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Abstract

This paper presents a unified approach for computing confidence limits for
stress–strength reliability when strength and stress are independent random
variables following a distribution in Lehmann family. The generalized confi-
dence interval and the bootstrap confidence intervals are obtained. Simulation
studies are conducted to assess the performance of the proposed methods in
terms of the estimated coverage probabilities and the length of the confidence
intervals. An example is also provided for illustration.
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1 Introduction

Suppose the lifetime of a certain item is an absolutely continuous random
variable with pdf f(·) and CDF F (·). Then the hazard and reversed hazard
rate at the instant t are defined respectively as follows:

h(t) =
f(t)

1− F(t)
and r(t) =

f(t)

F(t)
; t > 0. (1)

It may also be noted that the hazard function or the reversed hazard
function uniquely determines the distribution function. From the literature
it follows that a class of proportional hazard and reversed hazard models with
CDF G(t, α) can be expressed as follows:

G(t, α) = [F(t)]α and G(t, α) = 1− [1− F(t)]α; t > 0. (2)

As stated by Balakrishnan (2021), the class of distributions defined in (2)
can be written in a unified form as follows:

G∗(t, α, β) = {1− [1− F (t)]α}β; α, β > 0 (3)

Note that (1) and (2) can be defined over the entire real line as well. As we
consider only the life times were strict our attention to t > 0. G(t, α) has the
hazard rate αh(t) and reversed hazard rate αr(t), a proportional hazard and
reversed hazard rate with regard to that of F (t). Therefore, α is termed as the
proportionality parameter that is linked to the covariates in the data through
a log-linear function. For more details of proportional hazard and reversed
hazard families one may refer Kalbfleisch and Lawless (1991), Marshall and
Olkin(2007) and Seo and Kim(2020).

The two classes of distributions defined in (2) were originally proposed
by Lehman (1953) in testing of hypothesis to test H0 : F (x) = G(x) vs the
alternative H1 : F (x) ≤ G(x) for all x. He proposes to take G(x) = [F (x)]α.
As α increases, the distribution G will shift more and more to the right
of F. Any how α will capture the distance between the distributions F (·)
and G(·). If α is an integer G is nothing but the distribution function
of maximum, say V, of α iid random variables, say X, with distribution
function F. Then P(X < V) = α

α+1 . If G = 1 − (1− F )α then the
distribution of maxima of α iid random variables from F will switch to
that of minima. The class of distributions given in (3) is commonly referred
to as Lehmann families or Lehmann alternatives. G(·) is nothing but it
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is the distribution function of the exponentiated class of distributions with
baseline distribution F (·). Though all exponentiated distributions belong to
Lehmann family, each has its own intricacies in inferential aspects when
used for modeling purpose. Note that the Lehmann families or Lehmann
alternatives correspond to the proportional hazards and reversed hazards
distributions.

Kundu and Gupta (2004) obtained some characterizations of the propor-
tional hazard class and the proportional reversed hazard class of distributions
and hence the Lehmann family also holds these properties. Let X and Y are
two random variables with distribution functions F and G respectively and
such that G(t) = [F(t)]α. Let U(t) = − lnF (t), a

(n)
Y (t) = E(Un(Y )|Y < y)

where Un(·) denotes the nth power of U(·). Let rX(t) and, rY(t) be the
reversed hazard rates with regard to X and Y respectively. Then there exist
the following properties:

Property 1:

For any real number t such that F(t) > 0, rY(t) = αrX(t) with α > 0 iff

a
(n)
Y (t) = Un(t) +

n

α
a
(n−1)
Y (t),

where n is a positive integer.

Property 2:

For any real number t such that F (t) > 0, rY (t) = αrX(t) with α > 0 iff

Var(U(Y )|Y < t) =
1

α2
.

