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Abstract

This paper models a complex system to analyse its reliability characteristics. The
system has two possible modes-normal and failed with two types of repair facilitiesmajor and
minor. The system can fail due to failure of any units which can fail in n-mutually exclusive
ways or common cause failure. Each component of the system has a constant failure rate. The
system can be repaired with two different distributions viz. exponential and arbitrary. By
employing supplementary variable technique and Gumbel- Hougaard family copula, Laplace
transformation of various transition state probabilities, availability and cost analysis (expected
profit) along with steady-state behaviour of the system and their plots have been obtained.
Numerical examples with away to highlight the important results have been appended at last.

Key Words: Common Cause Failure, Complex System, Reliability, Availability, Cost
Analysis, Supplementary Variable, Gumbe -Hougaard Family Copula.

1. Introduction

The model similar to subject under study can be found in references [1, 3].
These studies however do not incorporate the concept of copula applicable for ajoint
distribution when two different type of repair possible between adjacent states which is
apossihility in physical systems. In references [2, 4, 5] copulas have been employed in
modelling and discussed variety of its applications and their choice in multivariate
environmental data. [7] applied the Gumbe-Hougaard family copula in a paralel
redundant complex system with two types of failure under preemptive-resume repair
discipline and found the improvement in results of reliability measures.

The present paper applied the features of Gumbe-Hougaard family of copula
to devel op a mathematica model when two different distributions are possible in repair
between two adjacent states which was not considered in [1, 3]. The model consists of a
multi-component automatic system which can fail due to common cause (i.e. all the
components fail Smultaneoudy) or due to failure of any one of the n-componentsin n-
mutually exclusive ways. If the system isin any failure modes it may require major or
minor repair depending upon type of failures. When the system fails completely dueto
common cause, it is repaired with two ways namely exponential and arbitrary to reach
its normal state directly. So, in this model authors tried to address the problem where
two different repair facilities namely exponential and arbitrary are available between
adjacent dates S, and S (where & is the norma state and S is the compl etely failed
state due to common cause failure). Each component of the system has a constant
failure rate. These rates vary from component to component as all the n-components of
the unit are of different types. The system is studied by using the supplementary
variable technique, Laplace transformation and Gumbel-Hougaard family of copula to
obtain various reliability measures such as trangtion state probabilities, Seady state
probability, availability and cost analysis. At last some particular cases of the system
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are taken to highlight the different possibilities. Transition diagram for this moddl is
shown in Figure 0.
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Figure 0: State Transition Diagram

2. Brief Introduction of Copulas

Nelsen, R. B. [6] discussed the theory copulas. The joint distribution function
implicitly contains a description of the dependence structure of a random vector and,
from one point of view, copulas are functions that join or “couple’ multivariate
distribution functions to their fixed one-dimensional distribution functions. In other
words, copulas are multivariate distribution functions whose one-dimensional margins
are uniform on theinterval [0, 1]. The copula approach is very natural when a complex
system repaired by couple of ways.

Definition (i) (Copula) A d-dimensional copula is a distribution function on [0, 1]°
with standard uniform margina distributions. Let C (u) = C(uy, ..., Ug) be the
distribution functions which are copulas. Hence C is a mapping of the form C: [0, 1]
— [0, 1], i.e. amapping of the unit hypercube into the unit interval. The following three
properties must hold:

1. C(uy ..., Ug) isincreasing in each component u;.
2. C, ..Lu,1, .., )=uyforalil {1,..d},ul [0, 1].
3. Foral (ay,..., ag), (by,..., byl [0, 1] with & < by we have:

& & Cyvtetiec(u,u,)?o

=1 =1

whereup; =g andup=bforaljl {1,.. d}.
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Theorem (Sklar) Let F be a joint distribution function with margins Fy,.......,Fq (not
necessarily continuous). Then there exists a copula C: [0, 1]¢ — [0, 1], such that for all

X1yeooreeXg IN A =[- ¥, ¥]

F (X1, - ooy Xa) = C(F1(X1),- - oo Fa (X)) 0]
If the margins are continuous then C is unique; otherwise C is uniquely determined on

Ran F; x ..x Ran Fy where Ran F, denotes therange of F : Ran F, = F, (A ).
Conversdy, if Cisacopulaand ..., Fy are digtribution functions, then the function F
defined in (i) isajoint distribution function with margins ..., Fq.
Definition (ii) If F is a joint digribution function with marginals Fy,..., Fy and
theorem (Sklar) holds, we say that C isa copula of F (or arandom vector X ~ F). If the
margina s are continuous then C is the unique copulaof F (or X).

