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Abstract
In sample surveys, it is usual to make use of auxiliary information to increase the

precision of estimators. A general class of estimators is suggested to estimate the population mean
for the variable under study in two stage sampling scheme.  Some special cases of this class of
estimators are considered and are compared  by using a data set.

It turns out that the newly suggested estimators dominate all other well known
estimators in terms of mean square error. Finally it is shown, how to extend the class of estimators
if multi auxiliary variables are available in the cases of two stage sampling scheme.
Key words: Bias, MSE, Auxiliary variables, Ratio estimator, Two stage sampling.

1. Introduction
It is well known that suitable use of auxiliary information results in

considerable reduction in the mean square error of the estimator. In this regard ratio,
regression and product estimators are widely used, if the correlation coefficient is high
between the auxiliary variable x and the study variable y. Some of the important works
in this direction are of Singh (1965), Srivastava (1980), Rao (1991), Kadilar and Cingi
(2004) etc. But in large scale surveys, we often collect data on more than one auxiliary
variables and some of these may be correlated with Y. Olkin (1958), Raj (1965), Rao
and Mudholkar (1967), Srivastava (1971), Singh (1982) etc. have considered some
estimators which utilize information on several auxiliary variables which are highly
correlated with the variable under study.

 Two-stage sampling scheme consists in selecting the first stage unit (fsu) by
any of the sampling schemes eg. simple random sampling with replacement, simple
random sampling without replacement, systematic sampling, probability proportional to
size with replacement, probability proportional to size without replacement etc. and the
size of the fsu’s may be equal or unequal. From each selected fsu, a sample of second
stage units (ssu) is selected independently by any of the above suitable sampling
procedure.

 In a socioeconomic survey, for example villages may be considered as fsu’s
and households as ssu’s. While preparing lists of households belonging to each selected
village, one may collect some information such as type of dwellings, educational
standard attained, size of households etc. Such information may be suitably used for
drawing the sample at the second stage. By careful exploitation of such information, the
efficiency of two stage sampling can be greatly enhanced. In such types of surveys, for
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example, one may be interested in estimating ratios like yield rates in crop survey,
proportion of expenditure on food, clothing etc, sex ratio, birth rates and so on.

 The main focus of the present paper is firstly to construct a class of estimators
in two-stage sampling for equal fsu and unequal fsu, when the population mean of the
auxiliary variable for all fsu’s are known i.e. general estimator in two stage sampling
scheme secondly to extend the suggested class of estimator using multi-auxiliary
variables.

 The expressions for bias and mean square error of the usual two stage
estimator are given in section 3. Section 4 of the article contains the derivation of the
biasness and mean square error for the suggested general class of estimators in two
stage sampling while section 5 deals with  some special cases of it. The generalization
of the proposed class is done in section 6 using multi-auxiliary variables and its special
cases are considered in section 7. Section 8 considers the efficiency comparison of the
proposed estimator with that of usual two-stage estimator (without auxiliary
information). In section 9, all the derived results are numerically supported by database
study.

2. Notations
 Let fsu’s be of unequal size and simple random sampling without replacement
be adopted in both the stages. The commonly used notations are as follows:-
N : Total no. of fsu's (clusters) in the population
n : Total no. of fsu's in the sample

iM  : Total no. of ssu's belonging to the ith fsu in the population

0M  : Total no. of ssu's in the population = ∑
=

N

i
iM

1

M  : Average size of fsu's =
N

M 0

im  : Total no. of ssu's selected from ith fsu in the sample

0m  : Total no. of ssu's in the sample = ∑
=

n

i
im

1
Y : Variable under study

ijY  : Observation on jth ssu belonging to the ith fsu in the population
i = 1, 2, ..., N and j = 1, 2, ..., Mi

.iY  : Population mean of ssu's in the ith fsu, i.e. ∑
=

=
iM

1j
ij

i
.i Y

M
1Y

Y  : Population mean

 = ∑∑
= =

N

i

M

j
ij

i

Y
M 1 10

1
 = ∑

=

N

i
i

i Y
M
M

N 1
.

