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Abstract 
 The present study evaluates various reliability measures including transition state probabilities of a 
sub system on a website which caters to the ‘contact us’ functionality using copula technique. The system in 
context uses a combination of both frequently asked questions and contact us forms on the website to help 
customers getting resolutions to their queries. The failure and repair times for the system follow exponential 
and general distribution respectively. Introducing two different types of repair between adjacent states the 
system has been studied to evaluate MTTF, steady state probability, availability and cost analysis by using 
Gumbel-Houggard family of copula. 
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1. Introduction 

As the complexity and automation of equipments increased, it resulted in severe 
problems of maintenance and repair. This put forward the tasks of developing a systematic 
approach to the study of any phenomena and process that can lead to failure free operation or 
render service for a good or at least reasonable period of time. Authors [1-7] have described 
various reliability aspects and it’s principles in the modern day life.  

The present paper calculates reliability of a sub system on a website which caters to the 
contact us functionality. Customers get in touch with the enterprise using “Contact us” 
functionality on the website. Generally there are different channels by which customers try to get 
the resolution on their queries (frequently asked questions, phone contacts, website contact us 
form, live chats etc). The system in context is a combination of both frequently asked questions   
( FAQ) and contact us forms. 
 
2. System Description 

These days in the ecommerce market enterprises strive for providing highest quality of 
customer service to its customers. This is reflected in the design of the website to effective call 
handling in the call centres. One of the main objectives of this is to provide customers an efficient 
way of getting their queries resolved. There are different ways in which this can be achieved, 
like: frequently asked questions (FAQ) section on the website with an intention of capturing the 
generic queries for the customers, live chats with the call centre agents, contact us form. These 
“Contact us” forms are designed in a way to capture the key details which will enable back office 
agents to have enough details to resolve the query. In case the nature of the query is to be in touch 
with customers, call centre agents do so in the preferred day/time asked by the customers. 

The system in context has two main channels namely, frequently asked questions and 
Contact us forms. Customers come to the website and try to get the queries resolved using FAQ 
section of the website. In case they do not get answer to the query they will submit a contact us 
form with details of the query so that customer service agent of the enterprise gets in touch with 
the customers. The contact us forms are designed in a way to capture customer details in an easy 
fashion in very less time. One of the facilities which enables this is, users just enters the house 
number and postcode of the address in which customer lives and system does the address lookup 
using a “Quick address Lookup” software. This software has a list of all addresses in the country 
(list is updated regularly to keep it up to date). In case this software is down the customer is not 
able to lookup his/her address. If the customer is having an overseas address for communication, 
there is provision of manual address entry. 
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Keeping the above facts in view and analysing the different possibilities, the system has 
been mathematically modelled. By incorporating two different types of repair between adjacent 
states the system has been studied to evaluate MTTF, steady state probability, availability and 
cost analysis by using Gumbel-Houggard family of copula. The failure and repair times for the 
system follow exponential and general distribution respectively. Further, the supplementary 
variable technique is used to study various measures of the system. At last some numerical 
examples have been taken to observe the particular cases. 
 
3. Assumptions 

i. Initially the system is in good state. 
ii. System is partly functional if frequently asked questions repository is down 

as contact us functionality is available as an alternative. 
iii. Contact us form uses quick address search functionality which enables users 

to find the address where they are based instead of manually entering it.   
iv. System is assumed to be functional even if quick address search is not 

working; this is because customers can manually enter the address on the   
website. 

v. In case database is down, system is not able to store the information entered 
by the customers on the contact us forms and is assumed to be completely 
failed. 

vi. The repair of a failed unit starts at once. 
vii. The repaired unit works like a new one. 

viii. The failure and repair time for the system follows exponential and general 
distribution respectively. 

ix. Transition from the completely failed state S3 to the initial state S0 follows 
two different distributions. 

x. Joint probability distribution of repair rate from completely failed state S3 to 
the initial state S0 follows Gumbel- Houggard family of Copula. 

 
4. State Transition Diagram 

Figure 1 represents the state transition diagram of the system. 
 
 
 
 
 
 
                                
 
 
 
 
 
 
 
 
 

S3
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                                                             Figure 1: State transition diagram 
5. Notations                

                         S0 : Denotes the state when all the operating units are in working condition. 
                         S1 : Denotes the state when quick address search has failed. 
                         S2 : Denotes the state when frequently asked questions section on the website has 

failed. 
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                          S3: Denotes the state when the database has failed and the system is in   
completely failed state. 
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  6. Formulation of Mathematical Model 
By probability of considerations and continuity arguments we can obtain the following 

set of difference - differential equations governing the present mathematical model 
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The boundary conditions are: 

D1P (0 ,t)= P (t)0λ                                                                                                                        (5)                           

2 D D1 0P (0,t)= P (t)+ P (t)λ λ                                                                                                        (6)                           

