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Abstract

In this paper, we propose a new non-homogeneous Poisson process (NHPP)
based software reliability model (SRM), where the software debug rate
is given by a local polynomial function. The main feature of this semi-
parametric SRM is to control the goodness-of-fit by changing the polynomial
degree. Numerical examples with 16 actual software development project
data are devoted to comparing our SRM with the well-known existing
NHPP-based SRMs in terms of goodness-of-fit and predictive performances.

Keywords: Software reliability models, non-homogeneous Poisson pro-
cesses, semi-parametric approach, local polynomial debug rate, maximum
likelihood estimation, goodness-of-fit performance, predictive performance.

Journal of Reliability and Statistical Studies, Vol. 15, Issue 2 (2022), 759–778.
doi: 10.13052/jrss0974-8024.15215
© 2023 River Publishers



760 S. Li et al.

1 Introduction

While the software has become the key information platform in every
computer-based system, the size and complexity have increased accordingly.
Thus, software reliability has received much attention as the most impor-
tant attribute in software quality. In the past few decades, many software
reliability models (SRMs) have been proposed to describe software fault-
detection processes and assess the software reliability quantitatively. Among
them, the most popular SRMs are the non-homogeneous Poisson process-
based (NHPP)-based SRMs, which can be characterized by the software
fault-detection time distribution. In other words, the existing NHPP-based
SRMs are described with the representative software fault-detection time dis-
tribution functions. Since the seminal contribution by Goel and Okumoto [5],
several SRMs have assumed the well-known continuous probability distri-
bution functions such as Pareto distribution [1], log-normal distribution [2],
exponential distribution [5], Weibull distribution [6], log-logistic distribu-
tion [7], truncated logistic distribution [13], gamma distribution [20, 22],
extreme distributions including Gompertz distribution [14], truncated normal
distribution [16]. Okamura and Dohi [17] implemented the above 11 SRMs
in software reliability assessment tool on spreadsheet, SRATS.

However, practical experiences suggest no unique SRM that could fit
every software fault-count data, so in parametric software reliability mod-
eling, selection of fault-detection time distribution is always needed. In this
paper, we propose a new NHPP-based SRM, where the software debug rate is
given by a local polynomial function. The fundamental idea comes from the
assumption that the software debug rate, which is equivalent to the hazard rate
function of software fault-detection time distribution, is approximated by an
arbitrary polynomial function. This intuitive but well-motivated assumption
seems reasonable because one does not need to select a parametric form of
the probability distribution function. The main feature of this semi-parametric
SRM is to control the goodness-of-fit by changing the polynomial degree.
We determine the polynomial degree by the well-known Akaike information
criterion (AIC) and select the best local polynomial debug rate. It is worth
mentioning that this kind of semi-parametric SRM has not been proposed
during the last four decades. Recently, Nafreen and Fiondella [12] were
concerned about the software debug rate and overviewed several NHPP-based
SRMs with bathtub-shaped debug rate. Especially, they dealt with a low-order
polynomial function called the quadratic model. We show that their model is
a special case of our semi-parametric SRM and that the low order polynomial
function is not enough to guarantee satisfactory goodness-of-fit performance
compared with the existing parametric models [17].
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The remaining part of this paper is organized as follows. In Section 2,
we summarize the NHPP-based SRMs. Section 3 describes the polynomial
software debug rate and proposes our semi-parametric SRMs. In Section 4,
we overview the maximum likelihood estimation for the NHPP-based SRMs,
where two kinds of software fault-count data; time-domain data and time-
interval (group) data. It should be noted that the parameter estimation of
our semi-parametric NHPP-based SRM with local polynomial debug rate is
not so trivial because the maximum likelihood estimation has to be made
with a constraint that the software debug rate is non-negative. In Section 5,
numerical examples with 16 actual software development project data are
devoted to comparing our SRM with the well-known existing NHPP-based
SRMs in terms of goodness-of-fit and predictive performances. Finally, the
paper is concluded with some remarks in Section 6.

