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Abstract 

This paper deals with the estimation of square of coefficient of variation which is 
comparatively a more stable quantity using ratio type estimator. Its bias and mean square error 
(MSE) are found to the first order of approximation. An optimum subclass of estimators is also 
obtained and a comparative study with the conventional square of sample coefficient of variation 
estimator is made. It has further been shown that estimation of parametric values involved in the 
optimum subclass does not reduce the efficiency of the proposed estimator. An empirical 
example showing the increased efficiency of proposed estimator over square of sample 
coefficient of variation estimator is also included as an illustration. 
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1. Introduction 

The use of auxiliary information can increase the precision of an estimator when study 
variable is highly correlated with auxiliary variable x. There exist situations when information is 
available in the form of attribute ψ  which is highly correlated with variable y under study. For 
example (i) y may be use of drugs and ψ  may be the gender (ii) y may be the production of a 
crop and ψ  may be the particular variety. 

       Let there be N units in the population. Let ( ,iY iψ ), i = 1,2,…,N be the corresponding 
observation values of the  ith  unit of the population of the study variable Y and the auxiliary 
variable ψ  respectively. Further we assume that iψ = 1 and iψ = 0, i = 1, 3, …, N depending 

upon if it possesses a particular characteristic or does not possess it. Let  and 

denote the total number of units in the population and sample respectively 

possessing attribute
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ψ . Let 
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AP =  and 

n
ap =  denote the proportion of the units in the 

population and sample respectively possessing attribute ψ . Let a simple random sample of size 

n from this population is taken without replacement having sample values ( ,iy iψ ) ; i = 1,2, 3, 
…, n. 
        Using information on single auxiliary variable (ψ ),  the estimator  for estimating the 

square of population coefficient of variation 
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under study y is proposed as follows; 
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where k is the characterizing scalar determined by minimizing the mean square error of   
and 
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y  is the sample mean of y values, p and P are sample mean and population mean of 
auxiliary variable (ψ ) respectively. 
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Assuming that first n units have been selected in the sample from N units of the 
population using simple random sample without replacement.  

 Let,   
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Now, let            0eYy += ,    1ePp += ,    2eZz +=                                             (1.2) 

So that 0)()()( 210 === eEeEeE  

 From equation (1.1),     
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  Now taking expectation on both  sides and using this value, we get,  
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Now, using the following expression for a simple random sample of size n without 
replacement from a population of size N,  
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Now from equation (1.4) we have,        
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  2. Mean Square Error (MSE) Of Estimator  
2ˆ
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The Mean Square error of estimator , to the first order of approximation, is given by  
2ˆ
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Substituting the values of expectations involved, we get 
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3. Minimum MSE Of  2ˆ
RAC

Using principle of maxima and minima we obtain optimum value of k from equation 
(2.1) minimizing ( )2ˆ

RACMSE    as follows:     
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for this value of k0, MSE of  is minimum and is given by,  
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It may clearly be seen from equation (3.2) and (3.3) that the estimator  has less 

mean square error than that of   , and therefore,  is more efficient than the 

conventional estimator  , in the sense of having lesser MSE. 
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4. Estimation of Optimum Class of Estimators 
 In case of optimum value k0 of k in (3.1) or its guessed value being unknown that is the 
population parameters involved in the expression of k0 may be unknown in practice, the 
alternative is to replace these parameters by their estimates from sample values. Thus for large N 

or simple random sampling with replacement, replacing and 2
021121 ,,, yCμμμ Y  by their 

estimators. 
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Some times in practical situations 02μ  may be known in advance as it is related to 

auxiliary variable ψ  and in such situations we do not need 02μ̂ .Hence the mean square error of 

the resulting estimator   depending on the estimated optimum value of k as 
*2ˆ

RAC [ ]optk0
ˆ and to the 

first order of  approximation is given by,  
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Now the Mean Square error of estimator  is given by,                                                  
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 which is same as  given by (3.2).  )ˆ( 2
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 Thus, if the optimum value of k is not known, it can be estimated by (4.1) and the mean 

square error of the resulting estimator  is equal to that of   with optimum k given by 

(3.2). So in the light of practical utility  may be preferred to  without loosing efficiency.  
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5. Empirical Example   
       From the data dealing with the number of Labourers X (in thousands) and the quantity of raw 
materials Y (in lakes of bales)  for the population size N = 20, the required value of population 
parameters are calculated, the variables Y and X are positively correlated. Here we associate a 
qualitative variable ψ  with X and take 1=ψ If X > 400 & 0=ψ  if  X  ≤  400. Further to 
study the property of proposed estimator, random sample of size 8 is taken and required sample 
values has been calculated. [Data Source: P.Mukhopadhyay, p. 96] 

41.5=Y , , ,    55.0=P 60.0528082 =yC 1058.530=μ , 715.40120-21 =μ , 

35456.412540 =μ , 825.111 =μ , 208.94834120 =μ .         
And for n = 08 

428.0=p ,       44=y ,      ,4170.194941ˆ 02 =μ 3393.5702ˆ0.05916, 30
2 == μyc        

9520.50516-ˆ 21 =μ ,  0625.12407ˆ 40 =μ ,     5357.141ˆ 20 =μ , -1101.5179ˆ11 =μ     
Using above values, we get 
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 The relative efficiency of  with respect to  is, 2ˆ
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       Showing that the proposed estimator  is better than  in the sense of having lesser 

mean square error. Relative efficiency of  over  based on estimated MSE of  and 
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