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Abstract

This paper presents an imputation based factor-type class of estimation strategy for
estimating population mean in presence of missing values of auxiliary variable. The non-sampled
part of population is used as an imputation technique in the form of a proposed class of
estimators. The bias and mean squared error of this class is obtained. Some special cases ae
discussed. A specific range of parameter is found where the proposed class is optima. The
efficiency of the proposed estimator is compared with smilar non-imputed estimator and it is
found useful under missing observations setup.

K eywords: Imputation, Non-response, Pogt-stratification, Simple Random Sampling Without
Replacement (SRSWOR), Respondents (R).

1. Introduction

To estimate the population mean using auxiliary variable, many estimators are
available in literature like-ratio, product, regression, dual-to-ratio estimator and so on.
If some values of auxiliary variable are missing, none of the above estimators can be
used. In sampling theory, the problem of mean estimation of a population is considered
by many authors like Singh (1986), Singh and Singh (1991), Singh et al. (1994), Singh
and Singh (2001). Sometimes, in survey situations, a small part of sample remains non-
responded (or incomplete) due to many practical reasons. Techniques and estimation
procedures are needed to develop for this purpose. The imputation is a well defined
methodology by virtue of which this kind of problem could be partially solved. Ahmed
et a. (2006), Rao and Sitter (1995), Rubin (1976) and Singh and Horn (2000) have
given applications of various imputation procedures. Hinde and Chambers (1990)
studied the non-response imputation with multiple sources of non-response. The non-
response in sample surveys immensely looked into by Hansen and Hurwitz (1946),
Lesder and Kalsheek (1992), Khot (1994), Grover and Couper (1998) etc.

When the population is divided into two groups namely “response” and “non-
response”’ then the procedure is known as post-stratification. Estimation problem in
sample surveys, in the setup of post-dratification, under non-response situation is
studied due to Shukla and Dubey (2001, 2004, and 2006). Some other useful
contributions to this area are due to Smith (1991), Agrawa and Panda (1993), Shukla
and Trivedi (1999, 2001, 2006), Wywial (2001) and Shukla et a. (2002, 2006). When a
sampleis full of response over study variable but some of auxiliary values are missing,
it ishard to utilize the usual existing estimators. Traditionally, it is essential to estimate
those missing observations first by some specific estimation techniques. One can think
of utilizing the non-sampled part of the population in order to get estimates of missing
observations in the sample. These estimates could be imputed into actual estimation
procedures used for estimating the population mean. The content of this paper takes
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into account the similar aspect for non-responding values of the sample assuming post-
stratified setup and utilizing the auxiliary source of data.

1.1 Symbols and Setup

Let U= (U, Uy, e , Un) be afinite population of N units with Y as a study
variable and X an auxiliary variable. The population has two types of individuals like
N; as number of "respondents (R)" and N, "non-respondents (NR)", (N = N;+Ny). Their
population proportions are expressed like W, = Ni/N and W, = N, /N. Further, let
Y and X be the population means of Y and X respectively. The following notations are

used in this paper:

R- Respondents group (group of NR- | Non-respondents group or group of

group | those who respond during group | those who do not respond during
survey. survey.

Y, Population mean of R-group Y, Popul ation mean of NR-group of Y.
of Y.

X, Population mean of R-group X, Popul ation mean of NR-group of X.
of X.

s? Population mean square of S2, Population mean square of NR-group
R-group of Y. of Y.

S? Population mean square of S2, Population mean square of NR-group
R-group of X. of X.

Cy Coefficient of Variation of Y C,, | Coefficient of Variation of Y in NR-
in R-group. group.

c,, | Coefficient of Variation of X C,. | Coefficient of Variation of X in NR-
in R-group. group.

r Correlation Coefficient in n Sample size from population of size N
population between X and Y. by SRSWOR.

n, Post-stratified sample size n, Post-stratified sample size from NR-
coming from R-group. group.

A Sample mean of Y based on A Sample mean of Y based on n
n, observations of R-group. observations of NR-group.