2 NHPP-based Software Reliability Modeling

Let N(t) be the cumulative number of software faults detected by time t (≥
0). The stochastic point process N(t) is said a non-homogeneous Poisson
process (NHPP) if the probability mass function (PMF), Pn(t) = Pr{N(t) =
n|N(0) = 0}, is given by

Pn(t) =
{Λ(t;θ)}n

n!
exp(−Λ(t;θ)), n = 0, 1, 2, . . . , (1)

where Λ(t;θ) is called the mean value function, which denotes the expected
cumulative number of software faults by time t;

E[N(t)] = Λ(t;θ) =

∫ t

0
λ(x;θ)dx (2)

with the intensity function λ(t;θ) and the model parameter vector θ.
Once the mean value function or the intensity function was given, it is

possible to characterize the PMF of NHPP in Equation (1). Instead, Yamada
and Osaki [21] characterized the NHPP-based SRMs with the software debug
rate. Let

d(t;α) = λ(t;θ)/{ω − Λ(t;θ)} (3)

be the software debug rate, where θ = (ω,α), ω = limt→∞ Λ(t;θ). It is
evident that d(t;α) implies the instantaneous fault detection rate per expected
remaining faults. Also, it is immediate to see that Equation (3) is rewritten as

dΛ(t;θ)

dt
= d(t;α){ω − Λ(t;θ)}. (4)
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In the NHPP-based software reliability modeling, it is common to assume
that the mean value function is bounded, i.e., Λ(t;θ) = ωF (t;α), where
ω (> 0) denotes the mean number of inherent software faults before soft-
ware testing, and F (t;α) is an arbitrary continuous cumulative distribution
function (CDF). Then, it is seen that Λ(t;θ) = ωF (t;α) if and only if
d(t;α) = f(t;α)/{1−F (t;α)} with the probability density function (PDF)
f(t;α) = dF (t;α)/dt. Hence, the software debug rate is equivalent to the
hazard rate of the fault-detection time CDF F (t;α).

Okamura and Dohi [17] implemented the existing NHPP-based SRMs
with 11 software fault-detection time CDFs in the software reliability
assessment tool on the spreadsheet (SRATS), which includes exponential
(exp), gamma, Pareto, log-normal (lnorm), log-logistic (llogist), log-extreme-
value minimum (lxvmin), log-extreme-value maximum (lxvmax), truncated
logistic (tlogist), truncated normal (tnorm), truncated extreme-value mini-
mum (txvmin), truncated extreme-value maximum (txvmax) distributions. In
Table 1, we summarize these 11 NHPP-based SRMs.

Table 1 The existing NHPP-based SRMs
Models Λ(t;θ) d(t;α)

Exponential dist.
(exp) [5]

Λ(t;θ) = ωF (t;α)

F (t;α) = 1− e−bt d(t;α) = b

Gamma dist.
(gamma) [20], [22]

Λ(t;θ) = ωF (t;α)

F (t;α) =
∫ t

0
cbsb−1e−cs

Γ(b)
ds

d(t;α) = cbtb−1e−ct

Γ(b)−
∫ t
0 s

b−1e−csds

Pareto dist.
(pareto) [1]

Λ(t;θ) = ωF (t;α)
F (t;α) = 1− ( b

t+b
)c

d(t;α) = b
c+t

Truncated normal dist.
(tnorm) [16]

Λ(t;θ) = ω F (t;α)−F (0;α)
1−F (0;α)

F (t;α) = 1√
2πb

∫ t
−∞ e

− (s−c)2

2b2 ds

d(t;α) = −
√

2
π
e
− (c−t)2

2b2

b
(

erfc
(
c−t√

2b

)
−2
)

erfc
(
c−t√

2b

)
= 1− 2√

π

∫ c−t√
2b

0 e−s
2

ds

Log-normal dist.
(lnorm) [2], [16]

Λ(t;θ) = ωF (ln t;α)

F (t;α) = 1√
2πb

∫ t
−∞ e

− (s−c)2

2b2 ds

d(t;α) =

√
2
π
e
− (c−log(t))2

2b2

bt
(

erfc
(
c−log(t)√

2b

)
−2
)

erfc
(
c−log(t)√

2b

)
= 1− 2√

π

∫ c−log(t)√
2b

0 e−s
2

ds

Truncated logistic dist.
(tlogist) [13]

Λ(t;θ) = ωF (t;α)
F (t;α) = 1

1+e
− t−c

b

d(t;α) = et/b

bec/b+bet/b

Log-logistic dist.
(llogist) [7]

Λ(t;θ) = ωF (ln t;α)
F (t;α) = 1

1+e
− t−c

b

d(t;α) = t
1
b
−1

b(ec/b+t1/b)

Truncated extreme-value max dist.
(txvmax) [14]

Λ(t;θ) = ω F (t;α)−F (0;α)
1−F (0;α)

F (t;α) = e−e
− t−c

b
d(t;α) = e

c−t
b

b

(
ee
c−t
b −1

)

Log-extreme-value max dist.
(lxvmax) [14]

Λ(t;θ) = ωF (ln t;α)

F (t;α) = e−e
− t−c

b
d(t;α) = ec/bt

− b+1
b

b
(
ee
c/bt−1/b−1

)
Truncated extreme-value min dist.

