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Abstract
This paper presents the development of weighted least squares (WLS) method in

regression modeling when  data are characterized by a high degree of heteroscedasticity in the
response variable. An algorithm is developed to obtain the weighting parameter in the WLS
model. Tests for coincidence and parallelism in the WLS model are studied. Finally results are
demonstrated empirically by modeling the effect of age, body mass index and sex, on Peak
Expiratory Flow Rate (PEFR).
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1. Introduction
Model fitting by unweighted least squares is efficient if errors besides being

normal are independent and have constant variance. It sometimes happens that the
variances of the observations are not all equal i.e data exhibit a phenomenon called
heteroscedasticity. Regression modeling in the presence of heteroscedasticity has been
extensively dealt with in literature (Theil, [18]; Draper and Smith, [8]).
Heteroscedasticity is generally viewed as no more than a hindrance to the correct
estimation of regression coefficients. However its analysis also provides investigators
with significant information, about the structure of data that would ordinarily go
undetected, as well as evidence of model misspecification.

Power Transformations (Box and Cox, [4]) and weighted least square (WLS)
techniques are used when the assumption of constant error variance in the linear model
is violated. An advantage of the weighted least squares approach is that it can be used
irrespective of the fact that heteroscedasticity was inherent in the data or was induced
by transformation.

Usually, in an empirical analysis, the weights are not known and have to be
generated by a “combination of prior knowledge, intuition, and evidence” (p.101,
Chatterji, [6]). Here we have presented a method for finding the weights in weighted
least squares analysis when the variance of the fitted response variable is a function of
its expected value. The method is applied to data for the study of peak expiratory flow
(PEF) for healthy men and women. The residuals obtained from the WLS model are
used to assess the validity of our model. Peak expiratory flow is a useful and simple
parameter for assessing the lung function status of a person in the general population
and for making diagnosis and treating patients with bronchial asthma and chronic
obstructive lung disease. Many studies on peak expiratory flow in the general
population had been carried out (Selby and Read ,[17]; Johannson and Erasmos, [12];
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Woolcock et al., [20]; Gregg, [10]; Raju et al., [15], [16]). These studies have used
multiple regression analysis to explore the relationship between PEFR and age, height,
and weight. However, these studies have failed to account for the presence of
heteroscedasticity in PEFR. So there is a need to study lung function data from healthy
population to establish physiological norms to predict peak expiratory flow values in
people of different age, height, weight and sex group by using weighted least squares
regression model. We also intend to assess whether separate regression models are
required to predict PEFR for males and females and instead of height and weight, we
use body mass index (BMI), a quantity that is calculated using height and weight
measurements.

2. Methods
We have the linear model
                   y = η + ε                                                 (1)
where y = (y1,y2,…….,yn)’ is  n x 1 vector of independent observations and  V(yi) = ci

2

  The original variable yi is transformed such that the variance of transformed
variable    g(yi) is constant. In particular,
  V{g(yi)} = 2                                                (2)
Now the variance of original variable yi can be expressed as (p.88-92, Kendall & Stuart,
[13])
  V(yi) 2

i
2-2                                    (3)

where i = E(yi) is the mean response and  is termed as the weighting parameter. So
the weights wi for the least square analysis are chosen as inversely proportional to
V(yi):
  wi = i

-2.                                  (4)
In practice i is unknown and is replaced by the fitted value iy  of  yi.

3. Evaluating the weighting parameter 
We assume that i =  Xi ,  where  Xi is 1 × p vector (xi1,  xi2,…..,xip) of

predictor variables and  is p × 1 vector of regression parameters. The normality
assumption for yi gives likelihood function.
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                   (5)

where X is n × p matrix consisting of  vectors Xi (i = 1,2,….,n) and W is n × n diagonal
matrix consisting of elements wi (i = 1,2,…..,n). We can find the maximum-likelihood
estimates in two steps. First, for given , (5) is, except for a constant factor, the
likelihood for a weighted least-squares problem. Hence the maximum-likelihood
estimates of ’s are the weighted least square estimates ( ) WyXWXX ′

−
′=

1
β and the

estimate of  2 is:
2 1( ) / /y W WX X WX X W y n S nσ − ′ ′ ′= − =  

                   (6)

           where S is the residual sum of squares.
           Thus for fixed , the maximized log likelihood is, except, for a constant,

( ) 2 2 2(1/ 2) log ( / 2) log
1

n
L y nii

λλ σ−= −∑
=

                                          (7)
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It will now be informative to plot L( ) against  for a trial series of values.

