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Abstract
The paper considers a group of patients suffering from leukemia B non-small lung cancer. Such

patients are generally suggested to undergo for either radiotherapy or chemotherapy followed by radiotherapy.
The objective of the paper is to compare the two therapies based on survival functions of the patients assuming
Weibull survival model for each therapy. The paper further examines the feasibility of a subfamily of Weibull
model, namely the exponential distribution, for a date set available from a clinical trial experiment. This
feasibility is judged based on Bayes information criterion by comparing the Weibull model with its subfamily.
The model compatibility study with the data based on posterior p-values has also been given to ensure the
suitability of the two models. Finally, the recommendations are made accordingly.
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1.  Introduction
Carcinoma is an important disease that causes large number of deaths around the

world. The biggest problem with the disease is that it is often not diagnosed at an early stage
precluding the chances of cure of the patients. At advanced stages of the disease, the medical
practitioners often have limited scope to relieve the patient. Earlier the patients were used to be
treated with radiotherapy but later on they were given chemotherapy followed by radiotherapy.
The interest therefore centres among the medical practitioners that which of the two therapies
provide better results in terms of the survival of the patients. Such studies have been considered
earlier by a number of researchers when patient is suffering from advanced stages of carcinoma
in different organs. The studies were mainly carried out by medical practitioners or statisticians
working with the medical data and often focused on randomized, prospective, retrospective,
multi centre clinical trials. Broadly speaking the analyses used both classical and Bayesian
methodologies although the former dominate the latter paradigm. Since the studies are
numerous covering a variety of cancerous forms, it is not possible to provide an exhaustive list
of references and, therefore, we shall be focusing primarily on the studies based on survival
data. It is to be noted that the data for such comparisons often come in the form of survival
times and, among the various approaches, a better therapy can be suggested to practitioners on
the basis of comparison between the corresponding survival functions.

Among the earlier classical developments, one can refer to Kaplan and Meier (1958),
Mantel (1966), etc. for estimating and comparing survival functions based on Kaplan-Meier
estimate or log rank test. Cox (1972) proposed the concept of proportional hazards model for
quantifying the effects of covariates on the survival times. A systematic review of literature can
be had from Qian (1994), Lawless (2002), Kalbfleisch and Prentice (2002) among others. On
the Bayesian front Sinha and Dey (1997) is an important review article that provides a number
of practical problems and correspondingly provides an updated list of related developments. The
other important references include Ibrahim et al. (2001), Gelman (2004), etc. Most of these
references are intended towards comparing survival functions obtained on the basis of various
modelling assumptions for the data.
         The present paper considers a comparison of survival functions obtained from two
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therapies assuming Weibull models for the corresponding survival times so that one can be in a
position to say that which therapy is better. The Weibull distribution has a wide range of
applicability especially in lifetime data analysis perhaps because of its virtue of versatility or
flexibility. The p.d.f. of two-parameter Weibull distribution can be written as
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where α  is the scale parameter and β determines the shape of the distribution. The
corresponding survival function can be given by
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The Weibull distribution encompasses monotonically increasing (for β >1),
decreasing (for β <1), and constant (for β =1) failure rate and, as such, the model has been
successfully used to describe both initial failures as well as the failures due to remission or
aging (see Lawless (2002)). One of the biggest advantages with the Weibull model is the
availability of closed form survival function, which makes the inferences related to the model
quite easy although the non-availability of sufficient statistics poses some problem in
comparison to those situations where the existence of the same is guaranteed.

The Weibull model is perhaps the richest one as far as the inferential developments
are concerned both with regard to classical and Bayesian paradigms. Lawless (2002) is an
important text which systematically describes the classical developments based on the model
both in the context of engineering and medical applications. A few other important references
include Kalbfleisch and Prentice (2002), Lee and Wang (2003), etc. On the Bayesian front, a
systematic accountability can be seen in Martz and Waller (1982) and, more recently, in
Singpurwalla (2006). The other important references include Gelman et al. (2003), Ibrahim et
al. (2004), etc. although a number of research papers on Weibull distribution appeared regularly
in various journals.