X, Sample mean of X based on X, Sample mean of X based on n,
n, observations of R-group. observations of NR-group.

r, Correlation Coefficient r, Correlation Coefficient between study
between study variable Y variable Y and auxiliary variable X
and auxiliary variable X for for NR-group.

R-group.

Further, consider few more symbolic representations:

@16 €1  (N-n)i-w)o,

19 €1

(N-n)-w,)u

D, =E¢—== ; D,=E 11
: §n_15 anw, * N-nw g §n_2;, anw, * (N-1)nw? § (1.0)
7: val;sz : )?: Nl)_(l-'I;INz)?z (12)

2. Assumptions

The following assumptions are made before formulating an imputation based

estimation procedure :
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1. Thevauesof Nand nare known. Also, N; and N, are known by past data,
past experience or guess of theinvestigator (N;+ N, = N).

2. Other population parameters are assumed known, in either exact or in ratio
form except the Y, Y: and Y.

3. Thepopulation means X, and Xzare known.

4. The sample of size n is drawn by SRSWOR and post-stratified into two
groups of size n; and n, (n; + n; = n) according to R and NR group
respectively.

5. Theinformation about Y variable in sampleis completely available.

6. Thesamplemeans y, and y, of both groups are known such that
y = nlyl ';nzyz

7. The sample meanx of auxiliary variable for R-group is known, but the

information about X, of NR-group is missing. Therefore, the value of

whichis the sample mean on n units.

%=X can not be obtained due to absence of X, .
n

3. Proposed Class of Estimation Strategy

To edimate population mean Y the usual ratio, product and regression
estimators are not applicable when observations related to X, are missing. Singh and

Shukla (1987) have proposed a factor type estimator for estimating population meanY .
Shukla et a. (1991), Singh and Shukla (1993), Shukla (2002) have aso discussed
properties of factor-type estimators applicable for estimating population mean under
SRSWOR and Two-Phase Sampling. But all these cannot be useful due to unknown
informationx, . In order to solve this, animputation (%) is adopted as.

;(2* — ?NX-HXZE (31)
g N-n g

The logic for this imputation is to utilize the non-sampled part of the
population of X for obtaining an estimate of missing %, and generate X' as describe
below :

;(* — SN XN X !
é N, +N, U
& a

(32)

A proposed and class of imputed factor-type estimation strategy for estimating Y is:

o) = Byrny EArcXrex (33
& N FEa+rex+cx
where 0<k <¥ and k is a constant,
A=(k-1 (k-2); B=(k-1)(k—-4); C=(k-2)(k-3)(k—4); f=n/N

4. Large Sample Approximation
Consider the following for large n:

v.=Y0+e) V.=Vlve) X=X(+e) %=X(+e) (4.1)
where, g, e, e, and e, are very small numbersand || <1 (i = 1,2,3,4).
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Using the basic concept of SRSWOR and the concept of post-stratification of
the sample n into n; and n, [see Cochran (2005) Sukhatme et al. (1984)],we get

Ee):E[E(q)|nl]:0; ) =ElEe, |n] 0 fi

e)=glEle) [n]=0 )=lEle,) n.]=0 (4.2)

Assuming the independence of R-group and NR-group representation in the
sample, the following expression could be obtained:

eler] = eleler) n Egé_ Wﬁgng

-3 Egio- L Ecz 0=3b,- * &E 4.3)
elet]= eleler) o] = §3 %ECE (4.4)
Ee;]: E[E(%z) |n1] :?ﬁ %gclzxg (45)

and Elet]= %% %ECE (4.6)
Elee]=EE(ee) 0] = Egai %% CNCMJ E

= %%1 %gr 1CNCM§ (4.7)

Elee.]=EE(ee.) [n.n,] =0 (4.8)

Elee]=0 (4.9)

Elee]= E[E (ee) \nl n ] =0 (4.10)

Elee,]= g% N CaCa (4.12)

Elee,]=0 (4.12)

The expressions (4.8), (4.9), (4.10) and (4.12) are true under the assumption of
independent representation of R-group and NR-group units in the sample. This is
introduced to simplify mathematical expressions.

