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Abstract 

The problem of minimum risk point estimation under squared-error loss function (SELF) for the 
parameter associated with the generalized life distributions, is considered. The failure of fixed sample size 
procedure is established. Sequential procedure using uniformly minimum variance unbiased estimator 
(UMVUE) at both the stopping and estimation stages is developed and the second-order approximations are 
derived. The regret of the sequential procedure is obtained and the condition under which the regret may be 
negative is discussed. Finally, an improved estimator is proposed and its dominance over the UMVUE (in 
terms of having smaller risk) is also established. 
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1. Introduction 

A lot of work has been done in the area of sequential point estimation for the 
parameters associated with various probabilistic models useful in reliability analysis. Robbins 
(1959) considered the problem of sequential point estimation of the mean of a normal population 
under absolute error loss and linear cost. Starr (1966) generalized these results considering a 
family of loss functions and cost function of the general form. Starr and Woodroofe (1969) 
proved the bounded nature of ‘regret’ of the sequential procedure of Starr (1966). Later on, Starr 
and Woodroofe (1972) proposed sequential procedure for the point estimation of mean of an 
exponential distribution and proved the asymptotic bounded nature of ‘regret’. Woodroofe (1977) 
introduced the concept of ‘second-order approximations’ in the area of sequential estimation and 
obtained such approximations for the regret of the sequential procedure for the minimum risk 
point estimation of the mean of gamma distribution. He considered UMVUE at both the stopping 
and estimation stages. Second-order approximations for sequential procedure to estimate mean 
vector of a multinormal population were obtained by Chaturvedi (1986). Isogai and Uno (1995), 
through the bias-correction of UMVUE, proposed another sequential estimator and showed its 
dominance over the UMVUE in terms of having the smaller risk. Similar results for normal and 
exponential distributions have been obtained by Isogai and Uno (1993, 1994) and Mukhopadhyay 
(1994). 

In the present paper, we develop sequential estimation procedure for the generalized 
distributions considered by Chaturvedi et al. (2002, 2003). In Section 2, we discuss the 
generalized life distributions and consider the problem of minimum risk point estimation. The 
sequential estimation procedure and second-order approximations are obtained in Section 3. In 
Section 4, the condition for the negative regret of the sequential procedure is obtained and an 
improved estimator is proposed which dominates the UMVUE. Finally in Section 5, the findings 
of the paper are concluded. 
 
2. The Generalized Life Distributions and Minimum Risk Point Estimation 
 Let the random variable (rv) X follows the generalized life distributions considered by 
Chaturvedi et al. (2002, 2003) with probability density function (pdf) 
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where ‘a’ is known and δ and θ are parameters. Here, g (x) is real valued, strictly increasing 

function of X with g (a) = 0 and  denotes the first derivative of g (x). (x)'g
 The model (2.1) is called the generalized life distributions since it includes the 
following life distributions useful in reliability analysis as particular cases: 
(a) For g (x) = x, a = 0 and δ = 1, we obtain the one-parameter exponential distribution. 
(b) For g (x) = x, a = 0, we get the gamma distribution and for δ   taking integer values, it is  
            known as Erlang distribution. 
(c) For g (x) = xp and a = 0, the model (2.1) gives the generalized   gamma distribution. 
(d) For g (x) = xp, a = 0 and δ = 1, it leads to Weibull distribution. 
(e) For g (x) = x2, a = 0 and δ = 1/2, it represents the half-normal   distribution.   
(f) For g (x) = x2, a = 0 and δ = 1, we obtain Rayleigh distribution. 
(g) For g (x) = x2/2, a = 0 and δ = α/2, it turns out to be chi- square distribution.          
(h) For g (x) = x2/2, a = 0 and δ = 3/2, we get the Maxwell distribution and for g (x) = x2, we  
            obtain the generalized Maxwell distribution. 
(i) For g (x) = log (1+ xb), a = 0 and δ = 1, we obtain Burr distribution.  
(j) For g (x) = log x, a = 1 and δ = 1, it represents Pareto distribution. 

 
The behaviour of hazard-rate for the model (2.1) has been considered by Chaturvedi 

and Tomer (2003). 
Our aim is to estimate parameter θ assuming δ to be known. Given a random sample  

)nX,...2X,1(XX=   of size n, observed from (2.1), the joint pdf of X  is 
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It can be seen from (2.2) that ∑
=

n

1i
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i
g(x  = S (say) is complete and sufficient for the model 

(2.1). Moreover from the additive property of gamma distribution, S follows gamma distribution 
with parameters nβ and θ [see Johnson and Kotz (1970, p.170)]. The UMVUE of θ is 

 with pdf δnS /nθ =
∧
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 Let the loss incurred in estimating θ by  under squared-error loss function (SELF) 
and linear cost of sampling be  

