
Journal of Reliability and Statistical Studies (ISSN: 0974-8024)
Vol. 2, Issue 1(2009): 28 - 40

UTILIZATION OF NON-RESPONSE AUXILIARY
POPULATION MEAN IN IMPUTATION FOR MISSING

OBSERVATIONS

D. Shukla1 , Narendra Singh Thakur 2  and Dharmendra Singh Thakur 3
Deptt. of Maths and Stats., Dr. Harisingh Gour University, Sagar (M.P.), India.

E mail: 1. diwakarshukla@rediffmail.com,   2. nst_stats@yahoo.co.in

Abstract
This paper presents an imputation based factor-type class of estimation strategy for

estimating population mean in presence of missing values of auxiliary variable. The non-sampled
part of population is used as an imputation technique in the form of a proposed class of
estimators. The bias and mean squared error of this class is obtained. Some special cases are
discussed. A specific range of parameter is found where the proposed class is optimal. The
efficiency of the proposed estimator is compared with similar non-imputed estimator and it is
found useful under missing observations setup.
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1. Introduction
 To estimate the population mean using auxiliary variable, many estimators are
available in literature like-ratio, product, regression, dual-to-ratio estimator and so on.
If some values of auxiliary variable are missing, none of the above estimators can be
used. In sampling theory, the problem of mean estimation of a population is considered
by many authors like Singh (1986), Singh and Singh (1991), Singh et al. (1994), Singh
and Singh (2001). Sometimes, in survey situations, a small part of sample remains non-
responded (or incomplete) due to many practical reasons. Techniques and estimation
procedures are needed to develop for this purpose. The imputation is a well defined
methodology by virtue of which this kind of problem could be partially solved. Ahmed
et al. (2006), Rao and Sitter (1995), Rubin (1976) and Singh and Horn (2000) have
given applications of various imputation procedures. Hinde and Chambers (1990)
studied the non-response imputation with multiple sources of non-response. The non-
response in sample surveys immensely looked into by Hansen and Hurwitz (1946),
Lessler and Kalsbeek (1992), Khot (1994), Grover and Couper (1998) etc.

 When the population is divided into two groups namely “response” and “non-
response” then the procedure is known as post-stratification. Estimation problem in
sample surveys, in the setup of post-stratification, under non-response situation is
studied due to Shukla and Dubey (2001, 2004, and 2006). Some other useful
contributions to this area are due to Smith (1991), Agrawal and Panda (1993), Shukla
and Trivedi (1999, 2001, 2006), Wywial (2001) and Shukla et al. (2002, 2006). When a
sample is full of response over study variable but some of auxiliary values are missing,
it is hard to utilize the usual existing estimators. Traditionally, it is essential to estimate
those missing observations first by some specific estimation techniques. One can think
of utilizing the non-sampled part of the population in order to get estimates of missing
observations in the sample. These estimates could be imputed into actual estimation
procedures used for estimating the population mean. The content of this  paper takes
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into account the similar aspect for non-responding values of the sample assuming post-
stratified setup and utilizing the auxiliary source of data.

1.1 Symbols and Setup
Let U = (U1, U2 , ........., UN) be a finite population of N units with Y as a study

variable and X an auxiliary variable. The population has two types of individuals like
N1 as number of "respondents (R)" and N2 "non-respondents (NR)", (N = N1+N2). Their
population proportions are expressed like W1 = N1/N and W2 = N2 /N. Further, let
Y and X  be the population means of Y and X respectively. The following notations are
used in this paper:

R-
group

Respondents group (group of
those who respond during
survey.

 NR-
group

Non-respondents group or group of
those who do not respond during
survey.

1Y Population mean of R-group
of Y.

2Y Population mean of NR-group of Y.

1X Population mean of R-group
of X.

2X Population mean of NR-group of X.

2
1YS Population mean square of

R-group of Y.
2
2YS Population mean square of NR-group

of Y.
2
1XS Population mean square of

R-group of X.
2
2 XS Population mean square of NR-group

of X.
YC1 Coefficient of Variation of Y

in R-group.
YC2 Coefficient of Variation of Y in NR-

group.
XC1 Coefficient of Variation of X

in R-group.
XC2 Coefficient of Variation of X in NR-

group.
ρ Correlation Coefficient in

population between X and Y.
  n Sample size from population of size N

by SRSWOR.
1n  Post-stratified sample size

coming from R-group.
2n  Post-stratified sample size from NR-

group.
1y  Sample mean of Y based on

n1 observations of R-group.
2y  Sample mean of Y based on n2

observations of NR-group.
1x  Sample mean of X based on

n1 observations of R-group.
2x  Sample mean of X based on n2

observations of NR-group.
1ρ  Correlation Coefficient

between study variable Y
and auxiliary variable X for
R-group.