Theorem 4.1: The estimator (§/FT)kcouId be expressed under large sample
approximationsin following form:

V) =0 ¥ [1+s\Wier+sWoes][1+(a- b)es- (a- b)b ¢ + (a-b)b'el- (a-b)b’e+..]

(4.13)
Proof: Rewrite x asin (3.2):
X = SN FNL () Y where 3 = NX-nx.d
€ N, +N, [’ é N-n é
€ a
18 = INXenx i _
b = maugan Pu = X+ plt- r))+wine]= Xiv+wr ] (4.14)
NgT T N
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where,  p= i r= 20 p= 2t W= f=
Now, the estimator (_FT)k under large sample approximations (4.1) and using

(4.12) will be
(-FT)k - @Y N I%(Am)?ﬂ BX
& N Fla+rex+cx

=Wiry + p(l —frz).

oooc

é(A+ fBv +C)+ fBW re U

= Vheswe 2W€]"(A+fB+Cv)+CWre3 ~
= Y[1+sWe+sWe]eMu
&1y.&0
= pVfi+rswe +swe] (1+ae)(1+be)™ (4.15)
where, l//l—A+fBV+C ylz—fBerl l//3—A+fB+CV l//4—Cr1W1,
§= 2L = L a:y_; b:y_' d_y_l_
Y Y Y. Y, Y
We can further express (4.15) as:
(v.. )= d Y [1+ s Wier+ SWoes] [1+(a- b)es - (a- b)b & +(a- b)b? el .......]

(4.16)

5. Biasand Mean Squared Error
Using E(.) for expectation, B(.) for bias and M(.) for mean squared error, we
have to thefirst order of approximations fori,j=1,2, 3, .....

Elee] = Elee] =Efee] =0 when i+j>2 (5.1)

Theorem 5.1: To the first order of approxi mations, the bias of the estimator (§/FT )k of
Y is B ) - F A y 5.2
i (_FT) Ye(d -dc,f -b gb = E] Slwlrlcu}a (52

Proof: B yFT)k—E[fFT)k - V]
Taking expectationsin (4.16), we have
E yFT)k =dY E [1+ sWie+ S;Weey] [1+ (a- b)es - (@- b)ber+(a- b)bz e .......]

=d ?gl" (a -b )b ?1' %gclxz-"(a -b )%‘M?l' %%1C1VC1><3
é 2 ) a

=d ?g‘.' (a -b )&1' %gclx{b Cl)( - %\Nlrlclv}g
é 2 u

e

Therefore, Bly,.) = vdd -1-dc,f - b )gbii{b SsWr,C }
é Ng

1}

Theorem 5.2: The mean squared error of (_FT )k is
M yFT)kz?zg_(d ; 1)%%%1_%%&32% +K,C2 +2K S 1c1vclx}+§o -_jj 262N szu (5.3)
where, K, =dW?; K,=dfa -b Jdf -b)-2d -1b }; K, =wgd (2d -1)@a -b)
Proof : M yFT) = E[(_FT) - 7]2

=E[dY{1+sWe+sWe} {1+ (a- b)es- (a-b)be’ +(a- b)b* el ...} - Y]
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Using large sample approximations of (5.1), we have
M .) =Y E[@1)+d(a- bes- (a- b)b e + (sWaert sWoe)
+(@- b) (sWher + SVWe) e}
=" [(d- 1% +d* { (a- b)* Ele}) + sWEle?) + sWE() +2(a- b)sVAE(eres)}
+20(c- 1){- (a- b)bE(&; )+ (a- b)sWi E(eres)}]
[Using (4.2), (4.7) & (4.8)]