The failure of a device occurs when the stress applied to it exceeds
the strength. Let X and Y be two independent random strength and stress
variables respectively. Then the function R = P (Y < X) is called the stress-
strength reliability which can be considered as a measure of performance of
the device. Suppose X and Y have independent distributions belonging to
Lehmann family which follow G(x, α1) and G(y, α2) respectively. Then R
has the expression:

R = P(Y < X) =

∫∫
y<x

dG(x, α1)dG(y, α2) =
α1

α1 + α2
. (4)
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Different methods to estimate R can be seen in the literature, see for
example, Church and Harris (1970), Cortese and Ventura (2013) and Jana
et al. (2019). Interval estimation of R can be seen from Roy and Mathew
(2003), Baklizi (2013), Wang et al. (2015), Xavier and Jose (2021), to
mention a few. The present study deals with the interval estimation of R
in Lehmann family using the generalized confidence interval proposed by
Weerahandi (1993) and the bootstrap percentile methods.

2 Interval Estimation of R in Lehmann Family

Confidence intervals assure that a desired proportion of inferences about an
uncertain parameter based on a random sample of given size will bound
the true value so long as the distributional assumptions hold. In this study
we consider the generalized confidence interval and the bootstrap percentile
confidence interval as these two methods perform well among all other
interval estimation methods in terms of coverage probabilities. The perfor-
mance of the proposed methods are also assessed using simulation. Next,
we shall provide a general procedure of aforementioned methods to avoid
doing particular derivation and computation for each member in the Lehmann
family. The two methods are illustrated in the case of four distributions in
Lehmann family, namely, Topp-Leone, Burr III, Burr X and Power function
distributions.

2.1 Generalized Confidence Interval

Let (X1, . . . , Xn) be a random sample of size n from a distribution in the
Lehmann family. Then the joint distribution function of (X1, . . . , Xn) is the
following:

G(x, α) = [F(x)]α,

Where x = (x1, . . . , xn) is the observed value of (X1, . . . , Xn).
Therefore

−2
n∑

i=1

lnG(Xi, α) ∼ χ2(2n)

or

−2α

n∑
i=1

lnF (Xi) ∼ χ2(2n).

Suppose two independent random samples of sizes ni, say Xij , for
j = 1, 2, . . . , ni and i = 1, 2 are taken from two independent populations
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in the Lehmann family with parameters αi, i = 1, 2 respectively. Define two
statistics:

Ui = −2αi

ni∑
j=1

ln(F (Xij)) ∼ χ2(2ni), i = 1, 2.

As per the substitution method proposed by Weerahandi (2004), the
generalized pivotal quantity (GPQ) for the parameters αi for i = 1, 2 are
the following:

Tαi =
Ui

−2
∑ni

j=1 ln(F (Xij))
.

The GPQ of R, say TR, obtained by substituting the respective GPQs of
the parameters αi, i = 1, 2 in (4), is given below:

TR =
Tα1

Tα1 + Tα2

.

For a given data set of sample size (n1, n2) generate independently
Ui ∼ χ2(2ni), i = 1, 2. Using these values compute Tαi and then compute
TR. This process of generating the value of TR is repeated 10,000 times
for the fixed values of (n1, n2). Based on the generated values of TR, the
percentiles of TR can be estimated. If TR(δ) is the 100δ% percentile of TR

then (TR(δ/2), TR(1− δ/2)) is the 100(1− δ)% confidence interval for R.

2.2 Bootstrap Confidence Interval

To construct bootstrap confidence interval, generate B bootstrap samples X∗
ij

for j = 1, . . . , ni; i = 1, 2 from both populations and calculate the bootstrap
estimates of the parameters, say α̂∗

i for i = 1, 2. Using these bootstrap
estimates of the parameters, compute the bootstrap estimate of R, say R̂∗,
using the expression:

R̂∗ =
α̂∗
1

α̂∗
1 + α̂∗

2

For all bootstrap samples compute R̂∗ for each sample. Then B(δ/2)th
and B(1 − δ/2)th percentiles of R̂∗ provides the 100(1 − δ)% bootstrap
confidence limits for R. One can refer Efron and Tibishirani (1993) for more
details on bootstrap methods.