2ρ  Correlation Coefficient between study
variable Y and auxiliary variable X
for NR-group.

Further, consider few more symbolic representations:
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2.  Assumptions
 The following assumptions are made before formulating an imputation based
estimation procedure :
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1. The values of N and n are known. Also, N1 and N2 are known  by past data,
past experience or guess of the investigator (N1 + N2 = N).

2. Other population parameters are assumed known, in either exact or in ratio
form except the Y , 1Y  and 2Y .

3. The population means 1X  and 2X are known.
4. The sample of size n is drawn by SRSWOR and post-stratified into two

groups of size n1 and n2 (n1 +  n2 = n) according to R and NR group
respectively.

5. The information about Y variable in sample is completely available.
6.    The sample means 1y  and 2y  of both groups are known such that

2211

n
ynyny +

=  which is  the sample mean on n  units.

7. The sample mean 1x of auxiliary variable for R-group  is known, but  the
information about 2x of NR-group is missing.  Therefore, the value of

2211

n
xnxnx +

= can not be obtained due to absence of 2x .

3. Proposed Class of Estimation Strategy
To estimate population mean Y  the usual ratio, product and regression

estimators are not applicable when observations related to 2x are missing.  Singh and
Shukla (1987) have proposed a factor type estimator for estimating population mean Y .
Shukla et al. (1991), Singh and Shukla (1993), Shukla (2002) have also discussed
properties of factor-type estimators applicable for estimating population mean under
SRSWOR and Two-Phase Sampling. But all these cannot be useful due to unknown
information 2x . In order to solve this, an imputation ( )*

2x  is adopted as:

*2x   =
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The logic for this imputation is to utilize the non-sampled part of the
population of X for obtaining an estimate of missing 2x  and generate *x  as describe
below :
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A proposed and class of imputed factor-type estimation strategy for estimating Y is:

( )kFTy = ( )
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where ∞<< k0 and k is a constant,
A = (k – 1) (k – 2 ); B = (k – 1) (k – 4); C = (k – 2) (k – 3) (k – 4); f = n / N

4.  Large Sample Approximation
Consider the following for large n:

( ) ( ) ( ) ( )422311222111 1;1;1;1 eXxeXxeYyeYy +=+=+=+=        (4.1)
where, 1e , 2e , 3e  and 4e are very small numbers and 1<ie  (i = 1,2,3,4).
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Using the basic concept of SRSWOR and the concept of post-stratification of
the sample n into n1 and n2 [see Cochran (2005), Sukhatme et al. (1984)],we get

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] 
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Assuming the independence of R-group and NR-group representation in the
sample, the following expression could be obtained:
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[ ] ( )[ ] 0,EEE 212121 == nneeee                                         (4.8)
[ ] 0E 41 =ee                                       (4.9)
[ ] ( )[ ] 0,EEE 213232 == nneeee                                                (4.10)

[ ] XYCC
N

Dee 222242

1E ρ






 −=                        (4.11)

[ ] 0E 43 =ee                                                       (4.12)
The expressions (4.8), (4.9), (4.10) and (4.12) are true under the assumption of

independent representation of R-group and NR-group units in the sample. This is
introduced to simplify mathematical expressions.

Theorem 4.1: The estimator ( )kFTy could be expressed under large sample
approximations in following form:

( )kFTy =δ Y [1+s1W1e1+s2W2e2][1+(α−β)e3−(α−β)β 2
3e  + (α−β) 3

3
2eβ − (α−β) 4

3
3eβ +...]

                                                                                                                            (4.13)
Proof: Rewrite *

x as in (3.2):
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where, p =
nN

N
−

2 ; r1=
X
X 1 ; r2 =

X
X 2 ; W1 =

N
N1 ; f =

N
n ; v = W1r1 + p(1 – fr2).

Now, the estimator ( )kFTy  under large sample approximations (4.1) and using
(4.12) will be
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  = δ2 [ ]2221111 eWseWsY ++ (1 + αe
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)(1 + βe

3
)-1                                      (4.15)

where, 1 = A + fBv + C; 2 = fBW1r1 ; 3 = A + fB + Cv; 4 = Cr1W1 ;

s1 =
Y

Y1 ; s2 =
Y

Y2 ; α =
1

2

ψ
ψ

; β =
3

4

ψ
ψ ; δ =

3

1

ψ
ψ .