The copula is the distribution function of the componentwise probability
transformed random vector. Alternatively, we can evaluate (i) at the arguments x; = F;
(u), 0<u <1, i=1,...,d, and use the property of the generalised inverse to obtain

C(Up.....lg) = F(F (Uy),eeens By (ug)), (i)
where F ~ isthe generalised inverse of F .
Copula Families

There are some main family of copulas.
e Archimedian copulas

The family of Archimedean copulas has been studied extensively by a number
of authors including [3] and [6]. Wdl known representatives of the Archimedean
family are the Gumbel-Hougaard, Frank and Clayton copul as.
Bivariate Clayton copula

Cq (U, uy) = (U +uz® - 1)1 (i)

The Clayton copula is well defined for 0 < 6 < « and for 6—0 and 60— it
converges to the product copula and comonotonicity respectively. Sometimes it is
referred to as the Cook-Johnson copula or the Pareto family of copulas. Due to its
property of lower tail dependence, the Clayton copula is a possible candidate for model
building in the financia context.
Bivariate Gumbel-Hougaard family copula

Cq (ug,up) = exp( - (- log up)® + (- log u,)*)¥9), 1£4q £ ¥

(iv)

For 6 = 1 the Gumbe- Hougaard copula models independence, for 68— it
converges to comonotonicity.
Bivariate Frank copula

Cq (U Uy) =~ gloggh (exp(-quy) - 1) - (exp(-quy) - 1) E ql A

q & exp(-q)- 1 a

v)

e Marshall-Olkin copula

The Marshall-Olkin copula family has the attractive feature that it may be
derived from a simple stochastic process model caled a common Poisson shock
modd. For more detail one can study of [6].
e Elliptical Copulas

A unique copulaisimplicit in every multivariate distribution with continuous
marginals, and useful classes of parametric copulas are those implicit in eliptical
distributions. These copulas have the virtue that they extend to arbitrary dimensions
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and arerich in parameters, which facilitates their fitting to data. The Gaussian and t-
copulas are defined as

CE ) =F 4 (F (U)o F Y (ug) (vi)
Cla () =t 4 (5 20D 4 1 (U0)) (vii)

where F 3 and t, 5 denote the joint distribution functions of a standard d-dimensiona

normal random vector with covariance matrix £ and a d-dimensional multivariate t-
distribution with v degrees of freedom and correlation matrix R respectively. The t-
copula is especially appealing, because at the cost of only one extra parameter v we get
a flexible family of copulas suitable for high-dimensional modeling that includes the
Gaussian copula as a specid limiting case.

Application of Copulasin this Study

In this paper authors applied a useful application of Gumbel- Hougaard family
copulain therepair of afailed system. We focus this area for the reason: the system can
be repaired by two different ways. Authors believe that the interactive study of this
should be enhancing the availability of the system.

Assumptions

1) Initidly the systemisin normal state.

2) The system hastwo states: normal and failed.

3) The each component of the system has a constant failure rate and an arbitrary
repair rate.

4) Theseratesvary from component to component as al the n-components of the
unit are of different types.

5) Thesystem isrepaired from failed state after detecting the type of repair viz.,
major or minor.

6) Trandtion from state S to state S;; follows two different distributions.

7) After repairing system is as good as new. Repair never damages anything.

8) System states are: norma (Sy), failed (Sy), major repair (Sy), minor repair
(S3),j=1, 2 ...n and common cause (Sc).

9)  Joint probability distribution of failure rate from state S to the state Sy
computed by Gumbel- Hougaard family of Copula.

Notations
The following notations are associated with this model:

fi(x),z;(x) Rates of major repair and corresponding pdf of repar times
respectively.

y (%), x;(x) Rates of minor repar and corresponding pdf of repair times
respectively.

w(x), ¢ (X) Repair rate for common cause failure and corresponding pdf of repair
timesrespectively.

| o, j Constant rate of transition from state Syto S or Sy

aj, b

Pq(t) Plat epoch t the system isin state S¢]; k=0, cc, ij; i=1,2,3, j=1,2,.....n.

Constant detection rate of system in S; being assigned to state S, Sy
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Pa(X, t)dx P [system isin state S, at epoch t and has sojourned in this state for
duration between x and x+dx]: h=2j, 3j, cc; j=1,2,.....n.

U, Up Marginal distribution of random variables, where
u; =log(x)and u, =1

m;, M; Expected duration of minor/major repair of thetotal failed unit.