Let us consider some special distributions in the Lehmann family of
distributions. Estimators of the parameters of each distribution using GPQ
and bootstrap percentile methods are given in the following table.
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Table 1 GPQ and Bootstrap estimates of the parameters of some distributions in Lehmann
family

Estimates of αi, i = 1, 2

Distribution G(x;α);α > 0 GPQ(Tαi
) Bootstrap(α̂∗

i )

Topp-Leone [x(2 − x)]α; 0 < x < 1
Ui

−2
∑ni

j=1
ln[xij(2−xij)]

n−(ni−1)∑ni
j=1

ln(x∗
ij)+

∑ni
j=1

ln(2−x∗
ij)

BurrIII (1 + xc)−α; x > 0
Ui

2
∑ni

j=1
ln(1+xij

−c)

ni−1∑ni
j=1

ln(1+x∗
ij

−c)

BurrX (1 − ex
2
)
−α

; x > 0
Ui

−2
∑ni

j=1
ln(1−e

−x2
ij )

−(ni−1)∑ni
j=1

ln(1−e
−x∗2

ij )

PowerFunction xα; x > 0
Ui

−2
∑ni

j=1
ln(xij)

n−(ni−1)∑ni
i=1

ln(x∗
ij)

3 Simulation Study

A simulation study is conducted to assess the performance of the GPQ and
percentile bootstrap methods to construct confidence interval for the stress-
strength reliability of the distributions. The results are obtained using 10,000
simulated samples and computed using R codes. The generalized confidence
interval for each simulated sample is computed using 10,000 values of the
GPQ. For the bootstrap methods, 10,000 parametric bootstrap samples are
used.

Table 2 Coverage probabilities and expected lengths of CIs of R in the case of Topp Leone
distribution

GPQ Method Bootstrap Percentile Method
Parameters (n1, n2) Coverage Length Coverage Length

(20,20) 0.9936 0.4078 0.955 0.2966
α1 = 1 (20,30) 0.9943 0.3767 0.933 0.2717

(50,40) 0.9936 0.2841 0.955 0.2030
α2 = 1 (50,50) 0.9943 0.2688 0.96 0.1922

(100,100) 0.9943 0.1927 0.955 0.1366
R = 0.5 (200,150) 0.9956 0.1481 0.965 0.1048

(20,20) 0.9936 0.1708 0.949 0.1192
α1 = 18 (20,30) 0.9943 0.1565 0.945 0.1071

(50,40) 0.992 0.1098 0.948 0.0761
α2 = 2 (50,50) 0.9916 0.1034 0.955 0.0720

(100,100) 0.995 0.0718 0.947 0.0499
R = 0.9 (200,150) 0.9903 0.0545 0.945 0.0381

(20,20) 0.9933 0.1705 0.962 0.1171
α1 = 1 (20,30) 0.9936 0.1549 0.944 0.1067

(50,40) 0.996 0.1096 0.942 0.0767
α2 = 9 (50,50) 0.9906 0.1035 0.951 0.0720

(100,100) 0.9953 0.0720 0.952 0.0504
R = 0.1 (200,150) 0.994 0.0539 0.943 0.0383
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Table 3 Coverage probabilities and expected lengths of CIs of R in the case of BurIII
distribution

GPQ Method Bootstrap Percentile Method
Parameters (n1, n2) Coverage Length Coverage Length

(20,20) 0.952 0.2970 0.9456 0.2973
α1 = 1 (20,30) 0.9556 0.2732 0.9484 0.2731

(50,40) 0.9527 0.2029 0.9492 0.2038
α2 = 1 (50,50) 0.951 0.1924 0.9522 0.1926

(100,100) 0.9503 0.1372 0.9544 0.1373
R = 0.5 (200,150) 0.9493 0.1051 0.942 0.1052

(20,20) 0.955 0.1190 0.9482 0.1183
α1 = 18 (20,30) 0.95 0.1078 0.9512 0.1072

(50,40) 0.9483 0.0762 0.9522 0.0766
α2 = 2 (50,50) 0.9486 0.0722 0.9454 0.0721

(100,100) 0.952 0.0503 0.9518 0.0505
R = 0.9 (200,150) 0.9486 0.0382 0.9526 0.0383

(20,20) 0.9486 0.1184 0.949 0.1192
α1 = 1 (20,30) 0.945 0.1062 0.9544 0.1056

(50,40) 0.9503 0.0768 0.9476 0.0771
α2 = 9 (50,50) 0.9496 0.0723 0.953 0.0722

(100,100) 0.9486 0.0504 0.9502 0.0505
R = 0.1 (200,150) 0.9486 0.0383 0.9524 0.0383

Table 4 Coverage probabilities and expected Lengths of CIsof R in the case of Burr X
distribution