3 0 1 2P (0,t)= [P (t)+P (t)+P (t)] fλ                                                                                                (7)                           
 Initial conditions are: 
 P0 (0) =1, and other state probabilities are zero at time t = 0.                                                      (8)                           
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7. Solution of the model 
 Taking Laplace transforms of equations (1)-(7) and using equation (8), one  

gets equations (9)-(12). 
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Boundary conditions are: 

1 D 0P (0,s)= P (s)λ                                                                                                                    (13)                          

2 D 1 D 0P (0,s)= P (s)+ P (s)λ λ                                                                                                      (14)                           

3 f 0 1 2P (0,s)= [P (s)+P (s)+P (s)] λ                                                                                           (15)                           
Solving equations (9) - (12) and using equations (13) - (15), one can get equations (16)-(19) 
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The Laplace transforms of the probabilities that the system is in up (i.e. good or partially failed) 
and failed states at time‘t’, are as follows 
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3( ) ( )failedP s P s=                                                                                                                     (21)                            
 Also it is interesting to note that  

1( ) ( )up failedP s P s s+ =  
  

8. Asymptotic behavior of the system 

        0
Using Abel's lemma (say)in equations (4.16)-(4.21), provided 
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9. Particular Case 
When repair follows exponential time distribution, setting, 
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10. Numerical Computations 
10.1. Availability Analysis 
      Setting the numerical values say: 
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in equation (20) and then taking Inverse Laplace transform, we get 
3.21828( ) 0.84464 0.15536 t

upP t e−= +
 

3.21828( ) 0.15536 0.15536 t
failedP t e−= −

 
The values of Pup (t) and Pfailed (t) for different values of ‘t’ is shown in Table 1 and the 

corresponding graph is shown in the Figure 2. 
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S. No. Time t Pup(t) Pfailed (t) 

1 0 1 0 
2 1 0.85086 0.14914 
3 2 0.84489 0.15511 
4 3 0.84465 0.15535 
5 4 0.84464 0.15536 
6 5 0.84464 0.15536 
7 6 0.84464 0.15536 
8 7 0.84464 0.15536 
9 8 0.84464 0.15536 
10 9 0.84464 0.15536 
11 10 0.84464 0.15536 

         Table 1: System reliability data                   Figure 2: Graph of reliability Vs time                          
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10.2. Mean Time To Failure (MTTF) 

                    Substituting where in equation (20), we can obtain
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Setting the numerical values, say  
one can get the Table and the Figure 0.01, 0.02, 0.03,...  2  3.                                    fλ =
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S.No. Failure rate MTTF 
1   0.01 100.00000 
2   0.02 50.00000 
3   0.03 33.33333 
4   0.04 25.00000 
5   0.05 20.00000 
6   0.06 16.66667 
7   0.07 14.28571 
8   0.08 12.50000 
9   0.09 11.11111 
10   0.10 10.00000 

                 
   Table 2: Mean Time To Failure                              Figure 3: Graph of MTTF Vs Failure rate                                 

 
10.3. Cost Analysis 
   Setting the numerical values say 
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in equation (18) and then taking Inverse Laplace transform, we get 
3.21828 2

2 ( ) 0.21116 0.01981 0.0737 0.09351t tP t t e e− −= + + −  
Let ‘M’ and ‘N’ be the revenue per unit time and service cost per unit time respectively, then the 
expected profit E(t) during the interval ]0,t] is given by 

20 0
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−

− −
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− − − +
Setting M = 1 and N = 0.05, 0.1, 0.5 then equation (28) yields Table 3 and the 

corresponding graph is shown in Figure 4. 
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 S.No. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Time t         Expected profit E(t) 

  N=0.05 N=0.1 N=0.5 
1 0 0 0 0 
2 1 0.84740 0.80382 0.45519
3 2 1.65399 1.57049 0.90257
4 3 2.45919 2.33620 1.35226
5 4 3.26439 3.10194 1.80241
6 5 4.06958 3.86770 2.25262
7 6 4.87478 4.63345 2.70283
8 7 5.67998 5.39921 3.15305
9 8 6.48518 6.16497 3.60327
10 9 7.29038 6.93072 4.05349
11 10 8.09557 7.69648 4.50371

        Table 3: Cost Analysis of the system                    Figure 4: Expected profit Vs time  
 
11. Interpretation of Result 

The system reliability obtained in Table (1) shows that the reliability decreases with 
time but in the long run it approaches to a constant value 0.84464. From Table (2) we observe 
that M.T.T.F. decreases rapidly in the beginning, but later on with the passage of time, it 
decreases approximately at a uniform rate. Further, by analyzing the graph shown in Figure (4) 
we can conclude that as the service cost N approaches towards 1 from N = 0.1, the relative 
expected profit decreases but below N = 0.1, this decrease is very low. 
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