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Abstract 

A probabilistic inventory model for conditional credit period with exponential demand, non-zero 
lead time and multiple storage facility has been developed. The behaviour of total expected cost (TEC) has 
been examined and the use and application of the model is demonstrated with the help of a numerical 
example. 
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1. Introduction 

Goyal [3] and Shah et al. [13] have studied economic order quantity (EOQ) inventory 
models under the assumptions that buyers agree to pay the supplier at the end of some fixed 
credit period. After which higher interests are charged if the debt is not settled. This conditional 
credit period facility is economically advantageous to buyers as it allows them to earn interest 
from the revenue obtained from their own sales during the credit period. Their model, however, 
assumed unlimited storage capacity. For an extensive review, one may refer to previous works 
(for example, [1], [2], [4], [5], [6], [7], [8], [9], [10], [11], [12], [14], [15]and [16]). None of these 
however considered lead-time to be existent except zero. Recently, Shah and Sreehari [14] have 
discussed inventory models with multiple storage facilities and conditional credit facility-
assuming zero lead-time and period dependent but deterministic demand. 

In the present paper, we develop a probabilistic inventory model for conditional credit 
period with exponential demand, non-zero lead-time and multiple storage facilities assuming that 
the firm's own warehouse capacity is limited. We obtain an expression for the expected total cost 
and examine its behaviour, establishing various properties; in particular convexity, a new result 
for this kind of model. Lastly, we propose an algorithm for the determination of the EOQ and 
illustrate its use through a numerical example. 
 
2. Assumptions and Notations 

We make the following assumptions: 
(i) The random demand for the product during the time cycle has   Poisson distribution  
      with mean 1/1 θ . 
(ii) The demand in the lead time L has a Poisson distribution with mean 2/1 θ  

(iii) Shortages are not allowed, i.e. there is no backlogging. 
(iv) The supplier complete payment must be put forward before a subsequent order is  made. 
(v) Earns simple interest on the income along the initial credit period. The buyer earns interest 
only from his sales of goods along the credit period. 
(vi) The debt at the end of credit period is paid by buyer with interest as and when he sells his 
whole product.       
We use the following notations: 

)/1()/1( 21 θθ +=Δ �; Rate of demand 
k = Number of warehouses. 
T= Time interval between two consecutive orders, which we can assume to be 1 (change the time 
unit, if necessary) 
t = Credit period (L < t < 1) 
c = Unit purchase cost 
Ie = Rate at which interest is earned  
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Ip = Interest charged by the supplier beyond the credit period. 
C0 = Ordering cost (per order) 
H1 = Holding cost at the firm's own warehouse 
Hi = Holding cost at alternative warehouse i, 2 ≤  i ≤  k where H1 < H2 < H3… < Hk

Wi = Capacity of ith warehouse i (1 ≤  i ≤  k), where we assume Wk = ∞  
 
The assumption H1 < H2 < H3 … < Hk entails no loss of generality as the warehouses 

can be rearranged and in case of equality the corresponding capacities can be added together. 
Although realistically there may be other costs such as transportation from the warehouses to the 
sellers, we will ignore them. Observe that transportation costs can be thought as built into the 
warehouses' holding costs. 
 
3. The expected cost function 

The buyer's cost consists of set up and holding costs minus interest earned during the 
credit period plus the interest paid on existing debt if any, after the credit period. We observe that 
initially the buyer gets for min (q, tΔ ), if q > tΔ , the buyer would be making a partial payment 
at the end of the credit period worth tΔ  units period and the remaining amount is paid with 
interest as and when the surplus inventory is sold. 
             s 
Let, Vs = ��WΣ i  denote the combined capacity of the first s warehouses with W0 =V0 = 0  
                i=1  
 and m denote the positive integer such that m<k for which Vm-1 < q < Vm, , i.e. the number of 
warehouses needed to store q. 
Case (i) q < t , i.e. the stock is depleted within the credit period the various components of the 
total cost per cycle are given below.  

Δ

Ordering cost = C0.
Since the available stocks are used for economic reasons, in the decreasing order of holding costs, 
the amount payable to warehouse j, j < m, will consist of the cost of holding Wj items for a  
period of  (Wj+1 + Wj+2 + ….+ Wm-1 + q-Vm-1)/ Δ  units of time and on average of Wj/2 items for 
a period of Wj/  units of time.  Δ
So the corresponding cost is 
                   m-1 
[(Wj

2/ )+Σ    ( WΔ l +q-Vm-1)  Wj/Δ  ] Hj   = Wj Hj (Wj/2 + q – Vj)/ Δ �: for j <m 
                 i=j+1                     
                                                                        ,     q = VΔ= /2

mm HW m  : for j = m                   
 (Above and elsewhere, for notational convenience any empty sum is taken to be zero.) 
 Expected Interest earned per cycle = cIe [σ 0