GPQ Method Bootstrap Percentile Method
Parameters (n1, n2) Coverage Length Coverage Length

(20,20) 0.947 0.2957 0.947 0.2962
α1 = 1 (20,30) 0.946 0.2720 0.948 0.2719

(50,40) 0.941 0.2030 0.948 0.2029
α2 = 1 (50,50) 0.939 0.1916 0.945 0.1919

(100,100) 0.948 0.1370 0.938 0.1366
R = 0.5 (200,150) 0.957 0.1048 0.949 0.1047

(20,20) 0.952 0.1178 0.949 0.1175
α1 = 18 (20,30) 0.966 0.1058 0.944 0.1075

(50,40) 0.954 0.0762 0.949 0.0761
α2 = 2 (50,50) 0.939 0.0714 0.957 0.0719

(100,100) 0.943 0.0500 0.944 0.0506
R = 0.9 (200,150) 0.958 0.0380 0.945 0.0384

(20,20) 0.948 0.1179 0.948 0.1172
α1 = 1 (20,30) 0.952 0.1057 0.954 0.1060

(50,40) 0.952 0.0761 0.949 0.0760
α2 = 9 (50,50) 0.955 0.0722 0.944 0.0710

(100,100) 0.942 0.0502 0.948 0.0501
R = 0.1 (200,150) 0.931 0.0383 0.946 0.0382
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Table 5 Coverage probabilities and expected lengths CIs of R in the case of Power function
distribution

GPQ Method Bootstrap Percentile Method
Parameters (n1, n2) Coverage Length Coverage Length

(20,20) 0.9773 0.3479 0.935 0.2958
α1 = 1 (20,30) 0.9803 0.3203 0.952 0.2724

(50,40) 0.9806 0.2403 0.947 0.2031
α2 = 1 (50,50) 0.9726 0.2271 0.953 0.1920

(100,100) 0.9803 0.1624 0.948 0.1368
R = 0.5 (200,150) 0.978 0.1245 0.933 0.1047

(20,20) 0.9806 0.1419 0.929 0.1174
α1 = 18 (20,30) 0.9846 0.1295 0.952 0.1087

(50,40) 0.9766 0.0919 0.956 0.0765
α2 = 2 (50,50) 0.9763 0.0862 0.948 0.0717

(100,100) 0.9803 0.0600 0.948 0.0503
R = 0.9 (200,150) 0.9796 0.0456 0.944 0.0381

(20,20) 0.9816 0.1426 0.946 0.1171
α1 = 1 (20,30) 0.978 0.1275 0.937 0.1057

(50,40) 0.9736 0.0917 0.953 0.0761
α2 = 9 (50,50) 0.979 0.0863 0.949 0.0716

(100,100) 0.983 0.0599 0.943 0.0502
R = 0.1 (200,150) 0.9766 0.0456 0.946 0.0382

4 An Example

To illustrate the proposed methods of interval estimation of R, a real data
reproduced from Condino et al. (2016). The values are the time taken to
score the first goal during the final stage of soccer matches of the European
Champions league for two consecutive years (2011–12 and 2012-13). All
times are divided by 90, that is, the total time of a soccer match in minutes so
that all values belong to (0,1).

Data Set I: First Matches
0.033 0.111 0.344 0.222 0.078 0.622 0.133 0.633 0.422 0.011 0.100 0.278
0.089 0.500 0.822 0.833 0.489 0.644 0.456 0.222 0.167 0.311 0.300 0.956

Data Set I: Return Matches
0.267 0.611 0.344 0.533 0.033 0.478 0.200 0.056 0.556 0.711 0.078 0.533
0.922 0.067 0.389 0.289 0.233 0.144 0.100 0.278 0.500 0.078 0.289 0.311
0.122

Topp-Leone is fitted for both data sets by treating data set I and data set
II as realizations of independent random samples from X (strength) and Y
(stress) respectively. The estimated values of the parameters are α̂1 = 1.0740
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and α̂2 = 1.0713 respectively. The distributions fit well for the datasets at
5% level of significance. The estimated value of R is 0.5006. The confidence
intervals based on GPQ and bootstrap methods are (0.3163, 0.6941) and
(0.3902, 0.6643) respectively. It may be noted that the bootstrap method
provides shortest length confidence interval.