1

ijy  : Observation on jth ssu belonging to the ith fsu in the sample;
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i = 1,2, ..., n and j = 1, 2, ..., mi

.iy  : Sample mean of ssu's in ith fsu = ∑
=

im

i
ij

i

y
m 1

1

Xk : kth auxiliary variable; k = 1, 2, …, p.

ijkX  : Value of kth auxiliary variable on jth ssu belonging to the ith fsu  in  the
population

ikX  : Population mean of kth auxiliary variable for ssu in ith fsu

ijkx  : Value of kth auxiliary variable on jth ssu belonging to the ith fsu in the sample

ikx  : Sample mean of kth auxiliary variable for ssu in ith fsu

iα  : Weight for ith fsu
2
yS  : Population mean square error of Y variable

( )
2M

1j
ij

N

1i0

i

YY
1M

1 ∑∑
==

−
−

=

2
yiS  : Population mean square error of Y variable for ith fsu

( )
2M

1j
iij

i

i

YY
1M

1 ∑
=

−
−

=

2
xikS   : Population mean square error of kth auxiliary variable for ith fsu

( )
2M

1j
ikijk

i

i

XX
1M

1 ∑
=

−
−

=

2
yiC          : Coefficient of variation of Y for ith fsu 2

.i

2
yi

Y
S

=

2
xikC     : Coefficient of variation of Xk  for ith fsu 2

.ik

2
xik

X
S

=

ikρ  : Correlation coefficient between the variables Y and Xk,  for ith fsu

ikhρ  : Correlation coefficient between the variables Xk and Xh (k ≠ h) for ith fsu
bij : Regression coefficient between Y and Xj  for ith fsu for the sample
Bij : Regression coefficient between Y and Xj  for ith fsu for the population
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E( 0ie ) = E( ije ) = 0, j = 1, 2, … , p
2
yii

2
io Cf)e(E = , 2

xiji
2
ij Cf)e(E = , j = 1, 2, … , p

xijyiijiijio CCf)ee(E ρ= , j = 1, 2, … , p

xikxijijkiikij CCf)ee(E ρ= , j = 1, 2, … , p

3. Estimator and its Mean Square Error
 The usual two stage estimator for population mean is given as

i

n

1i
iTS y

n
1y ∑

=

= α       (1)

To the first degree of approximation, the bias and mean square error are given as

( )∑
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i
iiiTS YMM
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..

11
1

ααα
 (3)

4. Suggested Class of Estimators in Two Stage Sampling
 We propose a general class of estimators GTSy  using two stage sampling

when population mean iX  is known for every ith fsu, as

ig

n

i
iGTS y

n
y ∑

=

=
1

1
α       (4)

where ‘GTS’ stands for ‘General Estimator in Two Stage Sampling Scheme’ and igy  is

a function of y , iX  and ix   in ith fsu.

4.1 Its Bias and MSE
Theorem 1: The bias of GTSy  is given as
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Theorem 2 : The MSE of GTSy  is given as

( ) ( )[ ] +−
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  where ( )iyEz igi /=  and ( )iyMSEv igi /=

Proof. We have, MSE( GTSy ) = MSE[E( GTSy /i)] + E[MSE( GTSy /i)]
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Adding (6) and (7), we get the final expression.

5. Some Cases for the Class of Estimators
Case 1 : When X  is positively correlated with Y for each fsu,, our estimator will
convert into separate ratio estimator given as

∑
=

=
n

i
ratiiTSRAT y

n
y

1
..

1
α       (8)

where i
i

i
rati X

x
yy =.  is the usual ratio estimator in ith fsu

( )[ ]xiyiixiiii CCCfYz ρ−+= 2
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.ii CC2CCfYv ρ−+=

Case 2 : When X is positively correlated with Y for each fsu, we can also use separate
regression estimator given as
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∑
=

=
n

i
regiiTSREG y

n
y

1
..