The distribution is, in general, not too straightforward to deal with. The classical
developments on the model mostly relied on large sample approximations or empirical results.
The problem with the Bayesian inference lies in the involvement of integrals in the posterior
based inferences, which are difficult to solve analytically and, as such, require specialized
techniques of Bayesian computation (see, for example, Upadhyay et al. (2001), and, more
recently, Gamerman and Lopes (2006)). This last reference advocated the use of sample based
approaches in Bayesian computation because of their several inherent advantages. A few such
advantages may include the straightforwardness of the procedures to deal with censored data
problems and routine inferential development for some nonlinear functions of the model
parameters.

The Weibull distribution becomes straightforward if one is confronted with a situation
where shape parameter β  can be taken to be unity. The resulting distribution becomes one-
parameter exponential and inferential developments based on it are routine. This is equivalent
to say that an experimenter tests β  against unity for the given data set and goes for the
exponential model if the hypothesis is accepted. Such problems have been considered earlier by
a number of authors in both classical and Bayesian paradigms. The most frequently used
classical tool for testing β  against unity is based on the likelihood ratio test. The earlier cited
references do provide enough material on testing β  against unity for the Weibull model. For
Bayesians, the obvious technique can be based on the evaluation of Bayes factor which is a bit
difficult when the priors are non-informative and the data are compounded with censoring
mechanism (see, for example, Upadhyay and Mukherjee (2008)). The problem of testing β=1
can also be visualized as that of model comparison where one can use, for example, the Bayes
information criterion (BIC) (see, for example, Schwarz (1978)) for drawing the necessary
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conclusion.  No doubt, this measure is comparatively easy and provides answers parallel to that
based on Bayes factor.

A model comparison is justified among the compatible models only where
compatibility is referred to mean that all the models under consideration do provide an adequate
representation to the given data. Therefore, we first propose a compatibility study of the
exponential and Weibull models and then provide a model comparison study to pick up an
appropriate model. For studying the compatibility, we have used the posterior Bayes factor
based on Bayesian version of chi-square discrepancy measure.

The plan of the paper is as follows. The next section provides a detailed model
formulation starting from the likelihood to prior and then to the posterior. The section also
provides a brief review discussion of the Gibbs sampler algorithm so that we may be able to
generate samples from the concerned posterior. The posterior corresponding to exponential
distribution when β =1 has also been commented briefly. Section 3 provides a brief review
discussion of model compatibility and comparison tools that have been employed in the paper.
Section 4 considers a real data set obtained from clinical trials on the two therapies and
provides numerical results of our proposed study plan. The section first considers comparison of
the two therapies assuming Weibull model for the survival times and then considers examining
the possibility of taking β =1 so that feasibility of exponential model for the data can be seen.
Results based on exponential modelling assumption have also been given for completeness.
Finally, a brief conclusion is given in Section 5.

2. Model Formulation
To begin with let us consider a group of n patients who have undergone treatments for

certain disease. These n patients can also be considered prospectively especially when one is
indulged with experiments involving clinical trials. It is to be noted that the present paper
primarily considers a group of advanced stage caner patients treated with either radiotherapy
(RT) or chemotherapy followed by radiotherapy (CT+RT). We further assume that out of n
patients receiving a particular therapy, survival times xi (i =1,..., r) for r patients are observed
completely whereas for remaining n-r patients, we simply have the information that jth patient
left the study at the censoring time, say cj (j=r+1,…,n). If we consider x’s to follow Weibull
model with parameters (α, β), the corresponding likelihood function (LF) can be written as
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where x is used to denoted the available information on survival times. The term )Pr( jj cx >
is the survival function at cj corresponding to the Weibull model and it is available in a nice
closed form. This last term occurs in (3) because of the censored data and it can be completely
removed if there had been no censoring and survival times for all the n patients are observed
completely, that is, r itself becomes n.
           The Bayesian formulation next requires appropriate priors for the parameters. If we have
enough information that can help us to go for informative prior, it may certainly be preferred
over all other choices. Otherwise it is better to stick to non-informative or vague priors. In this
paper we prefer taking a vague choice on the lines of Upadhyay et al. (2001) (see also
Singpurwalla (2006)). The priors considered by the authors are