From this plot the maximizing value λ  may be read off. Alternatively λ  can be
obtained iteratively as follows (Box and Hill, [5] ):
(i)   initially, substitute yi for i in equation (4) for wi;
(ii)  select a ;
(iii) calculate β , the weighted least squares estimate of , and hence calculate L( )
using (7);
(iv) repeat (ii) and (iii) until finding a value λ  that maximizes L( );
(v)  corresponding to maximizing value λ  find βiXiy =  and substitute for i in equation
(4) for wi, return to (ii) and start new iteration. Stop operation, when two consecutive
iterations give a common value for λ .
 In most of the cases, the iterative process converges in four or five steps.

5. A Study of PEFR
The present study was carried out on 772 non-smoking healthy persons from

North India in the age-group 19-60 years.. Out of these, 618 were males and 154
females. Table- 1 gives the baseline characteristics of the variables classified by sex.
All the variables, except for PEFR do not differ significantly among males and females
(Table-1). The objective is to get the best representation of the relationship between
PEFR and the demographic variables (Age, BMI and Sex,).

Male (618)
Mean, S.D

Female (154)
Mean, S.D

t-statistic,
p -value

        Age  33.2, 12.3 31.9, 11.4 1.12, 0.26

        BMI 21.3, 3.37 21.4, 5.9 -0.17, 0.865

PEFR 464.2, 104.2 389.9, 84.5 8.42, <0.001
Table 1: Comparison of baseline characteristics of persons by sex

The violation of the constant variance assumption can be easily depicted when
Var(y) is plotted against age (one of the predictors). The graph is shown in Figure 1.
The ratio of maximum of Var(y) to minimum of Var(y) for age is approximately 50 to
1. Similar kinds of differences in variances of response variable PEFR were found for
other predictor variables. Hence it is evident that weighting is needed for efficient least
squares estimation.

Comparison of Coefficients
      We started with the full model

( * ) ( * )0 1 2 3 4 5y Age BMI Sex Age Sex BMI Sexβ β β β β β= + + + + + + 

                                                                                                                        (8)
where dependent variable y is PEFR.  An unweighted   least squares analysis (OLS)
was performed on the data, leading to the estimates of parameters shown in column 2 of
Table 2.
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To proceed with the analysis using the proposed algorithm, the weights were
obtained  using equation (4).  A converged  estimate  of power parameter, λ =1.85  was
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Figure 1: Plot of Var(y) against predictor age

achieved in three iterations. The results of weighted linear least squares analysis (WLS)
are shown in column 3 of Table 2. One of the regression parameter estimates ( 3β ) has
significantly different values. But the differences in the estimates of other parameters
are not dramatic in the two methods (OLS and WLS) of solution.

Parameter
Estimates

λ 0β 1β 2β 3β 4β 5β

Unweighted   1 503.607  -3.143  -0.72   -8.5 -1.003   5.7
Weighted   1.85  504.82  -3.13  -0.79   -2.64 -0.71   5.01

Table 2. Least squares results for 618 males (OLS and WLS)

Model Choice
  The tests of coincidence and parallelism (Kleinbaum et al., [14]) are used to
test if separate models are required for males and females. Test of coincidence implies
testing for the reduced model which does not contain the interaction of the variable
“Sex” with other independents. If the test of coincidence hypothesis is rejected,
indicating that inclusion of variable ‘Sex” and its interactions are important, then a test
of parallelism would be used to ascertain whether separate models for males and
females are necessary.