1
α (9)

where ( )iiiiregi xXbyy −+=.  is the usual regression estimator in ith fsu with

ii Yz = if bi is known   and

2 2 2 2v f S B S B S Si i yi i xi i i yi xiρ = + −  

Case 3 : If  each X is negatively correlated with Y for each fsu then our estimator will
convert into separate product estimator given as

∑
=

=
n

i
prodiiTSPROD y

n
y

1
..

1
α       (10)

where i
i

i
prodi x

X
yy =.  is the usual product estimator in ith fsu with

21.z Y f C C Ci i i xi i yi xiρ
  = + +    

and

( )xiyiixiyiiii CCCCfYv ρ2222
. ++=

6. Generalization of the Suggested Class
 The generalized class of two stage estimators when p auxiliary variables are
known for every ith fsu is given by
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where ‘GTS.p’ stands for ‘General Estimator in Two Stage Sampling Scheme when p

auxiliary variables are known’ with 1
1

=∑
=

p

j
ijw  and ijgy  is a function of iy , ijX  and

ijx  for jth auxiliary variable in ith fsu.

6.1 Its Bias and MSE
Theorem 3 : The bias of pGTSy .  is given as

( ) [ ]∑
=

−=
N

i
iiiipGTS YMMz

MN
yBias

1
..

1
α

Proof. ( ) ( )[ ]iyEEyE pGTSpGTS /.. =

( )







= ∑ ∑

= =

n

i
ijg

p

j
iji iyEwE

n 1 1
/1

α



A General Class of Estimators of a Finite… 109









= ∑

=

n

i
ii zE

n 1

1
α , where ( )∑= iyEwz ijgiji /

∑
=

=
N

i
ii zN 1

1
α

( ) ∑∑
==

−=−
N

i
i

i
N

i
iipGTS Y

M
M

N
z

N
YyE

1
.

1
.

11
α

[ ]∑
=

−=
N

i
iiii YMMz

MN 1
.

1
α (12)

Theorem  4 The MSE of pGTSy .  is given as
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Proof. MSE ( pGTSy . ) = MSE [E ( pGTSy . /i)] + E [MSE ( pGTSy . /i)]
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where the matrix Vi=(vijh) and ( )ip2i1i
~

i w...,,w,ww = ,
~

'
iw being the transpose of

~
iw .

Optimum Values of wij for j = 1, 2, , p
It can be shown easily that the optimum wij is given by
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i
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where 1−
iV is the matrix inverse to Vi. Using the optimum weights, the mean square

error is found to be
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Remark (i) To avoid the mathematical complexity in deriving MSE, we will use
the above procedure for finding optimum values of wij for the
suggested estimators.

(ii) In deriving the expressions of MSE of all the estimators of the
suggested class, the covariance term is taken to be zero because the
clusters are independent of each other.

7.  Some Cases for the Generalized Class of Estimators
Case 1: Multivariate Ratio Estimator

The combined ratio estimator pTSRATy .. , of Y  in two stage estimators when p
auxiliary variables are known for every ith fsu is given by
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where, ij
ij

i
ratij X

x
yy =.  is the usual ratio estimator in ith fsu for jth auxiliary variable.
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Case 2: Multivariate Regression Estimator

The combined regression estimator pTSREGy .. , of Y  in two stage estimators when p
auxiliary variables are known for every ith fsu is given by
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where, ( )ijijijiregij xXbyy −+=.  is the usual ratio estimator in ith fsu  for  jth

auxiliary variable.
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If bi is unknown

.ii Yz =
If bi is known

[ ]xihyiihihxijyiijijxihxijijhihij
2
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Case 3: Multivariate Product Estimator

The combined product estimator pTSPRODy .. , of Y  in two stage estimators when p
auxiliary variables are known for every ith fsu is given by
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variable.
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8.  Efficiency Comparison

Theorem 5. RTSy  will be efficient than TSy if A
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Proof: RTSy  will be more efficient than TSy if it satisfies the following condition

MSE( RTSy ) < Var( TSy )
After applying the following approximations,
       fi = f0 , CCC xiyi ==  , ρ i = ρ  , α i = α i∀
efficiency condition reduces to
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Remark : Efficiency conditions for other members of the suggested class can be
obtained in similar manner.