:vzg(d - ]_)2+g%1— igdZSchfv +d (a - b ){d (a -b )
é N g

11y Yix

-2 -1p ez +2d (2d -2l - b swr.c.C )+ gb -_jj 2SN szu

:( % - _glK %CZ + K2C12>< +2K3§I’ 1C1VC1><}+§% - _jj SZZVV szl:l
é

6. Some Special Cases
Theterm A, B and C are functions of k. In particular, there are some specia
Cases:
Casel : k=1=>A=0;B=0;C=-6;, y1=-6; w2=0; w3=- 6V, ys=-6rw
a=0 b= W, y-1. Kl_Wf_ K, = rW(B ) . © Kg= W (v-2) .
' v’ v

) VZ' )

The estimator (_FT) along with biasand m.s.e. under casel is:

o). = Nyt Noy, (X (6.1)
I ¥
B (—FT)< - YV 41 V)\/ g j W Cl)({ 1 1)( - Vslr 1C1Y}8| (6'2)
g

M Yer )kzl :VZVJg(l_ V)2V2 +\N12§)1 - %gvzslzclzv +(3_ 2V)r12clzx +2(V_ 2)vrlslr 1€ Cix
é 2]

+§Dz' i%lzwzzszz ;vg (63)
N g a
Casell : k=2=>A=0;B=-2,C=0; yy=-2f v, y,= -2f\Nr =-2f; wy=
a=tWyv';b=0;d=v; Kp=wa?; Ko=raw?; Ks -rlvvl (2v-1);
v..) = ewuéx_u (6.4)
é N HSX 1]
B yFT)H: Yév- 1)+gD - —gN rsr.C, Clxu (6.5)
é

Mo = Vv 9w - S o, +dav- B .G+ < dwesic g
e e 1] e ] 1]
(6.6)
Caselll : k=3=>A=2B=-2, C=0; y =2(1- fv); y =-2Wr; y_=2(1-f);
S @ MWL W
; 0

A= _1-fv.
V= 0as i b=E0d= o @- f)?
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- W21+ F(- 2v)

Ks= @ 1) )
6.). = BNy Ny, EX- P (6.7)
FT k= 8 N Eg(l f)X U
B Yer )k:3 = vf (1' f)rlg(l' V)' g%l_ iglerl%r 1C1VC1><8 (68)
é Ng @

M y) =1 1)* ef 1 v)aB-——V\f{( 'S +177C
é

Ao i mihisr .o - 20 fv)vmcz; (6.9)

CaselV:k=4=>A=6,B=0,C=0,y =6,y,=0;, y_ =6y, ,=0a=0,b=0
d:]., Kl:WZ'KZZO' K3:O;

(o) =gttt e (6.10)
g N @
Bly..).. =0 (6.11)
- 1 2022 1 _ 2022
\ Yer )k:4 _g%l - W%V\Il Y.Cy +§%z - WQNZ Y2C,, (612)

7. Estimator Without I mputation

Throughout the discussion, the value of X,is assumed unknown. This is
imputed by the term . to provide the generation of x . [See (3.1) & (3.2)]. Suppose
X, is known, then there is no need of imputation and the proposed estimators (3.2) and
(3.3) reduceinto:

% :ng %S (7.1)
4]
— 1 _aN,¥, +N,¥, &A+C)X + iBx¥ 0
(5.1 == (A Ko (7.2)

where, kisaconstant (0<k<¥)and
A=(kk-1) (k-2); B=(k-1) (k—4); C=(k-2) (k—3) (k—4); f=n/N.

Theorem 7.1: The estimator [(7,,),]. is biased for Y with the amount of bias
[ yFT ] 6/ -y )? - _gN rClX {%plclV Y Clx} g%z - %%N;I’ZCZX {Szr 2C2v -y érzczx }g

u
where y .= fBI(A+ fB+C) iy, =Cl/(A+B+C). (7.3

Proof: Theestimator [(y,),], may be approximated as:
5.).] _a\y, +N, g{m C)X + fo‘*)g
& N Karm)x+cx¥
=V +wie +wile ity (nre +wire) | By e +wire )
Expanding the above using binominal expansion, and ignoring (qke'j )terms for
(k+1)>2, (k,1=021,2..), (i, =1, 2 3, 4); the estimator results into
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(7).}, =¥ +Y(D,- D,) +W¥e @+D,- D )+w7 e(1+D,- D)) (7.4)
where, Dy = { -y ) Wre +Wre,) =y 6/ -y )(\N e +Wrefand Wiry +Wor, =1
holds.
Further, up to first order of approximation, one may derive the following:
() EIDJ=0; (i) Efp] = .-y )éNfrzg L e, Lo
u