2+{E (q)/b} 2 {σ 1
2+b2}] /2 Δ  

                                                         = cIe [σ 0
2+(q+q')2 (σ 1

2+b2)] /2 Δ  =  R+S+T 
where, R = cIe (σ 1

2+b2) q2/2 Δ  
            S = { cIe q' (σ 1

2+b2)}q/ Δ  
           T = (σ 0

2+q'2) (cIe) (σ 1
2+ b2)/2 Δ       

 and   q' = Q - q 
         Q = maximum ordered quantity which can be  fulfilled by a seller 
          b = a real positive quantity 
         σ 0

2, σ �
2 have their usual meanings 

Total expected cost per unit time, then simplifies to TEC1 (q)  = Am/q + Bm + Cmq 
where 
                                      m-1              m-1 
Am=[2 CΔ 0+V2

m-1Hm+Σ   W2
jHj-2 Σ   WjHjVj+��2 Δ T ]/ 2  

        j=1               j=1 
        m-1 
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BBm=   WΣ j(Hj - Hm)+ S Δ  
        j=1 
Cm = (Hm +2R ) / 2  Δ
It is easily seen that Am > 0 and BBm < 0. 
Case (ii) q > t   Δ
In this case holding cost and ordering cost per cycle are same as in case (i). Other relevant 
components of cost function are given below. 
Expected Interest earned per cycle =  cIe t2 Δ / 2 
Expected Interest paid per cycle = X + Y + Z 
where,     X = cIp(σ 1

2+b2)q2

Y = {2q'cIp(σ 1
2+b2)-2tb/Δ } q/Δ  

Z= ��cIp {(σ 0
2+b2)  (σ 1

2+b2) + Δ 2t2-2tbΔ q'}/ Δ  
Hence, total expected cost per unit time simplifies to 
  TEC2 (q) A*m/q+Bm*+Cm*q 
where, 
                                       m -1             m -1 
Am

*=[2C0 Δ +V2
m-1Hm+Σ   W2

jHj-2 Σ  WjHjVj +[2 Δ Z -  cIet2 Δ 2 ]/2  
                                        j=1              j =1 
          m-1 
BBm

* =    WΣ jHj + Δ Y– Vm-1Hm  
          j=1 
and         Cm

* = (Hm + 2 Δ X)/2 
It is easily seen that 
                               A*

m = Am + [2(Z-T)� Δ  - cIet2 Δ 2 ]/ 2 
  B*

m=Bm+ (Y-S) Δ                                                           (1)                                
                               C*

m = Cm + (X-R)� Δ  
Also, A*

m > 0, B*
m < 0 and C*

m > 0 
Thus, the total expected cost per unit time is  
              Am/q+Bm+Cmq; if q ≤�t Δ  
TEC (q) =                                                                       (2)  
                           A*

m/q+Bm
*+Cm

*q; if q >�t Δ  
                                    
We shall now study the behavior of TEC(q). 
 
3.1 Behaviour of TEC (q) 

We recall that m, (m < k) is the positive integer such that   Vm-1 < q ≤�Vm. As such m 
is a function of q. However, for all q ε  (Vm-1, Vm] the expressions Am, Bm, Cm, Am

*, Bm
* and Cm

* 
remain constant (free from the exact value of q). We shall prove that TEC (q) is a continuous 
function of q in (0,∞ ) and differentiable in each interval (Vm-1, Vm]. Further, by the very nature 
of the functions TEC1 (q) and TEC2 (q) in each open interval (Vm-1, Vm) they will have only one 
possible solution for  d/dq TECi(q) = 0, i = 1,2. 

Although the solution may or may not belong to the interval of definition viz; (Vm-1, 
Vm). Clearly, if the solution is outside this interval it means the functions are monotone 
throughout the interval. We shall now give details of the behaviour of TEC (q) in the following. 
 
3.2 Proposition 1: The function TEC(q) is continuous on (0, ∞ ) 
Proof: It is sufficient to the continuity of the function at the points V1, V2. … Vk-1 and at t  
suppose V

Δ
n-1 < t  < VΔ n. Then we have to consider the behaviour of TEC1 (q) at the points V1, 

V2,……, Vn-1 and TEC2 (q) at the points Vn, Vn+1, ….…,Vk-1 besides proving   TEC1 (t ) = 
TEC

Δ
2 (t ). If, however, tΔ Δ  = Vn, we need to show that TEC1 (Vn) = TEC2 (Vn+). Recall that 

TEC1 and TEC2 are left continuous at all points. The continuity of TEC1 (q) at, say, Vr(r  n-1) 
follows from the fact that (A