We can further express (4.15)  as:
( )kFTy = δ Y [1 + s1W1e1+ s2W2e2] [1+(α − β)e3 − (α − β) β 2

3e   + (α − β) 2β 3
3e − .....…..]

                                                                                                                               (4.16)

5.  Bias and Mean Squared Error
 Using E(.) for  expectation, B(.) for bias and M(.) for mean squared error, we
have to the first order of approximations  for i, j = 1, 2, 3, .....

[ ]jiee 21E = [ ]jiee 31E = [ ] 0E 32 =ji ee    when i + j > 2              (5.1)
Theorem 5.1: To the first order of approximations, the bias of the estimator ( )kFTy  of

Y  is             B ( )kFTy = ( ) ( ) { }











−








−−−− YXX CWsC

N
DCY 1111111

11 ρββαδδ             (5.2)

Proof:     B ( )kFTy = E[ ( )kFTy − Y ]
 Taking expectations in (4.16), we have
   E ( )kFTy = δ Y E [1+ s1W1e1+ s2W2e2] [1 + (α − β)e3 − (α − β) β 2

3e +(α − β) 2β 3
3e …....]
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Theorem 5.2: The mean squared error of ( )kFTy is

M ( )kFTy = ( ) { } 
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where, 2
1

2
21 WK δ= ; ( ) ( ) ( ){ }βδβαδβαδ 122 −−−−=K ; ( )( )βαδδ −−= 1213 WK

Proof : M ( )kFTy =  E[ ( )kFTy − Y ]
2

      = E [δ Y {1 + s1W1e1 + s2W2e2}{1+ (α − β)e3 − (α −β)β 2
3e +(α − β) 2β 3

3e ….} − Y ]
2
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Using large sample approximations of (5.1), we have
M ( )kFTy    =

2

Y E [(δ−1) + δ{(α − β)e3 − (α− β)β 2
3e  + (s1W1e1+ s2W2e2)

                       + (α− β) (s1W1e1 + s2W2e2) e3}]
2

                =
2

Y [(δ −1)2 + 2δ {(α−β)2 ( )2
3eE + ( )2

1
2

1
2
1 eEWs + ( )2

2
2

2
2
2 eEWs +2(α− β)s1W1E(e1 e3)}

       + 2δ(δ−1){−(α − β)β E( 2
3e ) + (α− β)s1W1 E(e1e3 )}]

                                                                                   [Using (4.2), (4.7) & (4.8)]
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6. Some Special Cases
The term A, B and C are functions of k. In particular, there are some special

cases:
Case I : k = 1 => A = 0; B = 0; C = − 6;    1 = −6;  2 = 0;  3 = − 6v;  4 = −6r1w1

α = 0; β =
v
Wr 11 ; δ =

v
1 ;    K1 =

2

2
1

v
W ; K2 =

4

2
1

2
1 )23(

v
vWr − ; K3 =

3

2
11 )2(

v
vWr − ;

The estimator ( )kFTy along with bias and m.s.e. under case I is:
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Case II : k = 2 => A = 0; B = −2; C = 0; 1= −2f v; 2 = −2fW
1
r

1
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Case III : k = 3 => A = 2; B = −2; C = 0;
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Case IV : k = 4 =>  A = 6; B = 0; C = 0;
 1
= 6;

 2
= 0;

 3
= 6;

 4
= 0; α = 0; β = 0;

δ = 1; K1 = 2
1W ; K2= 0; K3 = 0;
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 B ( ) 4=kFTy = 0                                (6.11)

V ( ) 4=kFTy   = 2
2

2

2
2

22
2

1

2

1
2

11 .1.1
YY CYW

N
DCYW

N
D 







 −+






 −                            (6.12)

7.   Estimator Without Imputation
Throughout the discussion, the value of 2x is assumed unknown. This is

imputed by the term *
2x to provide the generation of *x . [See (3.1) & (3.2)]. Suppose

2x is known, then there is no need of imputation and the proposed estimators (3.2) and
(3.3) reduce into :
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where, k is a constant  (0 < k < ∞) and
A = (k – 1) (k – 2); B = (k – 1) (k – 4); C = (k – 2) (k – 3) (k – 4); f = n/N.

