
Journal of Reliability and Statistical Studies (ISSN: 0974-8024) 
Vol. 1, Issue 1(2008) 54-60 

 
BAYES ESTIMATORS OF THE SCALE PARAMETER OF A GENERALIZED 

GAMMA TYPE MODEL 
 

Gaurav Shukla1 and Vinod Kumar2 

1. Deptt. of Statistics, G.F. (P.G.) College, Shahjahanpur, India. 
E-Mail: saigaurav83@gmail.com 

2. Deptt. of  Maths, Stats. & Comp. Sc., G. B. Pant Univ. of Ag. & Tech.,  Pantnagar, India 
E-Mail: vinod_kumarbcb@yahoo.com 

 
Abstract 

Bayes estimators of the scale parameter of a generalized gamma type model are obtained for 
different priors. For the proposed prior, Bayes estimator of θ  for given p and k=1 coincides with MLE of θ  
if c=2, whereas Bayes estimator of hazard rate function of  θ  given p and k coincides with its MLE.  
Thumb’s rule has been used for constructing a conjugate prior for θ . Bayes estimators of reliability function 
and hazard rate function have also been obtained.  
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1. Introduction 

In lifetime distributions, Bayesian analysis plays a very important role but its 
implementation is so tough because if one attempts to implement Bayesian analysis using lifetime 
models, the likelihood function and the prior provide quite intractable posterior forms which are 
impossible to analyze analytically and are even very challenging from the conventional numerical 
perspective. Stacy (1962) proposed a new generalized gamma model and gave its characteristics 
and applications to life testing. Stacy and Mihram (1965) derived estimators of the generalized 
gamma distribution. El-Sayyed (1967) derived some new estimators which were unbiased  with 
respect to some loss functions for the parameters in exponential distribution. Upadhyay et al. 
(2000) used Monte Carlo simulation technique for the Bayesian computation in life testing and 
reliability models. Pandey and Rao (2006) derived Bayes estimators of the scale parameter of 
generalized gamma distribution by taking quasi, inverted gamma and uniform prior distributions 
using precautionary loss function.  

In this paper, we have obtained conjugate prior for the proposed model by applying Thumb 
rule and  Bayes estimators of the scale parameter θ  of the proposed model under different priors 
viz. uniform, Jeffrey’s, exponential, Mukherjee-Islam, Weibull, gamma etc. by using Lindley’s 
(1980) approach. Bayes estimators of reliability and hazard rate functions under different priors 
have also been obtained. 

 
The probability density function f(t) of the proposed generalized gamma type model is  
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Then Likelihood function (L) of (1) is given by 
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The posterior distribution of θ  given the random sample when p and k are fixed is  
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Where g (θ ) is the prior ofθ . A distinctive feature of the Bayesian approach is the 
introduction of a prior density to represent prior information about the possible values of the 
parameters of the model. There are three distinct Bayesian approaches for selection of prior 
distribution [Diaconis and Ylvisker (1985)]. The choice of a convenient prior distribution which 
combines easily with the likelihood function has recently been simplified by the construction of 
conjugate family. The concept of conjugate family was introduced first by Bernard (1954) and 
fully explained by Raiffa and Schlaifer (1961). The restriction to the conjugate family is not 
necessary, but it has the advantage that the posterior distribution belongs to the same family.  

 
2. Thumb Rule for Constructing a Conjugate Prior  

 We have used the concept of kernel (see Raiffa and Schlaifer (1961)) to construct a 
conjugate prior and the procedure is as given below : 

If the probability density function of θ  is g, where g denotes either prior or posterior 

density, and if m is another function on θ  such that ∫= θθθθ dmmg )()()( , that is, the ratio 

)()( θθ gm is a constant as regards θ , then we write )()( θθ mg ∝ and say m is a kernel of the 

density of θ  ( provided  is finite). ∫ θθ dm )(
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θα tm is a kernel of the likelihood function. Replace all the terms in the kernel of 

the likelihood function that are the functions of the sample by prior hyperparameters say 
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The prior distribution g (θ ) may involve some unknown parameter(s) and in order to 
distinguish them with parameters of the sampling distribution )( θtf , we call the parameters of 
the prior as hyperparameters. 

In the case of proposed model, suppose is a random sample from (1) with 

p>0 and k>0 (both are known) and its likelihood function is given by (2). Since is a 
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where  ∫ +
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If c = 2 and a = 0 then Bayes estimator of θ coincides with MLE of  θ . 
Now we use an improper prior     1)( −∝ θθg

The posterior distribution of θ  given the random sample when p and k are fixed, is given by (3). 