≤
r/Vr) + Br + Cr Vr = (Ar+1/Vr) + BBr+1 + Cr+1 Vr, which is easily 
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verified.  Similarly, the continuity of TEC2 (q) at, say, Vr (r ≥  n) follows from the fact that 
(Ar

*/Vr)+Br
*+ Cr

*Vr
* = (A*

r+1/Vr) + B*
r+1 + C*

r+1 Vr, further TEC1 (t Δ ) = An/t Δ  + Bn + Cn 
t and TECΔ 2 (t ) = AΔ *

n/t Δ  + B*
n + C*

n t Δ  and it is fairly easy to observe that they are equal. 
Finally, if t  = VΔ n then TEC2 (Vn+)= A*

n+1/t Δ  + B*
n+1 + C*

n+1 t Δ . It is easily shown that 
TEC2 (Vn+) = TEC1 (Vn). Thus TEC (q) is continuous on  (0, ∞ ). 
 
3.3 Proposition 2: TEC(q) is differentiable in (0, ∞ ) except at (tΔ ). 
Proof: Suppose Vn-1 < t Δ  < Vn. It is sufficient to prove that TEC (q) is differentiable at all Vr. 
Suppose r  n. Then TEC (q) = TEC≤ 1 (q). The left hand and right hand derivatives of TEC1 (q) 
at Vr are respectively  -Ar/(Vr

2) + Cr and  -Ar+1/(Vr
2) + Cr+1.

Now, 
 Cr+1 – Cr – (Ar+1-Ar)/Vr

2

 =(Hr+1-Hr)/2-[Vr
2Hr+1-V2

r-1Hr+Wr
2Hr-2WrHrVr]/2Vr

2

 = {(V2
r-1-V2

r) Hr-W2
rHr+2WrHrVr}/2Vr

2

 = [{-Wr(2Vr-1+Wr)-Wr
2+2WrVr}Hr]/2Vr

2

 = {(-2Vr-1-2Wr+2Vr) WrHr}/2Vr
2

= 0      (3)                                 
It proves that TEC (q) is differentiable at all Vr ≤  Vn-1. In case Vr  V≥ n-1; TEC (q) = TEC2 (q) 
and the left hand and right hand derivatives of TEC2 (q) at Vr are -Ar

*/Vr
2+Cr

* and                          
-A*

r+1/Vr
2+C*

r+1 respectively. In view of relation (1) and aforesaid results concerning Ar, Ar+1, Cr, 
Cr+1, it follows that TEC2 (q) is differentiable at Vr ≥  Vn. 

Finally, if t Δ  = Vn for some n, then the above steps for r < n and r > n, prove 
differentiability at all points on (0, ∞  ) except at t . Δ
 

Δ3.4 Proposition 3: The left hand derivative of TEC(q) at t   is less than the right hand 
derivative of TEC(q) at tΔ   and they respectively are –An/(tΔ )2 +Cn and  –A*

n/(t )Δ 2 + 
C*

n
 .  

Proof: In view of relation (1),                   
(An-An

*) /(t )Δ 2+Cn
*-Cn = [(T – Z)� Δ  + cIet2 Δ 2/2]/(t Δ )2+ (X – R)� Δ                

[(An-An
*)/(t )Δ 2+Cn

*- Cn] > 0, as claimed.  
Next, suppose t  = VΔ n. Then the right hand derivative at Vn is  – An

*/Vn
2+Cn+1

* while the left 
hand derivative at Vn is -An/Vn

2+Cn  
using (1) and (3) we have (An-An+1

*)/Vn
2 + Cn+1

*-Cn               
Δ /2}/t +( X-R)� Δ ] >0                      = (An-An+1)/Vn

2+Cn+1-Cn +[{T-Z+cIet2

      = [{T-Z+cIet2 Δ /2}/t +( X-R)� Δ ] >0 
This completes the proof of proposition 3. 
 
3.5 Proposition 4: TEC(q) is convex in (0, ∞ ). 

Let X1 = TEC1 (q) and Y1 = TEC2 (q), now it is required to show that, F (X1, Y1) = uX1 
+ (1-u) Y1 ε  (0, ∞  ) and u ε  [0,1] where X1 ε  (0, ∞ ) and     Y1 ε  (0, ∞ ). 
Proof: 

 First, we check at u =0 
 F (X1, Y1) = uX1+ (1-u) Y1 = X1   ε  (0,  ) ∞
at u=1, 
  F (X1, Y1) = uX1+ (1-u) Y1 = X1 ε  (0, ∞ ) 
at u 0;  or 0 < u < 1 ≠