1).(),( −∝ βαβαg                                                 (4)
Combining the LF with the prior via Bayes theorem yields the posterior that can be written upto
proportionality as
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The posterior given in (5) can be analyzed by any of the various available techniques
(see, for example, Upadhyay et al. (2001)). The solution is not that difficult, as we often require
solving only one-dimensional integral whether the interest focuses on joint posterior or the
marginal posterior. There are several other approximate techniques (see, for example,
Gamerman and Lopes (2006)) which can equally well be applied to obtain the desired
inferences from the posterior given in (5). We, however, advocate the use of sample based
approaches, in particular the Gibbs sampler, simply because of its inherent ease.

Before we provide a brief discussion of the implementation of Gibbs sampler
algorithm on the posterior (5), let us briefly review the algorithm itself. The Gibbs sampler
algorithm is a Markovian updating scheme that proceeds by generating from various full
conditionals specified upto proportionality from the joint posterior, the latter also needs to be
specified upto proportionality only. In order to run the algorithm some initial values are
assigned at the beginning to the generating variates and then the chain proceeds in a cyclic order
using the most recent values of all other variates. The details about the algorithm, its necessary
implementation, and the convergence diagnostic issues can be found in Smith and Roberts
(1993) and Upadhyay et al. (2001) among others. The algorithm can be implemented either by
means of a single long run of the chain or by means of multiple chains of long run and then
outcomes can be picked up once the convergence is assured in the generating chain. In a single
long run of the chain the outcomes can be picked up from equidistant positions to avoid serial
correlation among the generating variates. Similarly, for parallel chains the outcomes can be
taken from the same relative positions after the convergence is assured (see, for example, Smith
and Roberts (1993)). The final selected outcomes can be regarded as random samples from the
joint posterior with components as the random samples from the corresponding marginal
posteriors.

The Gibbs sampler algorithm has an apparent advantage when one is interested in the
posterior of some non-linear function of the original variates. The analytical derivation of this
posterior is often difficult. The Gibbs sampler algorithm suggests that samples from such a
posterior can be easily obtained by replacing each parameter in the nonlinear function with the
corresponding sample. Thus sample-based estimates can be easily derived once the final
samples are made available from the corresponding posteriors. In case of censoring Gibbs
sampler can be routinely extended without any extra burden. We apply the scheme on the
concerned posterior in a usual way, treating the censored observations as further unknowns. The
rest of the developments are same except that new full conditionals are introduced
corresponding to the unknown censored data. That is, the full conditionals corresponding to
unknown parameters will be same as would have been obtained had there been no censoring.
The full conditionals corresponding to independent censored data are, however, the parent
sampling distributions truncated in the appropriate regions (see, for example, Upadhyay et al.
(2001)). Thus the unknown censored data can be generated as independent draws from the
truncated parent sampling distribution.

The implementation of the algorithm for the posterior (5) is, therefore, quite
straightforward. We simply need to think for the full conditionals of α and β. We also need to
think for the full conditionals corresponding to unknown censored data. It can be shown that the
full conditional of α reduces to gamma distribution after a simple transformation whereas that of
β can be shown to be log-concave. The full conditional corresponding to censored data, say xj

(>cj), is truncated Weibull distribution in the region (cj, ∞). An apparent advantage of this
scheme is that it can be used to assess the unknown censored data exactly the way it does
provide information on unknown α and β. That is, once the convergence monitoring is done on
all the unknowns, the samples from the generated chains can be used to study the desired
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features of interest. We skip a detailed discussion of the Gibbs sampler implementation to the
posterior corresponding to the Weibull model and refer to Upadhyay et al. (2001) for the same.
The authors have systematically detailed every little step on its implementation (see also
Singpurwalla (2006)).