5 Conclusion

Simulation study shows that bootstrap confidence interval provides better
coverage confidence intervals for all the parameter combinations and all
sample sizes in the cases of Topp-Leone and power function distributions.
In these cases, the expected lengths provided by these two methods are not
comparable because of the unsatisfactory coverage probabilities given by
GPQ method. For the Burr III and Burr X distributions, both the methods
provide satisfactory coverages for all the parameter combinations. Both the
methods give equal length confidence intervals also. So, our overall rec-
ommendation is that percentile bootstrap method is preferable to the GPQ
method. As |α1 − α2| increases the distance between the CDFs of stress and
strength also will increase. Naturally, the expected length of the confidence
intervals will decreaseas |α1 − α2| increases.

References

Baklizi A. (2013). Interval estimation of the stress-strength reliability in
the two-parameter exponential distribution based on records. Journal of
Statistical Computation and Simulation; 84(12):2670–2679.

Balakrishnan N. (2021). My musings on a pioneering work of Erich Lehmann
and its rediscoveries on some families of distributions. Communications
in Statistics-Theory and Methods.

Church D and Harris B. (1970). The estimation of reliability from stress-
strength relationships, Technometrics; 12(1):49–54.

Cortese G and Ventura L. (2013). Accurate higher-order likelihood inference
on P (Y < X). Computationaal Statistics; 28:1035–1059.

Efron B and Tibshirani RJ. (1993). An Introduction to the Bootstrap.
Chapman and Hall, New York.

Jana N Kumar S and Chatterjee K. (2019). Inference on stress-strength
reliability for exponential distributions with a common scale parameter.
Journal of Applied Statistics; 46(16):3008–3031.



252 S. Scaria et al.

Kalbfleisch JD and Lawless JF. (1991). Regression models for right truncated
data with applications to AIDS incubation times and reporting lags.
Statistica Sinica.; 1:19–32.

Kundu D and Gupta RD. (2004). Characterizations of the proportional
(reversed) hazard model. Communications in Statistics – Theory and
Methods; 33(12):3095–3102.

Lehmann EL. (1953). The power of rank tests. The Annals of Mathematical
Statistics; 24(1):23–43.

Marshall AW and Olkin I. (2007). Life distributions: structure of non
parametric, semiparametric and parametric families; Springer.

Roy A and Mathew T (2003). A generalized confidence limit for the relia-
bility function of a two parameter exponential distribution. Journal of
Statistical Planning and Inference; 128(2):509–517.

Seo JI and Kim Y. (2020). Note on the family of proportional reversed
hazard distributions. Communications in Statistics-Simulation and
Computation.

Xavier T and Jose JK. (2021). A study of stress-strength reliability using a
generalization of power transformed half-logistic distribution. Commu-
nications in Statistics-Theory and Methods.

Wang BX, Yu K and Coolen FP. (2015). Interval estimation for proportional
reversed hazard family based on lower record values. Statistics and
Probability Letters; 98:115–122.

Weerahandi S. (1993). Generalized confidence intervals. Journal of American
Statistical Association; 88:899–905.

Weerahandi S. (2004). Generalized inference in repeated measures. Wiley
series in probability and statistics. Wiley, New Jersey.

Biographies

Sanju Scaria is a research scholar in Statistics at St.Thomas College Palai
an affiliated college of Mahatma Gandhi University, Kottayam, Kerala, India.
He has one publication.



Interval Estimation of the Stress-Strength Reliability 253

Sibil Jose is working as an Assistant Professor in the Department of Statis-
tics, St.George’s College Aruvithura, Kerala. She received PhD in Statistics
from Mahatma Gandhi University, Kottayam, Kerala in 2019. She has five
publications in international journals.

 
Seemon Thomas is the Principal of St.Dominic’s College, Kanjirapally,
Kerala, India and research supervisor in Statistics at St. Thomas College,
Palai. He published more than twenty research articles and a textbook named
‘Basic Statistics’. He has 27 years of teaching experience.




	Introduction
	Interval Estimation of R in Lehmann Family
	Generalized Confidence Interval
	Bootstrap Confidence Interval

	Simulation Study
	An Example
	Conclusion