(txvmin) [14]

Λ(t;θ) = ω F (0;α)−F (t;α)
F (0;α)

F (t;α) = e−e
− t−c

b
d(t;α) = e

c+t
b

b

Log-extreme-value min dist.
(lxvmin) [6]

Λ(t;θ) = ω (1− F (− ln t;α))

F (t;α) = e−e
− t−c

b
d(t;α) = ec/bt

1
b
−1

b

(ω>0, a>0, b>0, c>0)
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3 Polynomial Software Debug Rate

Probability distributions with a polynomial hazard rate function have been
used for modeling lifetimes in reliability engineering. Lawless [8] gave
some examples of the least-squares estimation and the maximum likelihood
estimation for the basic polynomial hazard rate model and their variants with
censoring and grouped data. Csenki [4] derived the Laplace transform of the
continuous random variable with a local polynomial hazard rate function and
applied it to estimate the polynomial coefficients from the sample moments
of the CDF.

Suppose that

d(t;α) = µ0 + µ1t+ µ2t
2 + · · ·+ µmt

m, (5)

where α = (µ0, µ1, . . . , µm) ∈ Rm+1. Then the CDF is expressed as

F (t;α) = 1− exp


−

m∑

j=0

µjt
j+1

j + 1


 . (6)

The above CDF with m + 1 degrees is interpreted as a probability model
on the minimum of m + 1 independent Weibull random variables if α ∈
Rm+1

+ , where j-th of them has scale parameter j+1
√

(j + 1)/µj and shape
parameter j + 1.

As special cases, when m = 0 and m = 1, the hazard rate functions
become d(t;α) = µ0 and d(t;α) = µ0 +µ1t, respectively. Balakrishnan and
Malik [3], Mahmoud and Al-Nagar [10] called the latter probability model
the linear exponential distribution. Nafreen and Fiondella [12] considered an
NHPP-based SRM with the linear exponential distribution for the purpose to
develop a bathtub-shaped debug rate. Hence, it is evident that Equation (5) is
a general form to express the software debug rate.

If we assume that α ∈ Rm+1
+ , i.e., (µ0, µ1, . . . , µm) are all positive real

numbers, it always holds that d(t;α) ≥ 0 and F (t;α) is increasing hazard
rate (IHR). However, dissimilar to hardware reliability, it is well known that
the software reliability growth phenomenon can be observed in software test-
ing. In other words, the IHR assumption seems to be rather strong and not to
be plausible to explain the software reliability growth. Hence the polynomial
parameters may be negative except for µ0, because µ0 ≥ 0 is a necessary con-
dition of d(t;α) ≥ 0. In fact, it is not so easy to find out α ∈ Rm with µ0 ≥ 0
to satisfy d(t;α) ≥ 0. In the next section, we develop a somewhat heuristic,
but exact maximum likelihood estimation method for our semi-parametric
SRM with a local polynomial software debug rate with order m.
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4 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation is a commonly utilized method for the
parameter estimation of NHPP-based SRMs. In ML estimation, the estimates
are given by the parameters maximizing the log-likelihood function. On the
other hand, the Maximum log-likelihood (MLL) depends on the observed
data as well as the underlying NHPP-based SRMs. In this paper, two types
of data; time-domain data and time-interval data (group data) are consid-
ered. Suppose that k software faults are detected at testing time sequence
{t1, t2, . . . , tk}, so, the likelihood function is represented as

L(θ) = exp(−Λ(tk;θ))
k∏

i=1

λ(ti;θ), (7)

and the log-likelihood function can be written by

ln L(θ) =

k∑

i=1

lnλ(ti;θ)− Λ(tk;θ). (8)

Next, consider the case where the group data, (ti, ni), are observed. A
group data consists of the number of faults detected in fixed time intervals
measured with the calendar time, (ti−1, ti] (i = 1, 2, . . . , k). The likelihood
function is given by

L(θ) =

k∏

i=1

[
[Λ(ti;θ)− Λ(ti−1;θ)]ni−ni−1

(ni − ni−1)!

]
× e−[Λ(ti;θ)−Λ(ti−1;θ)], (9)

where ti is the observation time and ni is the cumulative number of software
faults detected by time ti.