As already mentioned, the Weibull distribution reduces to one-parameter exponential
distribution when the shape parameter β becomes unity. In this case if we consider the prior for
α proportional to ,1−α  the corresponding posterior can be easily reduced from (5) by putting β
=1. The posterior after a simple reciprocal transformation can be written as




























+−∝ ∑ ∑

= +=

−
r

cxxp
i

j

n

rj
i

r
e

1 1

1 )()(exp)()( λλλ                                                             (6)

where λ = α-1.  Obviously, (6) is gamma density with shape parameter r and scale parameter
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easily managed for any desired inferences. We shall, however, use samples from (6) to draw the
needed inferences and employ the same strategy that has been discussed for Weibull
distribution with censored data situation.

3.  Model Compatibility and Comparison
Model compatibility study is meant to see if a model under consideration does provide

a good fit to the data in hand and, therefore, provides a valid reason for considering a model. A
number of tools have been suggested for studying compatibility of a model in both classical and
Bayesian frameworks. An important approach in classical paradigm is to use tail area
probability or better known as the p-value based on a goodness of fit test and to replace the
unknown parameter(s), if any, involved in the process by some good estimates usually the
maximum likelihood (see, for example, Lawless (2002)). Bayesian paradigm offers a number of
possibilities for checking model compatibility, the most important being the one based on
predictive simulation ideas. The idea suggests that if the observed data and the data predicted
from the model exhibit some kind of similarities, the model under consideration can be
considered compatible with the observed data (see, for example, Gelman et al. (1996)).
Bayesians have also defined a number of versions of p-values analogously to the classical
approach but they have suggested integrating out the unknown parameter(s) by some of its
possible distributions. These versions are referred to as the prior, posterior, conditional, or
partial posterior predictive p-values. Each of these measures has their own merits or demerits
but we do not go it to the details of these various aspects due to space restriction. Gelman et al.
(1996), Bayarri and Berger (1998), and Upadhyay and Mukherjee (2008), etc. are some
important references for a detailed discussion of these ideas. For the purpose of our illustration,
we consider the use of posterior predictive p-value based on an important classical discrepancy
measure in spite of the fact that the measure has invited a few shortcomings too. We simply use
it because of its ease and also because of the fact that our compatibility study requires only a
tentative answer and the final answer will be based on the result of model comparison.
Moreover, as pointed out by a number of authors, the posterior predictive p-value can be used at
least for a preliminary check of model compatibility (see, for example, Upadhyay and Peshwani
(2008)). Before we proceed further, let us review it briefly on the lines of Upadhyay et al.
(2001) (see also Gelman et al. (1996)).

Let the observed data be denoted by x and the predictive data by y, D is the measure
of discrepancy between the samples and population values and f (.| θ ) be assumed model for
the data. Then the Bayesian posterior predictive p- value can be defined as