) Sum over from 1 to n unless otherwise mentioned.

Eq(t) Expected profit during theinterva (O, t].

Ky, Ks Revenue per unit time and service cost per unit time respectively.

Ug, Uy Marginal distribution of random variables,

whereu; =e* and u, =w(X).
Letting u; = € and u, =w(x) , the expression for joint probability (failed state
S to normal S;) according to Gumbel-Hougaard family is given as:
exp[x? +{logw(x)}*]"¢

For mulation of Mathematical M odel

By dementary probability and continuity arguments, we can obtain the
following set of difference-differential equations which is continuous in time and
discrete in space for the present mathematical model

¥ ¥
g%-'—l 0 +é | J§P0(t) = & PZJ(X,t)f j(X))jX"’ (\ﬁ P3J (X,t)y J(X))jx
0 0

¥

+ (Fec (% 1) exp[x? +{logw(x)} 1" dx D
0

8 +a +b; ,ﬂ,PlJ ) =1 Py (t) 2
g'ﬂi ;g(+f j(X)EPZj(X't) =0 3
I 0Py () =0 @
%ﬂi ﬂi explx" +{logw(x)}*]"" g ”P =0 (5)
Boundary Conditions
P (0,t) =a ;R (t) (6)
Psi (0,t) =b; Py (1) (7)

Pe (0.1) =1 oFy (1) (8)
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Initial Conditions
Py (0) =1 and other state probabilitiesarezeroatt =0

Solution of the M odel
Taking Laplace transformation of (1 - 8) and using (9), we obtain

¥
stlo+al | [Po(e) =1+ fa By (xS ; 0 fix+ da Py (xS ; ()b
0 0
¥

* e (X 8) exp[x? +{logw(x)}4 1'% dx
0

[s+a; +b;[R (9 =1 R(9)

§S+%+fj(x)§52j(x,s):o
é 1

O
§+W+y j (X)Hpsj (x,9)=0

§5+%+exp[xq +{logw(x)}* ]l/qu (s)=0

C

52j (0,9) =aj§1j (9

53]‘ (0,9 = bjﬁlj (s)

Pc(0,9) =1 oPy(s)

Solving (10 - 14) with the help of (15 - 17), we get

&

1cxu
: s+aj+bj ol 0

_ I
Pj(=————R(9

s+a; +b

€ a;
P (9= emgl X (9)IPy(s)

bl
Py; ( )_mgl Z (9)]Py(s)

Pa(9)=1 5O
e

Po()

(©)

(10)

11)

(12)

(13)

(14)

(15)
(16)

17)

(18)

(19)

(20)

(21)

(22)
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Evaluation of Laplace Transfor mation of Up and Down State Probabilities
The Laplace transformations of the probabilities that the system isin up (i.e.
either good or degraded state) and failed state at any time are as follows:

Pp(8) = Ro(9) (23)
Praitea (5) = P (8) + Py (8) + Py (8) + P (9) (24)
Also, it isworth noticing that

Pp(9)* Praie (9 =+ 29)

Asymptotic Behaviour of the System
Using Abel’s lemmain Laplace transformation, viz.
Lim{sF (s)} = LimF(t) = F(say),
Lim{sF ()} = LimF (t) = F (say)
provided the limit on right hand exig in (18) through (21) the following time
independent probabilities are obtained

é o & a;m+b;M;0 u
Py =+l g2+ Q G+ I ITIg (26)

g & a;+b, ﬂH

| .

P,. = J P 27
1j aj+bj 0 ( )

_atim o (28)
Zj_aj+bj 0

_bjl;M 29)
3j_aj+bj 0

Where m; and M; are expected duration of minor/major repair of the total
failed uniti.e.

¥ ¥ ¥

m; = c‘yxj (X)dx, M = c‘)(z ;(¥)dx and z= c‘y(c(x)dx

0
The asymptotic state availability of the system is
Pup = P0 (30)
Particular Cases
Assuming that repair follows exponential distribution, setting

_ o=V ad s (g = &PIX! +H{logw()}9 T
X;(s)= Z(9) SerJ_an (9 s+ expld +{1ogw(0} 17

in (18) through (22), the Laplace transformations of various state probabilities are as
follows:

+f

% o 0

P09 = P = v expi® +(logw(a} T 5

a @ O

o | {s+a, +f )(s+y ) +b(s+f st
(s+f;)(s+y j)(s+a; +b;)

(31)
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_ [ . _
R (s) = ﬁ Po(s) (32