(a) Test for coincidence
    The null hypothesis is

H0: 3 4 5=0
This is to test for the reduced WLS model

0 1 2y Age BMIβ β β ε= + + +

The weighting parameter being used is λ =1.85.
The F(2,769) value=31.24968,  p-value<0.0001,  hence the hypothesis for coincidence is
rejected.
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b) Test for parallelism
In the OLS model the test for parallelism using dummy variable for sex is not

valid as the variances for the males and females are not equal. Proceeding to test for
parallelism in our WLS model, the hypothesis is

H0: 4 5=0
We are thus testing for the reduced model

0 1 2 3y Age BMI Sexβ β β β ε= + + + +

The weighting parameter being used is λ =1.85.
The F(2,768) value=1.936, p-value=0.145, hence the hypothesis for parallelism is

accepted and we conclude that the regression planes are parallel. A practical
interpretation of the result leads us to the conclusion that the WLS model for males and
females will differ only in the intercept term.

A re-estimation of the weighting parameter is now required for a single model
for both sexes. The estimate obtained from the Fortran program converged at the third
iteration yielding λ =1.9.

Using the above estimate the following WLS model will be valid for both
sexes (both factors of the variable “sex”):

435.95 3.77 3.34 82.48y Age BMI Sex ε= − + + +                                         (9)

Validation of assumptions
Model fitting is incomplete without regression diagnostics (Anscombe, [1];

Atkinson, [2]). Such techniques are employed to validate the underlying assumptions
and to assess the accuracy of computations for a multiple regression analysis.
Regression diagnostics are performed with the help of residuals of fitted model
(Atkinson, [3]; Cook, [7]; Tsai and Xizhi, [19]). Here, it is especially required to
illustrate the necessity of weighting in the linear model (9). A plot of the unweighted
residuals versus fitted values shown in Figure 2 shows the serious heteroscedasticity of
variances. A plot of weighted residuals versus predicted values is shown in Figure 3.
From Figure 3, it appears that the spread of residuals has evened out compared to
Figure 2. Also there is no pattern in the plot of weighted residuals against the fitted
value of y (Figure 3).

Based on the empirical analysis above, there is a clear suggestion that the
corrective remedy is offered by the weighting procedure. The results for our final model
are enumerated in Table 3. A plot of the unweighted residuals versus age (OLS) is
shown in Figure 4, whereas plot of weighted residuals versus age (WLS) is shown in
Figure 5.

6. Algorithm development
The algorithm for the computation of weights in the power transformation

model contains the following steps.
Step 1. Specify sample size and number of predictors
Step 2. Define columns of the X-matrix and the response vector Y.
Step 3. Define the Weight matrix W and compute the weighting parameter λ (defined as
LAMBDA) using algorithm proposed in sec.2.
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Step 4. The new response vector and predictor matrix is computed using the weights
used in step 3.
Step 5. The log-likelihood for the model is computed and if it is maximum then the
algorithm is convergent else the algorithm is repeated until a value of LAMBDA is
obtained for which the log-likelihood is maximized.

The algorithm was found to converge when variables were defined in double
precision only.
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Figure 2: Plot of predicted values versus unweighted residuals
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Figure 3: Plot of predicted values vs. weighted residuals from Model (9)

Parameter
Estimates

λ 0β 1β 2β 3β

Unweighted   1.0  434.59  -4.02   3.82   81.427
Weighted   1.9  435.95  -3.77   3.34   82.48

Table 3: Least squares results for Model with Age, BMI & Sex as independents
(OLS and WLS)
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Figure 4: Plot of Age vs unweighted residuals

10 20 30 40 50 60 70 80

AGE

-100000.00

-50000.00

0.00

50000.00

W
ei

gh
te

d 
re

si
du

ls

Figure 5: Plot of Age vs weighted residuals

7. Conclusion
Our purpose in studying this example is to illustrate that efficient estimation,

such as weighted least squares in the presence of heteroscdeasticity can improve the
quality of the investigative process. Also when one of the independents is categorical
(dichotomous in our example) the requirement of separate prediction models for the
different factors can be assessed by the tests for coincidence and parallelism. As such it
is found that in the same population, different prediction models for peak expiratory
flow rate are not required for the two sexes.
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