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Abstract

Reliability study plays a significant role in supporting the operation of any
machinery working in a dynamic and harsh environment such as mining, and
construction industries. This quality is inherently uncertain and a stochastic
variable of any system. This study focused on the effects of operating condi-
tions (OCs) on the operational reliability and remaining useful life (RUL)
of machinery. A probabilistic graphical method called Bayesian Network
(BN) was used to study the effect of OCs on the system performance. The
developed methodology has been demonstrated by analyzing the operational
reliability and predicting the RUL of electrical motors operated in heavy
mining machinery. The failure probabilities estimated from the historical
data of the motor system are failure likelihood, and OCs are the evidence
in the developed BN model. It has been observed that the performance and
RUL of the motor are significantly influenced by OCs and maintenance. A
threshold value of reliability at which the motor system requires maintenance
or replacement has been proposed to guide management in decision-making.
This study will be beneficial for designing an appropriate maintenance
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schedule, reducing unplanned production downtime, and reducing the main-
tenance cost of electrical motors operated particularly in dynamic and harsh
environmental industries.

Keywords: Operational reliability, Bayesian network, Remaining useful
life.

1 Introduction

Reliability is commonly used as a dependable performance indicator of a
system and it reflects how well the system can consistently fulfill the specified
purpose [1, 2]. The manufacturing sector is consistently striving to remain
competitive with the help of highly reliable equipment. Increases in the relia-
bility of the equipment lead to increases in both production and profitability. It
is necessary to maintain a high level of equipment availability to continuously
produce at the target level. However, the harsh workplace environment is
a hindrance and needs rigorous maintenance programmes to ensure high
equipment reliability. A system’s reliability analysis can demonstrate how
potential events such as component failure, maintenance, inspection, and test-
ing can affect system failure. Reliability assessment can serve as a foundation
for decisions made during the system life-cycle, like development stages,
including design, construction, operation, and maintenance [3].

It is believed that electronic and electrical equipment would perform well
in the wide range of environmental conditions that exist around the world.
The rate at which a system deteriorates might vary significantly depending
on the operating environment. Various operating conditions invariably have
an impact on a system’s quality as well as its reliability and lifespan [4, 5]
and need to be studied.

Lundteigen & Rausand [4] have defined the reliability index (RI) of a
system to study the effect of test and maintenance techniques, human and
organizational factors (HOFs), and environmental variables on the system
performance. Theoretically, all the relevant reliability index factors can be
incorporated into the reliability models, but the precision of the estimated
results may not be acceptable with limited data or models built on false
assumptions.

An efficient and efficient maintenance programme is of utmost impor-
tance to ensure high availability of a production system. Prediction of the
remaining usable life (RUL) of a component is an important aspect of predic-
tive maintenance programmes to schedule maintenance, improve operational
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efficiency, and eliminate unplanned downtime [6]. Therefore, determining
the RUL is one of the most important aspects of predictive maintenance
programmes.

Mathematical models of reliability like, the parametric distribution func-
tions can simulate and extrapolate reliability, but they consider time-to-event
data only and ignore the formulation and quantification of operational
and environmental conditions (covariates) that affect the performance and
reliability of systems [7, 8]. Numerous studies have examined reliability
assessments of engineering systems that take covariates into account [9–11].
Ghodrati and Kumar [12] have used the proportional hazard model (PHM) to
study the effect of covariates on the hydraulic jack’s failure of a load-haul-
dump (LHD) machine. In their study, the authors assume that the baseline
risk function is Weibull and the operator skill, hydraulic system temperature,
and environmental factor are the model covariates. To study the effect of
the change of system states on the failure intensity, Gasmi et al. [13] have
also used PHM and have defined system states into loaded and unloaded
states, and the baseline hazards function as the Weibull distribution function.
H. Langseth [14] studied the survival times of mechanical equipment of a gas
turbine using a Bayesian network. This study uses a Bayesian network for
modelling the covariates structure and identifies the covariates that directly
influence the time to failure of the equipment. Previous Reported reliability
models incorporating the covariates studies mostly focus on identifying and
simulating the impact of factors on the hazards function [12, 13]. Recent
research has shown that Bayesian Network models, when applied to the
performance analysis of equipment and systems, are computationally precise
enough to deal with the casual relations that exist between the components
and subsystems [15–18]. In the context of performance studies of electrical
equipment, Bayesian networks have not yet been properly investigated to
their full potential. Additionally, the inference and diagnostic information
dissemination capabilities of BNs make it possible for these systems to
achieve more precise reliability estimation. Also RUL prediction is important
and increasing day by day but the effects of OCs and other influencing factors
on the predicted RUL is still in its infancy. The goal of this paper is to
construct a probabilistic graphical model for assessing the effects of a set
of OCs on the reliability and RUL of electrical motor operated in dynamic
and harsh environments.