∫ ≥=≥= θθθ dxfpfD ),(),Pr(Dx)],fDD[(Prp 1212                                   (7)
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where x)f,p(θ  is the posterior distribution of θ  under the model f, D1 and D2 are the
measures of discrepancy corresponding to the observed and the predictive data, respectively.
Equation (7) can be regarded as the classical p-value averaged over the posterior distribution of
θ  under the model f.  If we assume, for example, chi- square as a measure of discrepancy
(Gelman et al. (1996)), we can write
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              where di (i=1,…, n) is the ith observation in the considered data set and n is the
corresponding sample size. It is to be noted that chi-square discrepancy measure is arbitrarily
chosen for illustration only; one can similarly define p-values based on other discrepancy
measures as well. Thus using (8) in (7), the posterior predictive p-values corresponding to chi-
square discrepancy measure can be easily obtained. Our conclusion based on the evaluated p-
value will simply be ‘larger the p- value, better is the compatibility of the considered model
with the observed data’ (see also Upadyay and Peshwani (2008)). The integration in (7) can
often be a major difficulty in evaluating the p-value and the situation worsens with the
increasing dimensionality of θ. The situation can, however, be easily managed if one resorts to
sample based approaches for simulating the posterior x)f,p(θ  and then evaluates the sample-
based estimate of the corresponding p-value. Upadhyay et al. (2001) have provided details of
the various steps involved in the evaluation of (7) using sample based approaches.

In performing compatibility study, it is often seen that a number of models are found
compatible with the data in hand. The question, therefore, arises which model should be finally
considered for the data. The question, although difficult, can only be answered if one performs
some sort of comparison among the competitive models and then accordingly recommends a
model. It is to be noted that the results of model compatibility study can never be used for
comparing the models rather it can be used only to check if the assumed model is compatible
with the data or not. Before we proceed further, let us make a simple comment on parsimony
principle which recommends a model which is simplest. Undoubtedly, this principle is quite
useful and advocated by a number of authors but sometimes, while recommending a model
according to this principle, the experimenter may loose some of the important inferential
aspects (see, for example, Upadhyay and Mukherjee (2008)). In the present paper, we shall
focus on BIC although a number of other sophisticated tools can also be used for the desired
comparison.

3.1 Bayes Information Criterion
 The BIC also known as Schwarz criterion is a well-known criterion for comparing the

models. According to this criterion, a model is recommended if it minimizes the term given by

BIC = -2 (log (L(θ )) + p log (n)                                                                                            (9)

where L )(θ  denotes the maximized likelihood function corresponding to a model indexed with
the parameter θ, n denotes the total number of observations and p is the dimension of the
concerned model. First term supports the more complex model and second term supports a
simpler model having low dimensions. It is obvious from (9) that BIC is free from any prior
information and it penalizes the complexity of the model according to its dimension. It is a
consistent measure in the sense that the probability of selecting the correct model tends to unity
as the number of observations approaches to infinity although it suffers from a disadvantage that

it is a valid measure only for a well-behaved model. The quantity θ  in (10) can be replaced by
posterior mode if the prior is vague. Similarly, an extension of BIC to censored data problems is
routine if one employs sample-based approaches, in particular the Gibbs sampler, and replaces
the corresponding censored data with their estimates obtained through Gibbs run.
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4. Numerical Illustration
For numerical illustration, we considered a real data set on survival times of patients

with stage III non-small cell lung cancer (NSCLC). The data were the results of phase III
clinical trial conducted by Cancer and Leukemia group B (CALGB) in United States of America
from May 1984 to May 1987 in the form of five interim analyses. The objective of the study
included the comparison of two cancer therapies, that is, CT+RT on one hand and RT alone on
the other. These clinical trials mostly used log rank tests and Kaplan-Meier plot (see, for
example, Lawless (2002)) for the comparison of two therapies at each interim analysis. After
the trial stopped enrolling the new patients, enrolled patients were followed up until the
summer of 1992 and this data set was finally analyzed by Li (1994), Qian et al. (1996), among
others.  The complete description of the entire study is given in Li (1994) (see also Qian
(1994)). We shall use the final data of 1992 to carry the analysis proposed in this paper. The
data set in an ordered form is summarized in Table 1 where asterisk with an observation
denotes the censored value.