9.  Numerical Illustrations
For this purpose, we consider the population of N=4 clusters as fsu with equal

number of fsu's and another population with unequal number of fsu for comparing the
proposed general class of estimators with usual two stage estimator. Suppose a sample
of size n=2 clusters is drawn from this population. ssu's can be selected in  proportion to

Mi, i.e.
1

( / ) 32
N

i i i
i

m M M
=

= ×∑ .  For unequal fsu's the comparison has been done by

taking two values of α i , i.e. 1 and /iM M . Table 1 gives the population parameters
for population I (for equal fsu's) and II (for unequal fsu's)  given in the Appendix.

10.   Discussion and Conclusion
 The separate ratio, regression estimators in two stage sampling scheme using
multi-auxiliary information have been evaluated for their comparison with usual two
stage estimator without using any auxiliary information for equal and unequal fsu
considering two different values of iα  i.e. 1 and /iM M . The following conclusions
can be drawn from this empirical illustrations :
(A)  It is clear from Tables 2 and 3 that though the ratio estimator of the suggested class
is    biased, but the amount of bias is almost negligible in both the cases of equal and
unequal fsu’s.
(B) Equal fsu's
(i) When X and Y are positively related, we compare MSE of usual two stage estimator
of population mean with the MSE of both the estimators of the suggested class for
equal fsu and we find that MSE( TSy ) =9.21412, which is significantly higher than

MSE( 1.TS.RATy ) =3.52483, MSE( 1.TS.REGy ) =3.28059 (See Table 2).
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Table 1: The population parameters for population I (for equal fsu's) and II (for unequal
fsu's)  given in Appendix A.

(C) Unequal fsu's
 Both the estimators of the suggested class are significantly more efficient than

TSy in terms of MSE for both the cases i.e. when iα  = 1 and iα  = /iM M . This is
evident when we compare the MSE's.
(a) When X and Y are positively related
      (i) MSE( TSy ) = 10.22425, MSE( 1.TS.RATy ) = 4.57177, MSE( 1.TS.REGy ) = 4.15115

for iα  = 1.

fsu Equal Unequal
No. of

clusters 1 2 3 4 1 2 3 4

Mi 16 16 16 16 18 14 12 20

mi 8 8 8 8 9 7 6 10

.iY 26.20625 24.12313 26.68875 22.11438 25.77722 22.79286 28.43500 23.09050

.1iX 50.96019 50.35994 62.70413 55.75731 51.06389 46.49700 67.00217 57.11855

.2iX 35.71519 41.85756 39.68550 48.71470 35.84517 39.49436 39.86467 48.95286

.3iX 56.48565 47.79563 27.95500 57.78263 52.39391 43.59071 30.69167 55.93210

2
yiC 0.62364 0.33905 0.32637 0.36886 0.58025 0.39297 0.34783 0.31545

2
1xiC 0.47888 0.28038 0.38836 0.49081 0.43322 0.29984 0.41947 0.40689

2
2xiC 0.53798 0.24367 0.38462 0.20182 0.47630 0.26882 0.43302 0.20186

2
3xiC 0.23426 0.27680 0.28155 0.10532 0.29194 0.28803 0.28366 0.15534

1iρ 0.88451 0.85254 0.84212 0.80242 0.88373 0.83895 0.82425 0.82113

2iρ 0.79978 0.71317 0.87276 0.79080 0.79943 0.67443 0.90076 0.80311

3iρ 0.70371 0.74068 0.80029 0.77797 0.66011 0.80597 0.81874 0.61370

12iρ 0.60065 0.68186 0.64406 0.58869 0.60618 0.61701 0.64034 0.62536

13iρ 0.62789 0.57917 0.47770 0.67925 0.55943 0.57812 0.45501 0.55727

23iρ 0.54930 0.54213 0.69703 0.69085 0.49031 0.55708 0.79852 0.52633
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    (ii) MSE( TSy ) = 13.89066, MSE( 1.TS.RATy ) = 8.30537, MSE( 1.TS.REGy ) = 8.03492

for iα  = /iM M (see Table 3)

Ratio RegressionNo. of
used

Auxiliary
variables |Bias| MSE % R .E. |Bias| MSE % R .E.