Then, the log-likelihood function can be written by

ln L(θ) =
k∑

i=1

(ni − ni−1) ln{Λ(ti;θ)− Λ(ti−1;θ)}

−
k∑

i=1

ln{(ni − ni−1)!} − Λ(tm;θ). (10)

Then the maximum likelihood (ML) estimate θ̂ ∈ (ω̂, α̂) can be obtained
as a solution of argmaxθ ln L(θ) in Equation (8) and Equation (10), subject
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to d(ti, α̂) = µ̂0 + µ̂1ti + µ̂2t
2
i + · · · + µ̂mt

m
i ≥ 0 with i = 1, 2, . . . , k.

In what follows, we consider two cases;

• Case I: α = (µ0, µ1, . . . , µm) ∈ Rm+1
+ are all positive real numbers.

• Case II: µ0 ≥ 0 and (µ1, . . . , µm) ∈ Rm are real numbers.

It is obvious that Case I is restrictive because the software debug rate is
always increasing in time t. However, the maximum likelihood estimation
is easily made because of d(ti, α̂) ≥ 0 for all the observation data ti (i =
1, 2, . . . , k). In Case II, we consider all the combinations of µj ∈ R+ and
µj ∈ R− for all j = 1, 2, . . . ,m, say 2m combinations and solve the
maximization problems with constraint d(ti,α) ≥ 0. Note that the general-
purpose optimization solver such as Mathematica and MATLAB enables to
solve the above problem when the search space for each polynomial coeffi-
cient is limited in the positive or negative region. Figures 1 and 2 illustrate the
behaviors of our polynomial debug rates d(ti, α̂) with degreem = 1, 2, . . . , 6
in time-domain data (TDS1) of Table 2 and group data set (GDS1) of Table 3
in Case I. It is seen that all the software debug rates are increasing in time. On
one hand, in Figures 3 and 4, we plot the behaviors of software debug rates
with TDS1 and GDS1, respectively, in Case II. As the polynomial degree m
increases, the polynomial software debug rates fluctuate and can represent
much more complex behaviors. It is possible to represent the non-increasing
behaviors of software debug rate by relaxing the assumption of α ∈ Rm+1

+

and to increase the log-likelihood function as well. Note that our purpose is
not to compare Case I with Case II, because Case I is involved as a special
case of Case II. We aim at investigating the estimation effect between Case I
and Case II, and comparing our semi-parametric NHPP-based SRM with the
existing parametric NHPP-based SRMs.

5 Numerical Examples

5.1 Data Sets

In numerical experiments, we chose 8 software fault-detection time-domain
(TDS1∼TDS8) data in Table 2, measured with CPU time, and 8 software
fault-detection group data (GDS1∼GDS8) in Table 3, which consist of the
number of software faults detected by each calendar time.

We derive the ML estimates of the model parameters, θ̂, for our NHPP-
based SRM with local polynomial debug rate, where the polynomial degree
m changes as the integer values m = 1, 2, . . ., and compare them with the
other 11 representative NHPP-based SRMs shown in Table 1.
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Table 2 Time-domain data sets
Data No. faults Source

TDS1 54 SYS2 [11]
TDS2 38 SYS3 [11]
TDS3 136 SYS1 [11]
TDS4 53 SYS4 [11]
TDS5 73 Project J5 [9]
TDS6 38 S10 [11]
TDS7 41 S27 [11]
TDS8 101 S17 [11]

Table 3 Group data sets
Data No. Faults Testing Periods Source

GDS1 54 17 SYS2 [11]
GDS2 38 14 SYS3 [11]
GDS3 120 19 Release2 [19]
GDS4 61 12 Release3 [19]
GDS5 9 14 NASA-supported project [18]
GDS6 66 20 DS1 [15]
GDS7 58 33 DS2 [15]
GDS8 52 30 DS3 [15]

5.2 Goodness-of-fit Performance

Define the following goodness-of-fit criteria:

• Maximum log-likelihood (MLL): ln L(θ̂)
• Akaike information criterion (AIC):

AIC = −2 ln L(θ̂) + 2× (the number of parameters) (11)

• Mean squares error (MSE):

MSE(θ̂) =

√∑k
i=1(ni − Λ(ti; θ̂))2

k
. (12)

The smaller AIC/MSE represents the better SRM in terms of goodness-of-fit
performances.