Therapy Survival times in days
RT 0.27, 0.37, 1.23, 1.27, 1.27, 2.27, 2.30, 2.40, 2.60, 2.73, 2.87, 2.93, 2.97,

3.37, 3.57, 3.63, 4.23, 4.40, 4.50, 4.83, 5.33, 6.00, 6.10, 6.10, 6.77, 6.87,
6.90, 7.17, 7.50, 7.57, 7.63, 7.67, 8.13, 8.30, 8.53, 8.57, 8.90, 9.50, 9.67,
10.13, 10.27, 10.47, 10.53, 10.67, 10.67, 10.83, 12.63, 12.67, 12.77, 13.10,
13.23, 14.20, 15.00, 15.20, 15.33, 15.83, 16.10, 16.23, 16.87, 17.50, 18.10,
19.73, 19.77, 19.93, 21.43, 23.30, 23.40, 31.20*, 31.93, 32.90, 42.47*,
44.13, 45.40, 62.50*, 64.87*, 73.43*, 83.77* (n=77, r=71)

CT+RT 0.20, 1.83, 2.70, 3.13, 3.90, 3.97, 4.03, 4.50, 5.03, 5.20, 5.93, 6.07, 6.27,
6.33, 6.47, 6.57, 6.70, 7.00, 7.00, 7.20, 7.47, 7.53, 7.97, 8.33, 8.73, 9.03,
9.43, 9.47, 9.50, 9.80, 10.03, 10.10, 10.97, 11.40, 11.67, 12.03, 12.83,
13.30, 13.73, 14.07, 14.57, 15.57, 16.40, 16.53, 16.53, 16.87, 17.23, 17.47,
18.13, 18.53, 18.93, 19.03, 19.07, 20.47, 20.67, 21.20, 23.00, 23.43, 28.83,
39.47*, 40.27, 46.90, 47.83, 48.07, 52.60*, 52.67*, 55.03*, 55.73*, 55.77*,
56.67*, 57.43*, 59.03*, 62.37, 62.40, 66.07*, 66.33*, 69.13* 73.93* (n=78,
r=65)

Table 1: Survival times of NSCLC patients receiving two different therapies

Li (1994) and Qian et al. (1996) (see also Qian (1994)) assumed exponential and
Weibull models, respectively, for analyzing the data corresponding to RT. For data
corresponding to combined therapy CT+RT, they however assumed the same models but with a
restrictive assumption on the scale parameters. The authors assumed that the logarithm of the
ratio of the scale parameters for the models corresponding to CT+RT and those corresponding to
RT is constant. This assumption makes sense with regard to the exponential model as the ratio
becomes simply the hazard ratio but it is certainly not appealing with the assumption of Weibull
model. The authors finally considered a comparison of two therapies in a Bayesian framework
based on estimated survival functions and concluded that the combined therapy CT+RT does
provide a significant improvement over RT in terms of the survival of the patients. We perhaps
do not find any significant work where an unrestricted analysis of the data is given and also
where an attempt has been made on model comparison.

In order to formalize our analysis, we first simulated the posterior (5) separately for
RT and CT+RT data using the Gibbs sampler algorithm. The details of the implementation of
the Gibbs sampler algorithm for censored data situations can be seen in Section 2. For the
initial values of α and β, we considered maximum likelihood estimates using the corresponding
data sets whereas for the initial values of unknown censored observations xj, we used the
corresponding truncation points cj (j= r+1,…, n). We next considered a single chain of long run
through Gibbs algorithm and the convergence monitoring was done for both (α,β) and unknown
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censored observations using the ergodic averages. Finally, samples of size 1000 corresponding
to each variate were picked up from the generating chain using equidistant (every 10th)
outcomes. The gaps were chosen to make serial correlation negligibly small. These samples can
be regarded as random samples from the distributions of the corresponding unknowns. Thus the
sample-based inferences can be easily drawn once the samples for the corresponding unknowns
are made available. Sample based estimates in the form of posterior modes are shown in Table
2. The table also provides the estimated modal values of the corresponding unknown censored
observations. All these estimates are based on samples of size 1000 from each of the unknowns
and will be used for further inferences. The estimated survival curve corresponding to each
therapy is shown in Figure 1 when the underlying model is Weibull distribution. These
estimated curves are based on the modal values of the corresponding estimates and have been
drawn using R software.