F (X1, Y1) = u [Am/q + Bm+Cm q+(1-u) Am*/q + BBm
*+ Cm

*q 
     = u[(Am-Am

*)/q + Bm-Bm
*+ (Cm-Cm

*)/q + Am
*/q + Bm

*+ Cm
*q 

     = u [{2[(T-Z)� Δ  + cIet2 Δ 2/2}/q+  (S + - Y + R – X) Δ +  Am
*/q + Bm

*+Cm
*q 

Finally, it is clear that 
0 < [(T-Z)� Δ  + cIet2 Δ 2/2}/q ] < ∞ , 0 <   [ S + - Y] < ∞   
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0 < (R – X) <  ∞  �and 0 < [Am
*/q + Bm

*+ Cm
*q] < ∞  � 

Hence, uX1 + (1-u) Y1 ε  (0, ∞  ). 
Suppose the function TEC (q) defined by (2) is monotonically decreasing in an 

interval (Vr-1, Vr). It follows from the proof of proposition 2 and 3 that it must be 
decreasing in (Vr-2, Vr-1) and consequently in all the preceding intervals also. Further, if 
TEC (q) is monotonically increasing in an integral (Vr-1, Vr) then in all the following 
intervals also the function will be increasing. Thus, the existence and uniqueness of 
optimal order quantity is ensured. Moreover, the behaviour of TEC (q) at (t� ) 
indicates whether the optimal order quantity is less than or equal to or greater than (t )  

Δ
Δ

Remark: 
It is quite interesting to note that if probabilistic demand and non-zero lead time turn to be 

deterministic and zero respectively, the present model reduces to model [13]. Moreover, if we 
consider single ware house (with infinite capacity) in model [13], the same reduces to model [3]. 
Thus, model [3] and [13] both can be considered as particular cases of present model. 
 
3.6 An algorithm development 
Step 1: Find n such that Vn-1 < t Δ ≤  Vn
Step 2: If An/Cn  (t≠ Δ )2

, go to step 3, otherwise optimal order quantity q* = t Δ  
Step 3: If An/Cn > (t Δ )2, go to step 4, otherwise find the smallest value of r, say k, such that Ar/Cr 

� V≤ r
2 and the optimal order quantity  q* = (Ak/Ck) 

Step 4:  If An*/Cn* ≤�(t Δ )2 < Vn
2 or An+1*/Cn+1* ≤�(t Δ )2 = Vn

2 the optimal order quantity  
q* = t . Otherwise find the smallest value of r, say k, for which VΔ r

2  A≥ r*/Cr* and 

then the optimal order quantity q* = (Ak
*/Ck

*).  
 
4. Numerical example  

We shall now illustrate the above model by an example. Suppose the 
parameter values are: Δ  = 5900 / year,  

 C0 = Rs.20.00, c= 18, σ 0 = 0, σ 1 = 1, b = ½, q' = 150, Ie = 10%, Ip = 18% 
Warehouse capacities: W1 = 240, W2 = 150, W3 = 210, W4 = 95, W5 = ∞ . 
                                     H1 = Rs.3.00, H2 = Rs.3.25, H3 = Rs.3.50, H4 = Rs.3.75, H5 = Rs.4.00. 
The optimal order quantity for different values of t are given below for 50.33 =H . 

Time (Months) 

 0.95 0.96 0.97 0.975 0.976 0.977 

q* 470 475 480 481.5 481.89 481.89 

We observe that if H3 = 3.50 then for t  0.976 the optimal order quantity is 481.89 i.e. 
there is no use of going for higher order quantity than 481.89 for  t≥  0.976. At this stage, we 
examine whether this optimal order quantity in H

≥

3 is sensitive to small change by considering the 
cases H3 = 3.45 and H3 = 3.55. We investigate the effect of changing H3 slightly. The results are 
given in the following table. 

 
            Optimal Order Quantity (q*) for Various values of  H3  and t  

t 0.95 0.96 0.97 0.975 0.976 0.977 H3 
3.45 q* 470 475 480 484.5 484.89 484.89 

t 0.95 0.96 0.97 0.972 0.973 0.974  
3.50 q* 470 475 480 481.5 481.89 481.89 

t 0.95 0.96 0.96 0.967 0.97 0.971  
3.55 q* 470 475 479 479.45 479.45 479.45 
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Here, it is observed that when H3 = 3.45 and (t ≥  0.976), the optimal order quantity is 
484.89 whereas when H3 = 3.55 and (t  0.967), it is 479.45. This indicates that optimal order 
quantity is quite sensitive to change in H

≥
3. The table also reveals that as H3 increases, the time (t)  

beyond which any credit will not alter the optimal order quantity (q*), keeps on decreasing. 
Hence availing further credit by increasing order quantity may not help. 
 
5. Conclusion 

The present study reveals that the stockist is encouraged to increase order size by 
extending a limited time credit facility and the developed probabilistic inventory model is more 
generalized model as it includes the models [3] and [13] as special cases. Numerical example 
indicates that the optimal order quantity is sensitive to the holding cost at 3rd warehouse..    
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