Figure 5 presents the mean value functions and the cumulative number of
software faults detected in TDS1 and GDS1. The best SRMs with minimum
AIC were selected from NHPP-based SRMs with local polynomial debug
rate (m = 1, 2, . . . , 6) in both Case I and Case II (blue- and black-colored
curves), and compared with the best existing NHPP-based SRMs in SRATS
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Figure 1 Behavior of software debug rates with TDS1 in Case I.

(orange-colored curve) in terms of AIC. At the first look, our semi-parametric
NHPP-based SRMs could show more accurate estimations close to actual
software fault counts. In Tables 4 and 5, we present the goodness-of-fit results
of our semi-parametric NHPP-based SRMs with local polynomial debug rate
in terms of AIC/MSE, where the polynomial degree m changed from 1 to
6, and the best SRMs were based on the minimum AIC. From Table 4, it
can be seen that our semi-parametric NHPP-based SRM in Case II could
provide the smaller MLL and MSE than the existing SRATS NHPP-based
SRMs in 5 time-domain data sets (TDS2, TDS5, TDS6, TDS7, and TDS8)
and 3 time-domain data sets (TDS5, TDS7, and TDS8), respectively.

In the group data analysis, we found the minimum MLL and MSE in 6
out of 8 data sets (GDS1, GDS2, GDS3, GDS4, GDS6, and GDS7), so our
semi-parametric NHPP-based SRM in Case II gave the minimum MLL and
MSE. In GDS1, GDS4, and GDS6, it could provide the smaller AIC than

Figure 1 Behavior of software debug rates with TDS1 in Case I.

(orange-colored curve) in terms of AIC. At the first look, our semi-parametric
NHPP-based SRMs could show more accurate estimations close to actual
software fault counts. In Tables 4 and 5, we present the goodness-of-fit results
of our semi-parametric NHPP-based SRMs with local polynomial debug rate
in terms of AIC/MSE, where the polynomial degree m changed from 1 to
6, and the best SRMs were based on the minimum AIC. From Table 4, it
can be seen that our semi-parametric NHPP-based SRM in Case II could
provide the smaller MLL and MSE than the existing SRATS NHPP-based
SRMs in 5 time-domain data sets (TDS2, TDS5, TDS6, TDS7, and TDS8)
and 3 time-domain data sets (TDS5, TDS7, and TDS8), respectively.

In the group data analysis, we found the minimum MLL and MSE in 6
out of 8 data sets (GDS1, GDS2, GDS3, GDS4, GDS6, and GDS7), so our
semi-parametric NHPP-based SRM in Case II gave the minimum MLL and
MSE. In GDS1, GDS4, and GDS6, it could provide the smaller AIC than
the SRATS NHPP-based SRMS, even if the number of free parameters i n
our semi-parametric SRMs is much larger than the representative SRMs in
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Figure 2 Behavior of software debug rates with GDS1 in Case I.

the SRATS NHPP-based SRMS, even if the number of free parameters i n
our semi-parametric SRMs is much larger than the representative SRMs in
Table 1. We also notice that as the polynomial degree increases, the number
of free parameters also increases, and that our semi-parametric SRMs with
high-degree of polynomials could not always lead to the smaller AIC results.
In fact, we confirmed the AIC values with m = 7, 8, . . . in our preliminary
experiments and that m = 6 is enough as the maximum polynomial degree
from the viewpoint of minimization of AIC. In both tables, we evaluated
MSE, which is a vertical distance between the mean value function and the
underlying fault count data. It is clear that our semi-parametric SRMs tend
to give larger MSE than the SRATS NHPP-based SRMs in 11 out of 16 data
sets.

Figure 2 Behavior of software debug rates with GDS1 in Case I.

Table 1. We also notice that as the polynomial degree increases, the number
of free parameters also increases, and that our semi-parametric SRMs with
high-degree of polynomials could not always lead to the smaller AIC results.
In fact, we confirmed the AIC values with m = 7, 8, . . . in our preliminary
experiments and that m = 6 is enough as the maximum polynomial degree
from the viewpoint of minimization of AIC. In both tables, we evaluated
MSE, which is a vertical distance between the mean value function and the
underlying fault count data. It is clear that our semi-parametric SRMs tend to
give larger MSE than the SRATS NHPP-based SRMs in 11 out of 16 data sets.

5.3 Predictive Performances

It is worth mentioning that the better goodness-of-fit to the past observation
does not always lead to the better performance for the future prediction. Since
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Figure 3 Behavior of software debug rates with TDS1 in Case II.