0 - 9.21412 0 - 9.21412 0

1 0.09331 3.52483 161.41 - 3.28059 180.87

2 0.07319 2.38863 285.75 - 2.51813 265.91

3 0.06935 2.19234 320.29 - 2.39819 284.21

Table 2: The biases and mean square errors for ratio and regression method of estimation
with equal fsu's for population data set I (Table 1)

1iα = i
i

M
M

α =
Estimators

No. of
Used

Auxiliary
Variables |Bias| MSE % R

.E. |Bias| MSE % R
.E.

Two Stage 0 0.24077 10.22425 0 - 13.89066 0

1 0.33658 4.57177 123.64 0.08740 8.30537 67.25

2 0.32415 3.12462 227.22 0.07299 7.03199 97.54Ratio

3 0.31095 2.81173 263.63 0.06269 6.85332 102.69

1 0.24077 4.15115 146.30 - 8.03492 72.88

2 0.24077 3.16832 222.70 - 7.20959 92.67Regression

3 0.24077 2.96059 245.35 - 7.05727 96.83

Table 3: The biases and mean square errors for ratio and regression method of estimation
with unequal fsu for population data set II (table 1)
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It is to be noted that as we increase the number of auxiliary variables, the gain
in efficiency of all the estimators of the suggested class increases for equal fsu's as well
as for unequal fsu's (for both the cases i.e. iα = 1 and iα  = /iM M )

It is important to mention here that this increment for equal fsu's and for data
set I is more significant in ratio estimator than regression estimator where it increased
from 161 % to 320 %.

For unequal fsu's, relative gain in efficiency is more for iα = 1 than iα =

/iM M  for both the estimators of suggested class. For data set II as we increase the
number of auxiliary variables, the % gain in relative efficiency is more for ratio
estimator. Where it increased from 123 % to 263 %.
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Appendix A

Equal fsu's (Population Size = 64)
Population Set I

Cluster I
1Y 5.58 26.11 11.08 12.66 0.87

6.40 54.21 3.25
37.94 56.92 27.59 45.98 61.21
14.23 13.59 41.68

11X  13.18 60.55 22.36 37.18  3.27
21.62 97.08 7.28
50.22             113.44 88.08 92.46 79.77
56.12 18.07 54.68

12X  8.91 23.28 12.76 14.24  8.54
9.48 67.43 15.31
41.25 44.84 25.35 37.19 98.41
54.54 42.05 67.87

13X  32.51 69.03 42.49 63.37 37.73
27.47 72.95 25.35
38.27 98.41 67.61 55.08 73.57
29.13 47.48                123.31

Cluster II
2Y 4.84 10.93 11.41 32.52  3.56

12.52 34.63 35.97
47.07 17.69 41.24 15.48 34.35
16.89 40.76 26.11

21X 10.92 25.64 35.17 42.78 12.15
29.30 45.52 82.53
61.49 40.48 95.35 50.88 79.51
39.25 94.25 60.55

22X 9.64 12.65 18.54 59.37  8.54
28.88 69.54 51.87
41.25 39.56 47.27 61.44 49.83
54.54 71.19 45.61

23X 12.52 27.88 43.05 63.37 9.08
32.41 55.14 40.11
98.78 41.56 67.61 55.08 34.55
29.13 63.27 91.19

Cluster III
3Y 15.21 10.08 4.21 16.92 54.81

40.05 52.55 29.54
19.64 26.24 24.74 47.23 12.18
28.93 15.15 29.54

31X 34.77 23.68   9.48 22.50               126.46
92.62 68.82 67.74
84.75 60.14 57.40 155.66 28.51
66.94 35.35 68.44

32X  16.08 12.21   9.45 21.62 67.29
42.78 92.15 30.07
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20.78 60.23 41.15 64.57 15.08
67.74 29.54 44.23