(i) E[p,] =y b .-y )é/\/frlg% -—cz +W2r2g 9 ;XE;

u
(v) Eleo] = § v )wngh- 3 c.c.;

('j

(v) E[ezD] =f.-y )Wrg zczxczv;

(vi) E[gD,] = 0 [under o(n?) ; (vii) Ele,D,] = 0 [under o(n?)] ;
The bias of the estimator without imputation is
B[5.).]. =€)}, - ¥] =E§V(D,- D,)+WYe (1+D,- D,) +W\Y,e (14D, - D,)

:?6/ i_ y 2)%1 - iglvlzrlclx{%r 1C1V -y ‘zrlczx} +%2 - _gszrzczx {Szr zczv -y érzczx }l;|
i N g g N g u

Theorem 7.2 : The mean squared error of the estimator |(V,,),., is:
M) =¥ G- el by Frcs vashioy ) nrce

.- dufees by e sash oy Jercoeu (75)
Proof : M|V ) ). E[{(_FT) } - \?]2

- = >
M[(yFT )w]k = E[Y Dl_ D )+VV1Y1€1(1+ Dl_ D2)+VV2Y2€2(1+ Dl_ Dz)]
(D WAl W) 2 TE(ED ) +20, TV E(e )+ W Elee)

YFka:_: 1__-5.13 v TV =Y ) WG +28Y .-y, ) nrCy 1xg

M{(F. )] Y2§D ;SNZ{ 2+l sy Jreck +2sk Loy ) nrCaCl

2 u
+g%z - %%IVZZ{SZZCZZV +€/ ‘2_ y i)zrzzczzx +252€/ é' y 1)2 r,r zczvczx}é

Remark
Atk =1, k=2 k=3andk = 4, the biases and mean squared errors of non-
imputed estimators are given below :
Casel: k=1=> A=0; B=0;C=-6; y, =0y, =1;
- 2Ny, +N,y, geX 0
[mmL:gﬁisﬁ: : (7.6)

Ok
N "%

B[(VFT )w P ??1 - %%Allzrlclx{%r 1C1v 1 } gD gN r sz{szr sz I, zx}l:l (77)

_ & . u
M [(yFT )W]k:l :Y2§1 - %%Nf{sfcfv + rlzclzx - zslrl rlclvclx} g% gN {SZCZ + rZCZ - zszrz r zczvczx }l;]

u

(7.8)
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Casell : k=2=>A =0; B=—2; C=0,y,=1y,=0;
— _aNy, +N,y, X : 0
T o
B[(VFT )w]k:z :?%1 - igN Slrlr € Cy +% gN Sf,r .G, sz u
g Ng g a
M [(yFT )W]k:Z = 72?1 - %gAIlZ{SZClZV + rlZClZX + 2%"1 r lClVClX}

7]

L .
+?2 WO\NZ{SZCZ +12C2, +232r2rZCZYCZX}H
k=3

Caselll 3=> A=2,B=-2, C=0; y, =f(1H% y,=0;
v :‘;‘ﬂ\l Y1+Nzyz ?9)?_ WJQ
[(yFT)] g N %}(1_ f))?a

B[(VFT )w]k:3 =- ?f (l_ f )Vléﬁl - %%lerlslr 1C1VC1>< +g%z - %%N;I’ZSZI’ zczvczx §
M[(VFT )w]k:3 :Vz?l_ %gN {S1C2 (l' f)r2 f 2r12C12>< - ( ) fS1r1 1y 1x}
R R - SUALTESCS|

CaselV: k=4=> A_6 B=0; C=0,y. =0, y, =0;