_ _ ajlj _
P10 = it jera w5y O (33)

_ byl | _
P9 = (s+y j)(s+a; +bj)PO(S) 9

_ Iy _
e e +flogw(y T %)

Numerical Computations
(i) Availability Analysis:

(@ Takingl o =1 ; =a; =b; =0.05f ; =y ; =w=1x=1q =1 and n=10. Setting
_ f. _ . q a1l/q
X[(9=—1 7,(9=—J and &, (9) = PX" +{logw()} ] — in (31) and
s+t SHY s+exp[x? +{logw(x)}]"
taking inverse Laplace transform, one may have
Pup (t) =0.026393 e27"*" +0,82019 e 7% ¢os (0.078278t)
+ 2.2371 079 gin (0.078278t) +0.15341 (36)
(b)Settingl o =1 ; =a; =b; =0.25f; =y ; =w=1,x=1g=Ln=10and considering

that system follow exponentia distribution then from (31) and taking inverse Laplace
transform, one can get (37)
Py (t) =0.48633 &34 + 0,39729 e 7**¥ o5 (0.55765t)
-0.65574 e™17%8) gin (0.55765t) + 0.11629 (37)
(c) When repair follow exponentia distribution and various parameters are fixed as x
=1, 6=1, a;=010,b; =0.05,f; =y j =w=1 1,=015];=020and n=10. Substituting
these values of parametersin (31) and taking inverse Laplace transform, we have
P.p (t) =0.28593 e 31129 + 0,65306 e %! cos (0.20291t)
-1.5353e 4% gin (0.20291t) + 0.061018 (39)
In (36), (37) and (38), settingt =0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 one may obtain
Tables 1, 2 and 3 respectively. These tables demonstrate how availability of the system
changes with respect to the passage of time.

Time Py
1.00000
0.60345 104

0.39001

0.27493 o
0.21460 06 4
0.18372 K \
0.16822 47

0.16057 ] —.
0.16057
0.15503 oot T T T T "
0.15417 Time

Ol O(N|O|JT|~[WIN|F|O

=
o

Table 1: Timevs. Availability Figure 1. Time vs. Avalability
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Time Pup
1.0000000
0. 1296953
0. 1042442
0. 1127226 ool
0. 1156841 o®
0. 1162929 0.4
0. 1163827
0. 1163908 0.2
0. 1163904 T
0. 1163901 0.0 T T T r .
] 2 4 6 8 10
0. 1163900 Time

O|o(N|oO|g|~w|IN| RO

=
o

Table 2: Time vs. Availability Figure 2. Time vs. Avalability

Time Pup

1.00000
0.15116 0.8
0.06124
0.05661 0.6
0.05900
0.06033 47
0.06081
0.06096 -
0.06100 : , , : :
0.06101 0 2 4 6 8 10
0.06101

Pup(!)

O|o(N|o|g|~w|IN| RO

=
o

Table 3: Timevs. Avalability Figure 3. Time vs. Availability

(iii) Mean-Time-to-Failure (M.T.T.F.):
Setting a; =b; =0 in (18) and taking limit as s tends to zero, the MTTF can

be obtained as

MITF.=limPy(9=— & — (39)

s®0 | 0 +a | i

Settingl ; =0.25, n=10 and varying A; as 0.10, 0.20, 0.30, 0.40, 0.50, 0.60,
0.70, 0.80, 0.90 in (39) one may obtain Table 4 which demonstrates variation of MTTF
with respect to A;.

Further setting | ; = 0.25, n=10 and varying %, as 0.10, 0.20, 0.30, 0.40, 0.50,
0.60, 0.70, 0.80, 0.90 in (39) we may get Table 5 which gives value of MTTF with
respect to the changein X, .
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X MTTF 00
0.10 0.80000 00
0.20 0.44444 0r
0.30 0.30769 el
0.40 0.23529 e
050 0.19047 £ ]
0.60 0.16000 \_
0.70 0.13793 02 ~__
0.80 0.12121 02 ——
0.90 0.10810 01 — .

0.0 0.2 0.4 0'5 0.8 1.0

Figure 4: 4 vs MTTF

o MTTF
0.10 0.38461
0.20 0.37037 -
0.30 0.35714 \'\
0.40 0.34482 ~
0.50 0.33333 g ~_.
0.60 0.32258 = ~
0.70 0.31250 T

. . \E
0.80 0.30303 —
0.90 0.29411 .