Estimates corresponding toVariate

RT CT+RT
α 15.421 26.669

β 0.968 0.926

Censored
observations (in an
ordered form)

38.554, 44.401, 69.817,
70.358,  77.294,  106.001

46.851, 64.093, 70.201, 71.579,
72.375, 72.624, 72.807, 72.955,
74.980, 77.516,  84.064,  84.382,
90.600

Table 2: Estimates based on sample of size 1000 corresponding to RT and CT+RT data when the
underlying modelling assumption is Weibull
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Figure 1: Estimated survival functions based on RT and CT+RT data
when the underlying modelling assumption is Weibull.

A number of results can be reported likewise once the samples are made available but
we shall concentrate on two important findings based on Table 2 and Figure 1. First, the
estimated posterior mode of β is quite close to unity for both RT and CT+RT which, in turn,
provides an impression that exponential model is a strong candidate for both the data sets.
Second, the survival curve corresponding to CT+RT is, in general, higher than the
corresponding curve for RT which shows that the combined therapy provides a better survival to
the patients suffering from NSCLC (see Figure 1). A similar conclusion was drawn by earlier
researchers but the simplicity of our procedure is certainly an added advantage.

Guided by our first conclusion above, we propose to consider the exponential
modelling assumption (that is β=1 in the previous formulation) as well for the proposed
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analysis and then intend to provide a comparison of the two models so that a better one can be
recommended. The corresponding posterior is given in (6). We separately implemented our
strategy for exponential distribution (see Section 2) on both RT and CT+RT data and generated
a single chain of long run. It is to be noted that exponential distribution has a single parameter
but several unknowns in the form of censored observations. We picked up samples of size 1000
from the corresponding distributions of each of the unknowns in a way similar to what has been
discussed for Weibull modelling assumption. Sample based estimates of λ in the form of
posterior modes are shown in Table 3 for both the data sets. The table also provides the
estimated modal values of the corresponding unknown censored observations.

Estimates corresponding toVariate

RT CT+RT
α 14.703 26.371

Censored
observations (in an
ordered form)

37.974,  44.312,  69.438,
70.155,  76.840, 85.800

51.221, 62.705,  66.262,  68.203,
68.514, 69.725, 69.771,  70.025,
73.482, 76.764,  77.194, 77.668,
85.597

Table 3: Estimates based on sample of size 1000 corresponding to RT and CT+RT
data when the underlying modelling assumption is exponential

Figure 2 presents the estimated survival curves for the two therapies using the
estimated modal values given in Table 2. These curves are more or less similar to those shown
in Figure 1 and provide exactly the same conclusion that was drawn using the Weibull model
for the two data sets. That is, combined therapy CT+RT provides significant improvement in the
survival of patients in comparison to those who are treated with RT alone. Another important
finding is based on the estimates reported for censored observations. It is to be noted that these
observations correspond to the patients who failed to report during follow up and, as such, their
actual survival times could not be recorded. Based on the estimated modal values of these
censored observations, one can at least get an idea of actual survival times for these patients. It
is to be noted that exponential model, in general, provides smaller estimated values for the
highest ordered censored observations than those based on Weibull modelling assumption. This
may not be a striking finding but an underestimated value is certainly a good indicative for
deciding improved therapy. Moreover, we should not expect enough survival for such category
of patients who left the study (or treatment) after surviving for a longer duration of time (see
Tables 1-3).
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Figure 2: Estimated survival functions based on RT and CT+RT data
when the underlying modelling assumption is exponential.
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The conclusion in favour of combined therapy CT+RT was noted by earlier authors as
well who considered the two data sets and the above two modelling assumptions though their
approaches were slightly different (see, for example, Li (1994) and Qian et al. (1996)).
Moreover, none of the authors tried comparing the models or testing β against unity. They
simply considered either exponential or Weibull model without giving any justification of the
fact that why they are using these models. Besides, they took some unrealistic assumptions
especially when they used Weibull model for the reported data.