5.3 Predictive Performances

It is worth mentioning that the better goodness-of-fit to the past observation
does not always lead to the better performance for the future prediction. Since
assessing the quantitative software reliability predicts the fault-free probabil-
ity during a future testing/operational period, it is important to investigate
the predictive performance of the NHPP-based SRMs with local polynomial
debug rate. When k and nk software fault counts data are available and that
the prediction length is given by l (= 1, 2, · · · ), we use the predictive mean
squared error (PMSE):
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for the time-domain data and group data, respectively, where θ̂ is the ML
estimate with constraint d(ti,α) ≥ 0 with (i = 1, 2, . . . , k, . . . , k+l). We set
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for the time-domain data and group data, respectively, where θ̂ is the ML
estimate with constraint d(ti,α) ≥ 0 with (i = 1, 2, . . . , k, . . . , k+l). We set
the observation point k at 20%, 50% and 80% points of the whole time series
data. That is, we predict the future behavior of the software fault count at
tk+1, tk+2, . . . , tk+l from the training data; t1, t2, . . . , tk for the time-domain
data and group data.

Tables 6 present the prediction results at each observation point based on
the minimum PMSE in time-domain data sets, where we select the best SRM
with the smallest PMSE from NHPP-based SRMs with local polynomial
debug rate (m = 1, 2, . . . , 6) in both Case I and Case II, and the existing
NHPP-based SRMs in SRATS. It is seen that, when the testing phase is
early (20%), our semi-parametric NHPP-based SRM in Case I could provide
the smaller PMSE than the existing SRATS NHPP-based SRMs in 2 time-
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the observation point k at 20%, 50% and 80% points of the whole time series
data. That is, we predict the future behavior of the software fault count at
tk+1, tk+2, . . . , tk+l from the training data; t1, t2, . . . , tk for the time-domain
data and group data.

Tables 6 present the prediction results at each observation point based on
the minimum PMSE in time-domain data sets, where we select the best SRM
with the smallest PMSE from NHPP-based SRMs with local polynomial
debug rate (m = 1, 2, . . . , 6) in both Case I and Case II, and the existing
NHPP-based SRMs in SRATS. It is seen that, when the testing phase is
early (20%), our semi-parametric NHPP-based SRM in Case I could provide
the smaller PMSE than the existing SRATS NHPP-based SRMs in 2 time-
domain data sets (TDS5 and TDS6). When the testing phase is middle (50%),
our semi-parametric NHPP-based SRM in Case I tended to give the better
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domain data sets (TDS5 and TDS6). When the testing phase is middle (50%),
our semi-parametric NHPP-based SRM in Case I tended to give the better
predictive performance in 3 cases of time-domain data sets (TDS1, TDS4
and TDS8) and Case II could provide the smaller PMSE in TDS4. When the
testing phase is latee (80%), our semi-parametric NHPP-based SRM in Case
I outperformed the existing NHPP-based SRMs in SRATS in only TDS4 and
TDS5.
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predictive performance in 3 cases of time-domain data sets (TDS1, TDS4
and TDS8) and Case II could provide the smaller PMSE in TDS4. When the
testing phase is latee (80%), our semi-parametric NHPP-based SRM in Case
I outperformed the existing NHPP-based SRMs in SRATS in only TDS4 and
TDS5.
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Table 4 Goodness-of-fit results with time-domain data
Semi-parametric SRM SRATS

Case I:
α = (µ0, µ1, . . . , µm) ∈ Rm+1

+

Case II:
µ0 ≥ 0, (µ1, . . . , µm) ∈ Rm α = (ω, a, b, c) ∈ R+

MLL AIC MSE MLL AIC MSE MLL AIC MSE

TDS1 −448.577
903.155
(m = 1)

0.502 −446.589
901.177
(m = 2)

0.282 −445.333
896.666
(lxvmax)

0.190

TDS2 −304.214
614.428
(m = 1)

0.852 −294.511
601.022
(m = 4)

0.194 −296.066
598.131
(lxvmax)

0.211

TDS3 −974.807
1955.610
(m = 1)

0.711 −967.561
1943.120
(m = 2)

0.227 −966.080
1938.160
(lxvmin)

0.220

TDS4 −377.974
761.948
(m = 1)

0.319 −377.095
760.189
(m = 1)

0.265 −376.878
759.756
(pareto)

0.267

TDS5 −376.870
759.740
(m = 1)

0.522 −366.886
748.734
(m = 5)

0.314 −376.935
757.869
(exp)

0.510

TDS6 −360.839
727.678
(m = 1)

0.255 −360.839
727.678
(m = 1)

0.255 −357.964
721.928
(lxvmax)