[9.0).)... gN ;N yzg
B(y.).]...=0
V(3. )] :g\?g %%N $C2 + gD——gN Zvu

8. Numerical Illustration

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
(7.16)

(7.17)

Consider two artificial populations | and Il (given in Appendix A and B), each
of which is divided into R and NR-groups of sizes N; and N, respectively. Let the
samples of sizes 40 and 30 respectively from populations | and 1l drawn with

SRSWOR be post-stratified into R and NR-groups. Then, we have

Population | Population I

n =28 n,=12;n =40; f= 022 n =20, n,=10; n =40; f= 0.20

The values of population parameters for the two populations are given in

Table 8.1 and the values of biasand MSE are shown in Table 8.2.



Utilization of Non-Response Auxiliary Population Mean...

37

Entire Population R-group NR-group
| I | I | I
Size 180 150 100 920 80 60
Mean Y 159.03 63.77 173.60 66.33 | 140.81 59.92
Mean X 113.22 29.20 128.45 30.72 94.19 26.92
M.S Y 220518 | 299.87 | 2532.36 | 349.33 | 1219.90 | 206.35
M.S X 1972.61 | 11043 | 2300.86 | 11267 | 924.17 | 100.08
CV.Y 0.295 0.272 0.290 0.282 0.248 0.240
CV. X 0.392 0.360 0.373 0.345 0.323 0.372
Cor.Coeff. | 0.897 0.809 0.857 0.805 0.956 0.808
Table8.1: Parametersof Populations—I & Il givenin Appendix A & B.
Type of Description of the Population-I Population-11
Estimator estimator Bias MSE Bias MSE
Vo b -2.0 17.1255 | -2.3386 | 8.025
. ). 16628 | 2286822 | 26018 | 49.8306
(Yer )i V.. 1.4183 | 28.0158 | -0.6512 | 7.0054
v, e 0 43.64 0 9.2662
[).). 0.1433 | 129589 | 0.1095 | 6.0552
(V) ()] 03141 | 2163024 | 0.1599 | 46.838
Yer)w 5-).]. -05962 | 24.327 -0.031 | 5.2423
()] 0 43.64 0 9.2662

Table8.2: Biasand M.SE. Comparisons of (y,,), and (Ve),

The m.s.e. of the proposed imputed estimator is higher than that of non-
imputed estimator but both are very close. Obvioudly, the non-imputed estimator will
be better than the imputed estimator due to complete availability of information. The
proposed one is very near to the non-imputed estimator showing utility due to new
estimation technique in missing observation environment.

Define aterm LI as “percentage loss due to imputation” with formulation.

(L1), = eMEWerle 100

EMSE

Yer bl

The table 8.3 shows the variation of LI over k.

k (LD
Population - | Population-I|
k=1 | 132.1524203 132.5307
k=2 | 105.7233762 106.3893
k=3 | 115.1633987 133.6322
k=4 100 100
Table85: Variation of LI over k

(8.1)
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The percentage loss in MSE due to imputation is small and accomodable over
suitable choice of k. But at the same time, proposed one tackles and solves the problem
of missing observations aso.

9. Conclusions

As per table 8.2 and 8.3, the imputed class performs closer to the non-imputed
class of estimators over suitable choice of k. The over all comparative procedure shows
amost a closed performance of imputed factor-type estimator to the same without
imputation. The imputed factor-type class of estimators reveals a good potential for

utilizing the information X, in place of missingx.. The class presents efficient

member when k=1 and k = 3. The LI comparison shows that with alittle loss, one can
handle the non-responded observations effectively. Actually, the best choice of k is
suppose to be near to k = 1 or near to k = 3. It is worthwhile to say that the proposed
class contains estimators is effective for mean estimation even when some observations
of auxiliary variable X are missing (or non-responded).
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Appendix A: Population | (N=180)