Hence    ( )
∫

∑

∑

=

=

−

=

−

θ

θ

θ

θ
θθ

θθθ

de

e
tf n

i

p
it

nk

n

i

pit

nk

11

11

1
/

1
/

~

   =    

∫
∑

∑

=

−

+

=

−

+

θ

θ

θ

θ
θ

θ

de

e
n

i

p
it

nk

n

i

p
it

nk

1
/

1

1
/

1

1

1

 

And Bayes estimator ( ) of Bθ θ is given by 
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3. Lindley’s Approach 

Bayes estimators are often obtained as the ratio of two integrals which can not be 
solved by using asymptotic expansion and calculus of difference. Lindley (1980) developed an 
asymptotic approximation to the ratio  
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where )(βL is the logarithm of the likelihood function. 
According to him 
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For the model (1), when p and k are fixed; likelihood function is given as 

343433 *
4

*
*6

*
2

*

6

*
2*)(

θθ
θ

θθθ
θ nknknk

t
nkL

p
i

=+
−

=+
−

=
∑

      [ ] ∑
=

=
n

i

p
i nkt

1

/*θQ

 
4. Bayes estimator of θ  given p and k 

θθ =)(u , **)( θθ =u , 1*)(1 =θu , 0*)(2 =θu , ,   (14)            nk/*22 θσ = 2244 /* knθσ =

Bayes estimators ( ) of  Bθ θ  given p and k under different priors are given in Table-1, 
along with the values of *)(1 θp . 
If c=2, Bayes estimator of θ  ( given p and k) for the proposed prior coincides with MLE of θ . 
 
5.  Bayes estimator of Reliability Function 

Reliability Function of the given model is given by 
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the integral of (15) may be evaluated exactly when k=1, in which case, we have 
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Bayes estimators ( ) of Reliability Function given p for k=1  by using different 
priors are given in Table-2. 

BtR θ)(

 
6.  Bayes estimator of Hazard Rate Function: 

Hazard Rate Function  H(t) may be given as        
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Bayes estimator ( ) of  H(t)  given p for k=1 by using different priors are given 
in Table-3. It is easy to see that the Bayes estimator of H(t) coincides with its MLE under 
Jeffrey’s prior whereas under uniform and Mukherjee-Islam priors, it is better than its MLE.  
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Table-1: Bayes estimators ( ) of  Bθ θ  given p and k under different priors 

7. Illustration 
           A random sample of size 25 is generated from the proposed model with k = 1, p = 2 and 
θ = 4. Table 4 shows the Bayes estimates of θ  for p = 2, k = 1 and corresponding Bayes 
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estimates of reliability and hazard rate functions. Table-4 reveals that Bayes estimator of θ  for p 
= 2, k = 1 is quite close to its true value under gamma prior, as well as Bayes estimators of k for 
θ  = 4, p = 2  also seems to be closer to its true value under gamma prior. The calculations for 
reliability and hazard rate functions may also be performed in a similar manner at different values 
of t considering different priors.                                                                          
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Table-2: Bayes estimators ( ) of Reliability Function given p for k=1 BtR θ)(
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Table-3: Bayes estimator ( ) of Hazard Rate Function given p for k=1 BtH θ)(

 



                                          Journal of Reliability and Statistical Studies, Dec. 2008, Vol. 1(1) 
 
60 

Prior Bθ                     BtR )(
t =0       1        2         3        4   

                 BtH )(
 t = 0      1       2         3        4   

Uniform 3.4671 
 

1.00  0.75  0.32   0.08  0.012 0.00  0.58   1.17   1.75   2.34 

Jeffrey’s 3.3387 
 

1.00  0.74  0.30   0.06  0.007 0.00  0.61   1.22   1.83   2.44  

Exponential 3.0549 
 

1.00  0.72  0.27   0.06  0.007 0.00  0.66   1.33   1.99   2.66 

Mukh.-Islam  
         1=α  
              = 2 
              = 3 

 
3.4671 
3.5955 
3.7239 
 

 
1.00  0.75   0.32  0.08  0.012 
1.00  0.76   0.33  0.08  0.014 
1.00  0.76   0.34  0.09  0.015 

 
0.00  0.58   1.17   1.75   2.34 
0.00  0.54   1.08   1.61   2.15 
0.00  0.53   1.07   1.60   2.14 

Weibull  
1=α , 1=σ  

                   = 2 
                   = 3 

 
3.0549 
3.2610 
3.3297 
 

 
1.00   0.72  0.27  0.06  0.007 
1.00   0.73  0.29  0.07  0.010 
1.00   0.73  0.30  0.07  0.011 

 
0.00  0.66   1.33   1.99   2.66 
0.00  0.61   1.22   1.83   2.45 
0.00  0.60   1.20   1.80   2.40 
 

Gamma    
1,1 == σα  

                  =  2 
                  =  3 

3,5 == σα    

 
3.0549 
3.2610 
3.3297 
3.8433 

 
1.00   0.74  0.30  0.07  0.011 
1.00   0.74  0.31  0.08  0.012 
1.00   0.73  0.29  0.07  0.010 
1.00   0.77  0.35  0.09  0.016 

 
0.00  0.61   1.22   1.83   2.45 
0.00  0.60   1.99   1.80   2.40 
0.00  0.38   0.77   1.16   1.55 
0.00  0.72   5.45   8.18 10.90 

          Table-4: Bayes estimators of θ  for p = 2, k = 1 
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