33X  14.24 14.09   9.78 23.44 42.11
45.75 67.45 35.45
24.78 23.44 39.55 28.22 19.58
20.08 18.77 20.55

Cluster IV
4Y 15.79 11.18 17.41 37.02 23.54

59.21 37.96 25.28
29.11 11.18   9.27 13.47 9.86
21.70 12.21 19.64

41X 36.11 26.21 39.84 85.65 54.54
136.68 61.24 57.94
154.58 25.50 21.82 44.25 23.18
50.31 28.58 45.67

42X 34.48 65.12 74.23 61.27 45.14
98.45 78.48 46.36
55.47 37.45 24.09 27.48 18.54
40.89 35.45 36.54

43X 58.62 45.78 67.46 49.02 71.16
98.47 79.75 69.17
74.15 29.96 54.45 46.72 41.46
64.74 28.36 45.27

Unequal fsu's  (Population Size = 64)
Population Set II

Cluster I
1Y  5.58 26.11 11.08 12.66 0.87

                       6.40 54.21   3.25
37.94 56.92 27.59 45.98 61.21
14.23 13.59 41.68
15.15 29.54

11X  13.18 60.55 22.36 37.18 3.27
21.62 97.08   7.28
50.22 113.44 88.08 92.46 79.77
56.12 18.07 54.68
35.35 68.44

12X  8.91 23.28 12.76 14.24 8.54
                       9.48 67.43 15.31

41.25 44.84 25.35 37.19 98.41
54.54 42.05 67.87
29.54 44.23

13X  32.51 69.03 42.49 63.37 37.73
27.47 72.95 25.35
38.27 98.41 67.61 55.08 73.57
29.13 47.48 123.31
18.77 20.55

Cluster II
2Y  4.84 10.93 11.41 32.52 3.56

12.52 34.63 35.97
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47.07 17.69 41.24 15.48 34.35
16.89

21X  10.92 25.64 35.17 42.78 12.15
29.30 45.52 82.53
61.49 40.48 95.35 50.88 79.51
39.25

22X  9.64 12.65 18.54 59.37 8.54
28.88 69.54 51.87
41.25 39.56 47.27 61.44 49.83
54.54

23X  12.52 27.88 43.05 63.37 9.08
32.41 55.14 40.11
98.78 41.56 67.61 55.08 34.55
29.13

Cluster III
3Y  15.21 10.08 4.21 16.92 54.81

40.05 52.55 29.54
19.64 26.24 24.74 47.23

31X  34.77 23.68 9.48 22.50 126.46
92.62 68.82 67.74

                     84.75 60.14 57.40 155.66
32X  16.08 12.21 9.45 21.62 67.29

42.78 92.15 30.07
20.78 60.23 41.15 64.57

33X  14.24 14.09 9.78 23.44 42.11
45.75 67.45 35.45
24.78 23.44 39.55 28.22

Cluster IV
4Y  15.79 11.18 17.41 37.02 23.54

59.21 37.96 25.28
29.11 11.18 9.27 13.47 9.86
21.70 12.21 19.64
40.76 26.11 12.18 28.93

41X  36.11 26.21 39.84 85.65 54.54
136.68 61.24 57.94
154.58 25.50 21.82 44.25 23.18
50.31 28.58 45.67
94.25 60.55 28.51 66.94

42X  34.48 65.12 74.23 61.27 45.14
98.45 78.48 46.36
55.47 37.45 24.09 27.48 18.54
40.89 35.45 36.54
71.19 45.61 15.08 67.74

43X  58.62 45.78 67.46 49.02 71.16
98.47 79.75 69.17
74.15 29.96 54.45 46.72 41.46
64.74 28.36 45.27
63.27 91.19 19.58 20.08