0.195

TDS7 −502.670
1011.340
(m = 1)

0.579 −499.786
1007.570
(m = 2)

0.354 −501.110
1008.220
(lxvmax)

0.382

TDS8 −1281.920
2569.830
(m = 1)

1.942 −1231.38
2474.760
(m = 4)

0.347 −1252.085
2504.170
(pareto)

0.685

Table 5 Goodness-of-fit results with group data
Semi-parametric SRM SRATS

Case I:
θ = (µ0, µ1, . . . , µm) ∈ Rm+1

+

Case II:
µ0 ≥ 0, (µ1, . . . , µm) ∈ Rm θ = (ω, a, b, c) ∈ R+

MLL AIC MSE MLL AIC MSE MLL AIC MSE

GDS1 −35.367
76.735
(m = 1)

0.698 −29.188
72.377
(m = 5)

0.264 −33.527
73.053
(llogist)

0.492

GDS2 −29.485
64.969
(m = 1)

0.464 −26.546
63.091
(m = 3)

0.387 −27.847
61.694
(lxvmax)

0.481

GDS3 −40.858
87.715
(m = 1)

0.646 −37.739
87.478
(m = 4)

0.326 −40.634
87.267
(tnorm)

0.569

GDS4 −21.790
51.581
(m = 2)

0.364 −21.320
50.639
(m = 2)

0.265 −22.526
51.052
(tlogist)

0.405

GDS5 −12.736
31.472
(m = 1)

0.096 −12.736
31.472
(m = 1)

0.096 −12.956
29.911
(exp)

0.092

GDS6 −50.092
114.184
(m = 5)

0.964 −45.257
100.514
(m = 3)

0.644 −51.416
108.831
(lxvmax)

1.061

GDS7 −61.848
127.612
(m = 3)

0.256 −57.676
125.351
(m = 3)

0.235 −58.633
123.265
(txvmin)

0.253

GDS8 −60.971
129.942
(m = 2)

0.757 −59.563
127.126
(m = 2)

0.711 −55.735
117.470
(llogist)

0.532

In Table 7, we summarize the minimum PMSE with the group data, it
can be pointed that the our semi-parametric NHPP-based SRM provided the
smallest PMSE in some cases; i.e., 2 cases out of 8 group data sets in (i), 2
cases out of 8 group data sets in (ii) and 5 cases out of 8 group data sets in (iii).
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Table 6 Predictive results with time-domain data
Semi-parametric SRM SRATS

Case I:
α = (µ0, µ1, . . . , µm) ∈ Rm+1

+

Case II:
µ0 ≥ 0, (µ1, . . . , µm) ∈ Rm α = (ω, a, b, c) ∈ R+

(i) 20% observation point
Best degree PMSE Best degree PMSE Best model PMSE

TDS1 m = 1 33.684 m = 1 33.684 lxvmax 5.073
TDS2 m = 2 307.330 m = 4 310.112 tnorm 42.104
TDS3 m = 1 2936.920 m = 1 2936.920 lxvmax 32.313
TDS4 m = 1 394.201 m = 1 394.201 lnorm 56.477
TDS5 m = 3 278.049 m = 3 8.104E+05 exp 9177.670
TDS6 m = 1 35.989 m = 1 35.989 exp 84.035
TDS7 m = 6 56.979 m = 6 56.979 lxvmax 32.217
TDS8 m = 1 1.773E+07 m = 5 6.866E+05 lxvmax 1852.520

(ii) 50% observation point
Best degree PMSE Best degree PMSE Best model PMSE

TDS1 m = 1 99.984 m = 4 45.797 pareto 6.118
TDS2 m = 1 14.135 m = 4 655.077 tlogist 14.890
TDS3 m = 1 456.646 m = 1 456.646 pareto 11.712
TDS4 m = 3 18.145 m = 1 106.574 tlogist 103.504
TDS5 m = 6 301.412 m = 4 149.027 llogisst 393.903
TDS6 m = 1 72.340 m = 1 72.340 lxvmax 10.493
TDS7 m = 6 1.141E+05 m = 6 1.171E+05 exp 4480.620
TDS8 m = 5 1.448E+04 m = 5 2.761E+06 lxvmax 3.238E+04