The rest of the paper is organized as follows. Section II demonstrated
the overview of the motor system and its different failure modes along with
the data. The methodology has been detailed in Section III of the paper.
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Section IV demonstrated the results and discussed on it. Finally, the outcomes
of the research have been concluded in Section V.

2 Methodology

The research methodology applied in this study is shown in Figure 1. The
main three phases of the developed methodology include collection of data,
reliability modelling using BN and prediction of RUL.

2.1 Bayesian Network

A Bayesian network (BN) graphically models the conditional dependencies
of a set of variables and uses Bayes’ rule to revise the probabilities of
expected odds of an event by adding new information. In the discrete case,
Bayes’ theorem relates the conditional and marginal probabilities of events A
and B, provided that the probability of B does not equal zero:

P (A|B) = P (A)× P (B|A)

P (B)
, (1)

Figure 1 Flowchart of the research methodology.



BN Approach for Studying the Operational Reliability and RUL 377

where,
P (A|B) = conditional probability of A, given B, and referred to as the
posterior probability because it is derived from or depends upon the specified
value of B.
P (B|A) = conditional probability of B given A and is known as the likeli-
hood.
P (B) = prior or marginal probability of B and acts as a normalizing constant.
P (B|A)
P (B) = the Bayes factor or likelihood ratio.

The joint probability distribution (JPD) of the network can be obtained
from the product of all likelihood probabilities and using the chain rule, it
can be expressed as:

P = (X1, X2, X3, . . . . . . . . . , Xn) =
n∏

i=1

P

(
Xi

Pa(Xi)

)
(2)

where Pa (Xi) is the parent set of any node Xi.
A Bayesian network is a directed acyclic graph (DAG) consisting qual-

itative or quantitative components and comprises nodes and directed edges
(edges for short).

The BN satisfies the property of Local Markov, which states that a node is
conditionally independent of its non-descendants, given its parents. A basic
form of BN is presented in Figure 2.

Figure 2 Simple Bayesian Network.
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Figure 3 Developed BN model for motor system.

In Fig. 4, node A is the parent node of node of B, and C is the parent of
node D. Again node D is the parent node of node E. The joint probability
distribution of the Bayesian network (Fig. 3) is given by:

P (A,B,C,D,E) = P (A)×P (B|A)×P (C|A)×P (D|B,C)×P (E|D),

where, P (A) = Marginal or prior probability of A, P (B|A) = conditional
probability of B given A, P (C|A) = conditional probability of C given A,
P (D|B,C) = conditional probability of D given B & C both, and P (E|D)
= conditional probability of E given D.

The BN model for the motor system has been developed as appeared in
the Fig 3. The covariates of each failure mode have been identified based
on the retrospective analysis of past operational data, discussion with field
experts and questionnaire survey.
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2.2 RUL Modeling

RUL defines the useful life left of any real object (system/component) at
a specific time of its operating period. The RUL is an important term in
conditioned-based maintenance and prognostic. In essence RUL should have
a gradual reduction trend if no intermediate maintenance is done. In practice,
RUL fluctuates over time due to the maintenance and operating condition
effects [19, 20]. The RUL can be expressed as

RUL(t) = f(HI,OC) (3)

where HI is the health index, and OC is the operating condition of the object.
The possibility of a system successfully carrying out the operation for

which it was designed, at the conditions specified, and for the allotted amount
of time without experiencing malfunction is the reliability of the system. An
attempt to statistically evaluate the dependability of a system by assigning it
a single numerical value, a reliability index is a single-number measure. It is
possible to characterize a single system using a variety of distinct indices
due to the fact that the set of dependability indices differs based on the
area of engineering being discussed. A relevant index is the mean time to
failure, which represents an expectation of the object’s service lifespan in
the straightforward scenario of an item that cannot be utilized or repaired
once it fails. A further example of a cross-disciplinary statistic is the forced
outage rate (FOR), which is the chance that a certain category of apparatus is
malfunctioning. In today’s system of energy regulation, reliability indices are
utilized in a significant way.