In the above study we advocated in favour of the exponential model simply because
the estimated β, when Weibull model was considered to be a true model, was found to be close
to unity. This was obviously a vague criterion and, therefore, we propose to consider a
comparison of the two models based on BIC. Before we begin, we shall however study
compatibility of the models using posterior predictive p-value obtained by considering the
Bayesian version of chi-square discrepancy measure. In order to obtain the same, we first
considered the sample-based output, each of size 1000, of the unknown parameters involved in
both exponential and Weibull models separately for the two data sets. We replaced the censored
observations with the corresponding estimated modal values as mentioned before. Using each
observation of the sample-based output in the first step; we then generated 1000 predictive
samples with sizes equal to those of observed data and correspondingly obtained D2 and D1
based on predictive and observed data sets, respectively. Posterior predictive p-values based on
chi-square discrepancy measure were then obtained using (7) as proportion of times D2 exceeds
D1 (see also Section 3). The values were found to be 0.458(0.711) and 0.248(0.649),
respectively, when Weibull and exponential models were considered to be the true models. The
bracketed values correspond to CT+RT data.

It is obvious from the results that both the models are compatible for the two data sets
and none can be rejected. It is, however, important to mention here a few things before we close
our discussion. First, we are aware with the fact that model compatibility study based on
posterior predictive p-values has invited a few criticisms (see, for example, Bayarri and Berger
(1998)) especially the fact that it incorporates double use of data, once in simulating posteriors
and second, in obtaining the p-value. This can be an important demerit but in either case it can
be used as a preliminary tool as mentioned earlier (see also Upadhyay and Mukherjee (2008)).
Second, once exponential model is justified for the data in hand, the Weibull model being a
more complex generalization is certainly justified. Therefore, we do not need to consider the
compatibility of latter but we have done simply for the sake of completeness of our study. A
word of remark: the model compatibility study or the p-values should not be taken as model
selection tool so we are not recommending any particular model at this stage. The parsimony
principle, however, suggests that since both the models are compatible, we should go with the
simple exponential model.

To complete the study for recommending a model, we evaluated BIC for the two
models. These values were found to be 576.36(658.53) and 583.57(668.38), respectively, for
exponential and Weibull models where the bracketed values correspond to those based on
CT+RT data.  Since the values corresponding to exponential model are, in general, smaller to
those corresponding to Weibull model, we may safely recommend exponential model for both
RT and CT+RT data although the values corresponding to the two models are not wide apart
from each other. The same conclusion was drawn by parsimony principle as well, which we
advocated earlier when both the models were found compatible with the data but making a
conclusion after comparing the two models provides an added safety.

5. Conclusion
Advanced stage cancer patients are usually treated with RT or combined CT+RT. It

has been a long and continuous debate among the medical practitioners that which therapy
actually provides a better survival. A number of studies are performed earlier but most of these
studies do not provide any convincing way for dealing with censored data although the studies
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have shown that CT+RT does provide better survival. The present study provides a similar
conclusion based on Weibull modelling assumption, deals systematically with censored data,
and successfully obtains the estimated survival times for such censored data situations.

Weibull distribution is quite flexible and perhaps because of the same reason it was
used earlier by Qian et al. (1996) for the data in hand although he did not provide any
convincing argument for considering this model. Our proposed study not only examines the
compatibility of the Weibull model with the data but also examines the suitability of
exponential model so that the resulting inferences become easy to draw if the same is
recommended. It has been successfully shown after comparing the two models that unnecessary
complication by assuming Weibull model can be avoided. This is what parsimony principle also
suggests after getting compatibility of the two models.
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