(iii) 80% observation point
Best degree PMSE Best degree PMSE Best model PMSE

TDS1 m = 1 24.606 m = 1 23.601 lxvmax 5.772
TDS2 m = 1 16.865 m = 2 4.625 lxvmax 0.588
TDS3 m = 1 133.613 m = 1 121.803 lxvmax 9.419
TDS4 m = 3 3.903 m = 5 51.211 txvmin 4.523
TDS5 m = 1 1.442 m = 1 98.837 exp 21.715
TDS6 m = 1 12.733 m = 1 12.733 lxvmax 2.041
TDS7 m = 1 18.601 m = 2 17.460 lxvmax 10.498
TDS8 m = 2 149.982 m = 2 104.784 lxvmax 57.901

In both time-domain and group data sets, when we compare the PMSE
between our semi-parametric NHPP-based SRM in Case I and in Case II, we
can observe that Case I and Case II could provide the same PMSEs in some
cases; i.e., in Table 6, 5 cases out of 8 time-domain data sets in (i), 2 cases
out of 8 time-domain data sets in (ii) and 1 case out of 8 time-domain data
sets in (iii). In Table 7, 3 cases out of 8 group data sets in (i) and 2 cases
out of 8 group data sets in (iii). It means that, regardless of Case I or Case
II, the model parameters θ̂ derived by ML estimation are all positive, says,
θ̂ ∈ Rm+1

+ , and could provide the minimum PMSE, where the polynomial
degree m changed from 1 to 6. As we emphasized in Chapter 4, Case I is
involved as a special case of Case II.
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Table 7 Predictive results with group data
Semi-parametric SRM SRATS

Case I:
α = (µ0, µ1, . . . , µm) ∈ Rm+1

+

Case II:
µ0 ≥ 0, (µ1, . . . , µm) ∈ Rm α = (ω, a, b, c) ∈ R+

(i) 20% observation point
Best degree PMSE Best degree PMSE Best model PMSE

GDS1 m = 1 125.659 m = 1 112.782 gamma 220.732
GDS2 m = 4 385.780 m = 5 49.763 lxvmax 29.244
GDS3 m = 1 2699.190 m = 4 863.778 gamma 820.049
GDS4 m = 6 1231.240 m = 4 260.063 exp 142.854
GDS5 m = 1 363.827 m = 1 363.827 pareto 2.628
GDS6 m = 1 457.150 m = 6 153.962 tlogist 98.903
GDS7 m = 1 1196.290 m = 1 1196.290 exp 387.694
GDS8 m = 1 308.171 m = 1 308.171 txvmin 423.360

(ii) 50% observation point
Best degree PMSE Best degree PMSE Best model PMSE

GDS1 m = 2 16.705 m = 2 31.161 tlogist 157.837
GDS2 m = 1 ∼ 6 81.666 m = 3 85.269 txvmin 30.786
GDS3 m = 3 43.252 m = 3 124.431 lxvmax 564.782
GDS4 m = 5, 6 14.049 m = 2 36.858 exp 101.303
GDS5 m = 4 1.812 m = 1 7.977 exp 0.344
GDS6 m = 4 336.544 m = 1 347.911 pareto 365.493
GDS7 m = 6 1.313 m = 2 20.587 lxvmax 22.894
GDS8 m = 6 13.574 m = 4 426.916 txvmin 29.110

(iii) 80% observation point
Best degree PMSE Best degree PMSE Best model PMSE

GDS1 m = 1 4.280 m = 4 4.507 lnorm 1.762
GDS2 m = 1 0.348 m = 1 0.348 exp 0.464
GDS3 m = 1 0.689 m = 1 0.689 tnorm 0.331
GDS4 m = 2 0.113 m = 4 2.429 tnorm 1.850
GDS5 m = 1 ∼ 3 1.635 m = 2 0.445 tnorm 0.224
GDS6 m = 1 7.553 m = 4 1.469 lnorm 3.432
GDS7 m = 5 0.517 m = 5 0.401 txvmin 6.118
GDS8 m = 1 0.187 m = 1 0.187 lxvmax 0.864

6 Conclusion

In this paper, we have proposed a semi-parametric NHPP-based SRM where
the software debug rate was given by a local polynomial function. In numer-
ical examples with 16 real software fault-count data sets, we have made
comparisons of our new NHPP-based SRMs with the 11 existing SRATS
NHPP-based SRMs. The numerical results have suggested we confirm that
our semi-parametric could not always provide better goodness-of-fit and
predictive results on AIC and PMSE than the existing NHPP-based SRMs,
but could be a good alternative without specifying the software debug rate,
in addition to the existing NHPP-SRMs. In the future, we will investigate
the order-statistic models with a local polynomial debug rate under the
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assumption that the residual number of software faults before testing is not a
random variable.
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