Theorem 7.1: The estimator ( )[ ]kwFTy is biased for Y with the amount of bias
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where ( )CfBAfB ++= /'
1ψ ; ( )CfBAC ++= /'

2ψ .                                                    (7.3)
Proof:  The estimator ( )[ ]kwFTy  may  be approximated as :
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Expanding the above using binominal expansion, and ignoring ( )l
j

k
i ee terms for

(k + l )>2,  (k, l = 0,1,2 ....), (i, j = 1, 2, 3, 4 ); the estimator results into
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( )[ ] ( ) ( )212222111121 11)( ∆−∆++∆−∆++∆−∆+= eYWeYWYYy kwFT                  (7.4)
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Further, up to first order of approximation, one may derive the following:
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The bias of the estimator without imputation is
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Theorem 7.2 : The mean squared error of the estimator ( )[ ]kwFTy  is :
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Remark
 At k = 1, k = 2, k = 3 and k = 4, the biases and mean squared errors of  non-
imputed estimators are given below :
Case I : k = 1 => A = 0 ; B = 0 ; C = - 6 ; '

1ψ  = 0; '
2ψ  = 1;
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Case II : k = 2 => A = 0; B = –2; C = 0; '
1ψ  = 1; '

2ψ = 0;
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Case III : k = 3 =>  A = 2; B = –2; C = 0; '
1ψ  = -f (1-f)-1; '

2ψ = 0;
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Case IV: k = 4 =>  A = 6 ; B = 0 ; C = 0; '
1ψ = 0; '

2ψ = 0;
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8.    Numerical Illustration
Consider two artificial populations I and II (given in Appendix A and B), each

of which is divided into R and NR-groups of sizes N1 and N2 respectively. Let the
samples of sizes 40 and 30 respectively from populations I and II drawn with
SRSWOR be post-stratified into R and NR-groups. Then, we have

               Population I                                                  Population  II
1 228; 12n n= = ; n  = 40; f = 0.22 1 220; 10n n= = ; n  = 40; f = 0.20

 The values of population parameters  for the two populations are given in
Table 8.1 and the values of bias and  MSE  are shown in Table 8.2.
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Entire Population R-group NR-group
I II I II I II

Size 180 150 100 90 80 60
Mean Y 159.03  63.77 173.60  66.33 140.81  59.92
Mean X 113.22  29.20 128.45  30.72 94.19  26.92
M.S. Y 2205.18  299.87 2532.36  349.33 1219.90  206.35
M.S. X 1972.61  110.43 2300.86  112.67 924.17  100.08
C.V. Y 0.295  0.272 0.290  0.282 0.248  0.240
C.V. X 0.392  0.360 0.373  0.345 0.323  0.372
Cor.Coeff. 0.897  0.809 0.857  0.805 0.956  0.808

Table 8.1:  Parameters of Populations – I & II  given in  Appendix A & B.

Population-I Population-IIType of
Estimator

Description of the
estimator Bias MSE Bias MSE

( ) 1=kFTy -2.0 17.1255 -2.3386 8.025

( ) 2=kFTy 1.6628 228.6822 2.6018 49.8306

( ) 3=kFTy 1.4183 28.0158 -0.6512 7.0054kFTy )(
( ) 4=kFTy 0 43.64 0 9.2662

( )[ ] 1=kwFTy 0.1433 12.9589 0.1095 6.0552
( )[ ] 2=kwFTy 0.3141 216.3024 0.1599 46.838
( )[ ] 3=kwFTy -0.5962 24.327 -0.031 5.2423wFTy )(

( )[ ] 4=kwFTy 0 43.64 0 9.2662
Table 8.2:  Bias and M.S.E. Comparisons of ( )kFTy  and ( )wFTy

The m.s.e. of the proposed imputed estimator is higher than that of non-
imputed estimator but both are very close. Obviously, the non-imputed estimator will
be better than the imputed estimator due to complete availability of information. The
proposed one is very near to the non-imputed estimator showing utility due to new
estimation technique in missing observation environment.

Define a term LI as “percentage loss due to imputation” with formulation.

( ) ( )
( ) 100×












=

wFT

kFT
k yMSE

yMSE
LI                         (8.1)

The table 8.3 shows the variation of LI over k.

(LI)kk
Population –I Population-II

k = 1 132.1524203 132.5307
k = 2 105.7233762 106.3893
k = 3 115.1633987 133.6322
k = 4 100 100

Table 8.5: Variation of LI over k
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The percentage loss in MSE due to imputation is small and accomodable over
suitable choice of k. But at the same time, proposed one tackles and solves the problem
of missing observations also.