This work uses reliability index as a health indicator of the system for
RUL estimation. The reliability of a system is greatly influenced by the OC.
This research models the effect of OC on reliability of the system using a
criterion-based approach i.e. Bayesian network and Hazard model [20–22].
The conditional reliability at the lifetime t0 can be calculated as

R(t|OC) = R(t)− R(OC|F ) ∗R(F )

P (OC)
(4)

The RUL function, as defined above, of a system for a life length of t0
can be defined by

RUL(t0) =

∫ ∞

t0

R(t|t0)dt =
1

R(t0)

∫ 8

t0

R(t)dt (5)



380 Debasis Jana et al.

The mean time to failure of any system is the mean remaining life that
has reached the age t0. So it can be represented as

MTTF (t0) = t0 +RUL(t0) (6)

So, the remaining useful life function at a working age of t0 can be
expressed in the presents of OC as

RUL(t0, OC) =
1

R(t0|OC)

[
MTTF −

∫ t0

0
R(t|OC)dt

]
(7)

3 Case Study: System Description and Data Collection

The developed methodology has been examined through a case study on
operational reliability and RUL of electrical motors operated in mining envi-
ronment. The data used in this study are operational field data and electrical
workshop data collected from the failure log book of a 1200W DC motor
operated in a 24/88 m3 dragline deployed in an opencast coal mine located in
central India.

Electric motors of varying rated capacities are widely employed prime
movers in industries using electrical power, including transportation, mining,
petrochemical, and manufacturing. The electrical motors offer high effi-
ciency, short time overloading capability, high degree of reliability, extremely
durable and low maintenance. However, just like other machines, they are
subjected to wear and tear and, if ignored, could eventually result in catas-
trophic failure of the system. Some of the important failures causes of electric
motors are severe duty cycles, continuous use in overloading conditions,
harsh work environment, installation and manufacturing issues, improper
upkeep and maintenance [21, 22]. The major components of an electrical
motor are presented in Fig. 4.

Certain motor parts deteriorate with time and under operating stress.
Temperature, voltage fluctuations, over- and under voltage, and voltage
imbalance, bearing vibration all contribute to the deterioration of electrical
insulation of any electrical machines over time. Dirt, moisture, and corrosive
fumes all have an impact on wear and tear of commutator and carbon brash,
which further exacerbates when lubricant is improperly applied, gets too
hot or contaminated, or isn’t and replaced on a regular basis. The failure of
motor can be broadly categorized into two types: external failure and internal
failure, as described by the flowchart in Fig. 5.



BN Approach for Studying the Operational Reliability and RUL 381

Figure 4 Important components of an electrical motor.

Figure 5 Classification of various causes of motor failures.

The data has also been collected through questionnaires for expert opin-
ion. The collected historical data on motor failure are for a period of 5
years (2016–2020). The frequency of failures, Time to Repair (TTR), and
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Time to Failure (TTF) have been computed for the motor system from the
collected logbook information. Outliers, misinformation, and anomalies in
the data have all been examined at this point. The identification and selection
of appropriate models for characterizing the TTFs and TTRs data have the
greatest significance in estimating the node probabilities of the BN.

4 Results and Discussion

The collected data has been analyzed and it has been observed that the most
frequent failure of the motor generator (MG) set assembly of a dragline is
armature burn and overheating. The observed failure modes criticality of the
MG assembly components according to the failure frequency is presented in
Table 1.

The possible causes of the aforesaid failure modes have been identified
from the analysis of data collected through questionnaire survey. The degree
of influence of failure causes on various failure modes was assessed based on
the experts’ opinion and categorized as High, Low, Moderate, poor, good
where applicable. To study the causal relationship between motor failure
and identified causes, OCs, the Bayesian network has been developed as
presented in figure 5. Calculation of the conditional probability of the nodes
is the backbone of a BN model. The likelihood of an event outcome, is
dependent on the occurrence probability of a prior event or outcome and is
referred to as conditional probability. To get the conditional probability of an
event, the likelihood of the event that happens before it has been multiplied
by the probability of the event that will happens after it.

The conditional probability for each causal relationship and OCs have
been estimated from the experts’ (dragline operator, mining engineer, and
maintenance engineer) opinions. For example, the identified causes for insu-
lation failure are contaminants, Temperature, moisture and voltage surge.

