters

'
221111001

' ),.....,,,....,,,....,( qqp βββββββ = .

 Thus )( ββ −n  has asymptotic multivariate normal distribution with mean

vector zero and variance-covariance matrix 11∑ , where 11∑  is )2()2( qpxqp ++

variance-covariance matrix of '
221111001

' ),.....,,,....,,,....,( qqp βββββββ = .

5. Large Sample Tests
In this Section, we present asymptotic tests for testing no frailty and also test

for regression parameters.



    Journal of Reliability and Statistical Studies, June 2009, Vol. 2(1)24

5.1   Tests for no Frailty:
The PVF distribution is degenerate when 1=α  that is there is no frailty. We

give large sample test procedure for testing frailty based on test statistic, α , the MLE
of α . The hypothesis of no frailty is given by

1:01 =αH  versus 1:11 <αH . The corresponding test statistic is

11
1

1
1

I

−
=Λ

α
       (18)

Where 1Λ  follows asymptotic N(0, 1) under 1:01 =αH . 11
1I  is the estimated 1-st

diagonal element of 1
1
−I  under 10 HH ∪  and Eqn (18) is studentized test statistic

[See Hanagal and Kale (1991, 1992)]. This will solve the problem of the test of
parameter value on the boundary of the parameter space. We conclude that there is
frailty when '1 αZ<Λ  where 'αZ  is  the 'α  quantile of standard normal variate .
These test procedures are carried out without taking into account the fixed covariates.

5.2   Test for Regression Coefficients:
 The hypotheses about β  can be frequently put in the form 0: 110 =βH ,

with β  partitioned as '
2211

' ),( βββ =  where 11β  is 1kx ,  ( qpk 2+< ). To test

02H  against the alternative that 011 ≠β  one can use

11
1

22112 ββ −∑=Λ     (19)

where 22∑  is kxk  asymptotic observed variance-covariance matrix of 11β .

Under 02H , 2Λ  is asymptotically chi-square with k d.f.. We conclude that the

regression parameters are significant when 2
'1,2 αχ −>Λ k  where 2

'1, αχ −k  is chi-square

variate with k d.f. at the level of significance 'α .

6. Simulation study
We generate 1000 samples of sizes n=60, 80 and 100 from BVW model and

obtain conditional MLEs of the parameters based on first stage. We observed from the
simulation study as in Table 1 that MLEs are very close to the known values of the
parameters in BVW model. We also obtain the power of the test statistic for testing no
frailty at the level of significance 'α = 0.01 and 0.05.  In Table 2, we obtain regression
parameters and also obtain the power of test statistics based on chi-square test at the
levels of significance ( 'α ) = .01 and .05. It is observed that the estimates of regression
parameters are very close to true values in the second stage also. The following are
three hypothesis of the tests discussed in Section 5.
(1) 0: 010 =βH  Vs 5.: 011 =βH
(2) 0: 110 =βH  Vs 5.: 111 =βH
(3) 0: 210 =βH  Vs 5.: 211 =βH
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 Parameters α c
1φ 2φ

values 0.5 0.5 1.5 1.5
n = 60

0.5026 0.5169 1.5214 1.5190Est.
s.e. 0.0295 0.0300 0.0339 0.0350

Power, 'α =0.01 0.679

Power, 'α =0.05 0.764
n = 80

0.5018 0.5120 1.5110 1.5120Est.
s.e. 0.0189 0.0209 0.0249 0.0261

Power, 'α =0.01 0.728

Power, 'α =0.05 0.823
n = 100

0.5009 0.5023 1.5059 1.5053Est.
s.e. 0.0168 0.0120 0.0211 0.0199

Power, 'α =0.01 0.821

Power, 'α =0.05 0.880
Table 1: MLEs of the Parameters in PVFFBVW Model

And Power of Test for No Frailty.

Parameters
01β 11β 21β

values 0.5 0.5 0.5
n = 60

0.5133 0.5119 0.5134
0.0305 0.0285 0.0309
0.669 0.705 0.676

Est.
s.e.

Power, α =.01
Power, α =.05 0.756 0.779 0.768

n = 80
0.5086 0.5062 0.5053
0.0238 0.0252 0.0257
0.739 0.766 0.719

Est.
s.e.

Power, α =.01
Power, α =.05 0.824 0.841 0.837

n = 100
0.5028 0.5014 0.5018
0.0173 0.0165 0.0207
0.812 0.842 0.832

Est.
s.e.

Power, α =.01
Power, α =.05 0.917 0.940 0.931

Table 2: Conditional MLEs of the Regression Parameters and
Power of the Tests in PVFFBVW Regression Model

The first test is for testing common regression parameter corresponding to
both components equal to zero, the second test is for testing the regression parameter
corresponding first component equal to zero and the third test is for testing the
regression parameter corresponding to second component equal to zero. It is observed
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from Table 2 that the tests are very powerful as sample size approaches to 100. The
distribution of the censoring time is taken as exponential with failure rate .03.

7. Discussions
I have simulated 1000 samples each of size n = 60, 80 and 100. If I take

smaller sample sizes for the simulation, there is a problem of convergence of estimates
of the parameters in N-R procedure. In the survival data, one should remember that the
number of failures should be less than the sample size. In the simulation process, the
percentage of censoring changes from sample to sample for fixed sample size. So the
effective sample size for the parametric model is the number of failures. In our case, we
have a PVFFBVW model with four parameters under the base line model. The sample
sizes 20 and 40 are very small for this model with four parameters and censoring
scheme. The efficiency and convergence of estimators depend on three things as
follows:
(1) sample size,
(2) percentage of censoring,
(3) number of parameters in the model.

When the sample size is very small and it is highly censored and there are
more number of parameters in the model, the probability of convergence of the
estimates of the parameters is very less. If we take into account the above things, the
power of the tests based on these estimates will perform better.
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