R-group: (N;=100)
Y: 110 | 75 85 165 125 110 | 85 80 150 165 135 120 140 135 145
X: 80 40 55 130 | 85 50 35 40 110 115 | 95 60 70 85 115
Y: 200 135 120 165 150 160 165 145 215 150 145 150 150 195 190
X: 150 85 80 100 | 25 130 135 105 185 110 | 95 75 70 165 160
Y: 175 160 165 175 185 | 205 140 105 125 230 | 230 255 275 145 125
X: 145 110 135 145 155 175 | 80 75 65 170 170 190 | 205 105 | 8
Y: 110 110 120 230 220 | 280 275 220 145 155 170 195 170 185 195
X: 75 80 90 165 160 | 205 | 215 190 105 115 135 145 135 110 145
Y: 180 150 185 165 285 150 235 125 165 135 130 245 255 280 150
X: 135 110 135 115 125 | 205 100 195 | 85 115 75 190 205 210 105
Y: 205 180 150 205 220 | 240 260 185 150 155 115 115 220 215 230
X: 110 105 110 175 180 | 215 225 110 | 90 95 85 75 175 185 190
Y: 210 145 135 250 | 265 275 | 205 195 180 115
X: 170 | 85 95 190 | 215 200 165 155 150 175

NR-group: (N,=80)
Y: 85 75 115 165 140 | 110 | 115 13.5 120 125 120 150 | 145 90 105
X: 55 40 65 115 90 55 60 65 70 75 80 120 | 105 45 65
Y: 110 90 155 | 130 120 95 100 125 140 155 160 145 90 90 95
X: 70 60 85 95 80 55 60 75 90 105 125 95 45 55 65
Y: 115 140 | 180 | 170 175 190 | 160 155 175 195 90 90 80 90 80
X: 75 105 120 115 125 135 110 115 135 145 45 55 50 60 50
Y: 105 125 110 | 120 130 145 | 160 170 180 "145 | 130 195 | 200 | 160 110
X: 65 75 70 80 85 105 110 115 130 95 65 135 130 115 55
Y: 155 190 | 150 | 180 | 200 | 160 | 155 170 195 200 150 165 | 155 | 180 | 200
X: 115 130 | 110 | 120 125 | 145 | 120 105 100 95 90 105 | 125 | 130 145
Y: 160 155 | 170 | 195 | 200
X: 120 115 | 120 | 135 150

Appendix B : Population Il (N=150)
R-group (N;=90)

Y: 90 75 70 85 95 55 65 80 65 50 45 55 60 60 95
X: 30 35 30 40 45 25 40 50 35 30 15 20 25 30 40
Y: 100 40 45 55 35 45 35 55 85 95 65 75 70 80 65
X: 50 10 25 25 10 15 10 25 35 55 35 40 30 45 40
Y: 90 95 80 85 55 60 75 85 80 65 35 40 95 100 55
X: 40 50 35 45 35 25 30 40 25 35 10 15 45 45 25
Y: 45 40 40 35 55 75 80 80 85 55 45 70 80 90 55
X: 15 15 20 10 30 25 30 40 35 20 25 30 40 45 30
Y: 65 60 75 75 85 95 90 90 45 40 45 55 60 65 60
X: 25 40 35 30 40 35 40 35 15 25 15 30 30 25 20
Y: 75 70 40 55 75 45 55 60 85 55 60 70 75 65 80
X: 25 20 35 30 45 10 30 25 40 15 25 30 35 30 45

NR-group (N,=60)
Y: 40 90 95 70 60 65 85 55 45 60 65 60 55 55 45
X: 10 30 30 30 25 30 40 25 15 20 30 30 35 25 20
Y: 65 80 55 65 75 55 50 55 60 45 40 75 75 45 70
X: 35 45 30 30 40 15 15 20 30 15 10 40 45 10 30
Y: 65 70 55 35 35 50 55 35 55 60 30 35 45 55 65
X: 30 40 30 10 15 25 30 15 20 30 10 20 15 30 30
Y: 75 65 70 65 70 45 55 60 85 55 60 70 75 65 80
X: 30 35 40 25 45 10 30 25 40 15 25 30 35 30 45