∧

nθ

 n,2θ)(A(A)nL +−
∧

=
n

θ                                                                     (2.3) 

where A is known and positive constant. The risk corresponding to the loss function (2.3) is 

n/2(A)nR += δθ nA                                                                             (2.4)  

Our aim is to minimize the risk (2.4) while estimating θ by nθ
∧

. The value of n minimizing (2.4) 

is θ21)1(Aδon −=                                                                                          (2.5) 
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and the associated minimum risk is .on2(A)onR =  

It is obvious from (2.5) that depend upon unknown parameter θ. In the absence of any 
knowledge about parameter θ, no fixed sample size procedure yields solution to the problem. In 
this situation, we adopt the following sequential estimation procedure. 

on

 
3. The Sequential Estimation Procedure and Second Order Approximations 

Let us start with a sample of size 2m ≥ . Then, motivated by (2.5), the stopping time N 
= N (A) is defined by 

}.nθ21)1(Aδn : m n  { inf  N
∧

−≥≥=                                                     (3.1) 

 When stop, we estimate θ by . The risk associated with the estimator  is Nθ̂ Nθ̂

(N). E2θ)θ̂E(A (A)R NN +−=                                                            (3.2) 
In the following theorem, we derive the second-order approximations for the expected 

sample size and risk associated with the sequential procedure. 
 

Theorem: For all mδ >1, as A ∞→ , 

o(1)1δνon (N)E +−++=                                                                  (3.3) 

and           o(1),13δo2n(A)NR +−+=        where ν is specified.                        (3.4)                 

Proof: Denoting , the stopping rule (3.1) can be written as ∑
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Comparing (3.5) with equation (1.1) of Woodroofe (1977), we obtain in his notations, 

1.oL,onβcβμλ1,)1/(1β 
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We have from Theorem 2.4 of Woodroofe (1977), for mδ > β, 

o(1),1δνon (N)E +−++=  and (3.3) follows. 

It can be easily seen from (3.1) that N is of the form tc given by Woodroofe (1977) with Xi = Zi. 

Also,                                   (3.6)                                 .-1)2-N2(n12N)δ(2θ)θ̂(A oNN S
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Utilizing Theorem 1 of Chow et al. (1965), we obtain that 

(N). E1δ2N)E(SN
−=−                                                                                               (3.7) 

On combining (3.2), (3.6) and (3.7), 
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We estimate I and II separately.  
By the definition of N, 
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Also, using the result 
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Finally utilizing the above two results, we get 
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Utilizing (3.3) and (3.10), we obtain from (3.8) that  

o(1),13δo2n (A)NR +−+=  

and the result (3.4) follows. 
 
3. Condition   for   Negative   Regret   and   an   Improved   Estimator for θ 

Following Starr and Woodroofe (1969), we define the ‘regret’ of the sequential procedure 
(3.1) by 

   )1(-13(A)onR  - (A) (A) Ng RR o+== δ

Woodroofe (1977) concluded theoretically that, for all sufficiently large value 
of . 

,on 2 (A)NR >
on

 We give below a theoretical justification of numerical finding of Starr and Woodroofe 
(1972) by giving the condition under which the regret may be negative i.e. o2n (A)NR < . 
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 Let us consider a stropping rule ‘N’ such that  overestimates θ. Under such 
condition, from (3.1)   

Nθ̂

θθ̂θN21)1(Aδ N −≥−−−  
and (3.2) yields 

E(N),on  (A)NR +=  since lim 1./ =onN  
Also 
                ( ) (N). EEonδ(A) /)(R 2

N +≤ − NNSN                                                      (4.1) 
Utilizing (3.3) and (3.9), we obtain from (4.1) that 

o(1).1δνo2n(A)NR +−−≤−  

For the distributions having 1δν −< , the regret will be negative. The generalized life 
distributions (2.1) include exponential, Weibull, Rayeigh and Burr distribution, which have 
negative regret. 
 In what follows, we propose an improved estimator of θ. An improved estimator of θ 

having smaller risk as compared to  for stopping rule (3.1) is Nθ̂
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Now we establish the dominance of . NN θ̂overT
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Using Wald’s lemma, it can be shown that 
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Using principal of minima and maxima, the optimum value of k for which  has minimum 

risk can be obtained. Such optimum estimator of θ is    
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5. Conclusion 
 The sequential procedure for the generalized life distributions considered in this paper 
provides a better solution where the fixed sample size procedure fails to provide solution if the 
parameter θ is unknown. The second order approximations for the ASN and the risk associated 
with the proposed sequential procedure are derived. The condition for the negative regret of the 
sequential procedure is achieved and it is found that the generalized life distribution considered in 
this paper contains many distributions that have negative regret. An improved estimator of θ is 
also proposed and it is found that it has smaller risk as compared to the traditional UMVUE. 
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