9.  Conclusions
As per table 8.2 and 8.3, the imputed class performs closer to the non-imputed

class of estimators over suitable choice of k. The over all comparative procedure shows
almost a closed performance of imputed factor-type estimator to the same without
imputation. The imputed factor-type class of estimators reveals a good potential for
utilizing the information 2X  in place of missing 2x . The class presents efficient
member when k = 1 and k = 3. The LI comparison shows that with a little loss, one can
handle the non-responded observations effectively. Actually, the best choice of k is
suppose to be near to k = 1 or near to k = 3. It is worthwhile to say that the proposed
class contains estimators is effective for mean estimation even when some observations
of auxiliary variable X are missing (or non-responded).
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Appendix A:  Population I (N= 180)
R-group: (N1=100)

Y: 110 75 85 165 125 110 85 80 150 165 135 120 140 135 145
X: 80 40 55 130 85 50 35 40 110 115 95 60 70 85 115
Y: 200 135 120 165 150 160 165 145 215 150 145 150 150 195 190
X: 150 85 80 100 25 130 135 105 185 110 95 75 70 165 160
Y: 175 160 165 175 185 205 140 105 125 230 230 255 275 145 125
X: 145 110 135 145 155 175 80 75 65 170 170 190 205 105 85
Y: 110 110 120 230 220 280 275 220 145 155 170 195 170 185 195
X: 75 80 90 165 160 205 215 190 105 115 135 145 135 110 145
Y: 180 150 185 165 285 150 235 125 165 135 130 245 255 280 150
X: 135 110 135 115 125 205 100 195 85 115 75 190 205 210 105
Y: 205 180 150 205 220 240 260 185 150 155 115 115 220 215 230
X: 110 105 110 175 180 215 225 110 90 95 85 75 175 185 190
Y: 210 145 135 250 265 275 205 195 180 115
X: 170 85 95 190 215 200 165 155 150 175

NR-group: (N2=80)
Y: 85 75 115 165 140 110 115 13.5 120 125 120 150 145 90 105
X: 55 40 65 115 90 55 60 65 70 75 80 120 105 45 65
Y: 110 90 155 130 120 95 100 125 140 155 160 145 90 90 95
X: 70 60 85 95 80 55 60 75 90 105 125 95 45 55 65
Y: 115 140 180 170 175 190 160 155 175 195 90 90 80 90 80
X: 75 105 120 115 125 135 110 115 135 145 45 55 50 60 50
Y: 105 125 110 120 130 145 160 170 180 `145 130 195 200 160 110
X: 65 75 70 80 85 105 110 115 130 95 65 135 130 115 55
Y: 155 190 150 180 200 160 155 170 195 200 150 165 155 180 200
X: 115 130 110 120 125 145 120 105 100 95 90 105 125 130 145
Y: 160 155 170 195 200
X: 120 115 120 135 150

Appendix B :  Population II (N=150)
  R-group (N1=90)

Y: 90 75 70 85 95 55 65 80 65 50 45 55 60 60 95
X: 30 35 30 40 45 25 40 50 35 30 15 20 25 30 40
Y: 100 40 45 55 35 45 35 55 85 95 65 75 70 80 65
X: 50 10 25 25 10 15 10 25 35 55 35 40 30 45 40
Y: 90 95 80 85 55 60 75 85 80 65 35 40 95 100 55
X: 40 50 35 45 35 25 30 40 25 35 10 15 45 45 25
Y: 45 40 40 35 55 75 80 80 85 55 45 70 80 90 55
X: 15 15 20 10 30 25 30 40 35 20 25 30 40 45 30
Y: 65 60 75 75 85 95 90 90 45 40 45 55 60 65 60
X: 25 40 35 30 40 35 40 35 15 25 15 30 30 25 20
Y: 75 70 40 55 75 45 55 60 85 55 60 70 75 65 80
X: 25 20 35 30 45 10 30 25 40 15 25 30 35 30 45

NR-group (N2=60)
Y: 40 90 95 70 60 65 85 55 45 60 65 60 55 55 45
X: 10 30 30 30 25 30 40 25 15 20 30 30 35 25 20
Y: 65 80 55 65 75 55 50 55 60 45 40 75 75 45 70
X: 35 45 30 30 40 15 15 20 30 15 10 40 45 10 30
Y: 65 70 55 35 35 50 55 35 55 60 30 35 45 55 65
X: 30 40 30 10 15 25 30 15 20 30 10 20 15 30 30
Y: 75 65 70 65 70 45 55 60 85 55 60 70 75 65 80
X: 30 35 40 25 45 10 30 25 40 15 25 30 35 30 45