Table5: Ao vs MTTF Figure5: 2o vs MTTF

(ii) Cost Analysis:
@ Taking Ig=1;=a;=b;=005f; =y;=w=1x=19=1,n=10 and
assuming that repair follow exponential distribution then setting
f. . q q1l/q
; Vi and (9 = PX +{logwOOH
SH | S*HY s+exp[x” +{logw(x)}"]
taking inverse Laplace transform, we have (36).

Let the service facility be always available, then expected profit during the
interva (0, t] is

X;(s) = L Zi(s)= in (31) and

t
Ep(t) = Kl(\jgup (t)dt - Kzt (40)
0

Where K, and K, are the revenue per unit time and service cost per unit time
respectively.
Using (36) in (40) for the same set of Earameters, one can obtain (41).
E, (t) = K1 [-0.009497642952 e 27" .1 29687076 e *"** cos (0.078278 1)
-2.687451772 e 079 gn (0.078278 t) +0.15341 t+1.306368403]
- Kot (41)

(b) When repair follow exponential distribution and various parameters at somewhat

higher vaue i.elo=1;=a;=b; =025 f;=y;=w=1 x=1qg=1and n=10.

Putting these values in (31) and taking inverse Laplace transform, one can obtain (37).
Using (37) in (40) same set of parameters, we get
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E, (t) = K1 [-0.13989 e347%% . 0.97629 &8 ¢os (0.55765t)
+ 0.40680 e gn (0.55765t) + 0.11629t + 0.237519] - Kot (42)

Taking K;= 1; Ky,= 0.05, 0.10, 0.15 and using (41) and (42), the computed
values of E; () aregiven in Tables6 and 7.

Time E(t)

K;=0.05 K;=0.10 K;=0.15
0 0 0 0
1 0.73020 0.68020 0.63020 =
2 1.16622 1.06622 0.96622 H
3 1.44267 1.29267 1.14267 B
4 1.63415 1.43415 1.23415 &
5 1.78158 1.53158 1.28158
6 1.90666 1.60666 1.30666
7 2.02061 1.67061 1.32061 ‘ ' ’ e

Table 6: Time vs Expected Profit Figure 6: Time vs. Expected Profit
Time E(t)
K;=0.05 K;=0.10 K,=0.15 o8
0 0 0 0 07 - K,=0.05
1 0.32269 0.27269 0.22269 -
2 0.37998 0.27998 0.17998
3 0.43888 0.28888 0.13888
4 0.50543 0.30343 0.10343 K,=0.10
5 0.56950 0.31950 0.06950
6 0.63585 0.33585 0.03585
7 0.70224 0.35224 0.00224 ‘ons
Tim
Table 7: Time vs. Expected Profit Figure 7: Time vs. Expected Profit

Inter pretation of the Result and Conclusion

From Tables 1 and 2 one can observe the variation in availability of the
complex repairable system with respect to time when failure and detection rates are
fixed at different values. When failure and detection rates are fixed at lower values like
thatl o =1 j =a; =b; =0.05 the availability of the system decreases with respect to

time but sabilize at value 0.154 in thelong run. When failure rates are fixed at 0.25, the
availability of the system decreases sharply during initial stage but later on stabilizes at
0.116 in the long run. These Tables 1 and 2 and corresponding Figures 1 and 2 reveal
that when the failure rate increases availability of the system decreases. Table 3 gives
the availability of the system when failure and detection rates are fixed at different
values. One can observe Figure 3 that availability of the system decreases sharply and
attains very low value with respect to other cases but stabilizes at value 0.061in the long
run.

Tables 4 and 5 yield the mean-time-to-failure (MTTF) of the system with
respect to variation in A; and X respectively when other parameters have been kept
constant. A critical examination of the Figures 4 and 5 reveal that MTTF decreases with
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respect to decrement in A; and Ao uniformly and sharply respectively but it is higher in
former than the later.

When revenue cost per unit time Ky fixed at 1, service cost K, varied and
failure rates are kept at lower and somewhat higher values one can obtain Tables 6 and
7 for repairable system which are depicted by Figures 6 and 7 respectively. One can
conclude by observing these graphs that as service cost increases, expected profit
decreases. A critical examination of the graphs reveal that expected profit increases
with respect to time but for the case when failure rates are kept at higher values,
revenue cost per unit time fixed at one and service cost fixed at 0.15, the expected profit
initialy increases but later on decreases continuoudly. In general for lower failure rates
expected profit is higher in comparison to higher failure rates.

On overal basis it is found that incorporation of copula improved the
reliability of the system.
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