Table 1 Criticality ranking of different motor failure modes.

Failure modes Criticality

Armature Burnt/Flashed/Failed/Overheated 1

Armature V-Ring Burnt/Flashed, Riser flashing/Problem 2

Field Fail, M/P Coil Earth/Burnt/Fail/Unbalance 3

Heavy Sparking 4

I/P Coil Burnt/Lead Burnt 5

Stator Earth/ Stator Compensating Bar Earth/Burnt/Melt Down 6
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Table 2 Conditional probability of the insulation failure.
Voltage surge Contaminants Temperature Moisture P(Motor failure)
Yes Yes High High 0.96

Moderate 0.88
Low 0.80

Moderate High 0.95
Moderate 0.82

Low 0.76
Normal High 0.81

Moderate 0.72
Low 0.65

High High 0.85
Moderate 0.76

Low 0.71
No Moderate High 0.80

Moderate 0.69
Low 0.59

Normal High 0.45
Moderate 0.30

Low 0.05
No Yes High High 0.91

Moderate 0.82
Low 0.75

Moderate High 0.89
Moderate 0.69

Low 0.64
Normal High 0.71

Moderate 0.64
Low 0.51

High High 0.72
Moderate 0.61

Low 0.41
No Moderate High 0.68

Moderate 0.51
Low 0.35

Normal High 0.25
Moderate 0.11

Low 0.01

The conditional probability table for motor insulation failure is revealed in
Table 2.

Similarly, the conditional probability for all the failure modes have been
tabulated and inputted into the Bayesian network in Figure 6(a) and (b).
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Figure 6a Bayesian network with evidence of motor system.

The developed BN was run in the BayesiaLab 10.0 and the probability
of motor failure was noted. By analyzing the developed model, the failure
probabilities of the motor were observed at different point of time. The motors
reliability values calculated from the observed failure probability is plotted as
presented in the Figure 7. It is observed that the developed BN model ade-
quately outlines the effect of cofactors on the motor performance as reflected
in the motor reliability curve (Figure 7). For example, the reliability values
increase after a maintenance whereas, due to the high temperature, vibration,
moisture, and voltage surge, the performance of the motor deteriorates. It is
evident that among the studied external factors, maintenance has the highest
effect on the motor reliability, followed by the repair quality i.e. how it repairs
after a failure.
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Figure 6b Bayesian network analysis of motor system.

Figure 7 Reliability of motors with OCs.

Reliability analysis of the motor system following the traditional reliabil-
ity evaluation technique has been done, and the reliability curve of the motor
system has been presented in Fig. 8. It is observed that the reliability of the
motor system is 89.59% at 1h of operation.

Figure 9 presents a composite plot of reliability curves of the case study
motor with and without preventive maintenance. The figure clearly shows
how preventive maintenance affects the reliability of the motor system. It has
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Figure 8 Reliability of the motor system using traditional approach.

Figure 9 Reliability of motor with and without maintenance effects.

been observed that with effective preventive maintenance, the motor reliabil-
ity is comparatively higher than reliability without preventive maintenance
which signifies that preventive maintenance has favorable effects on motor
reliability as well as mean residual life of the motor. These positive effects
influence the production and productivity of the industry.

The RUL of the motor has been estimated using equations 1 and 2 and
plotted as appeared in Fig. 10. It has been observed that the estimated RUL
of the motor drops below its expected value when the effect of the OCs is
included in the analysis. At an initial age of 500 hours the estimated RUL
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Figure 10 RUL of the motor system with and without OCs.

Figure 11 Maintenance and replacement threshold of reliability.

of the motor is 7250 hours whereas the RUL is only 5700 hours when the
operation conditions are taken into account.

Predictive maintenance is an important part of modern industrial devel-
opment and has become a research interest in Industry 4.0. As a part of
the predictive maintenance strategy, this work proposes a reliability-based
strategy with critical reliability value at which maintenance or a replacement
decision is sought. The reliability value corresponding to each time to failure
has been read on the reliability curve. The reliability frequency at the time
to failure vs. time to failure has been plotted. It has been observed that
the frequency distribution follows the normal curve. The mean (µ) and
standard deviation (σ) for the normal curve has been estimated as the mean,
µ = 0.5343311 and std. dev σ = 0.2750071.
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From the calculated reliability value, the threshold value of reliability for
predictive maintenance (µ + 1σ) and the threshold value of reliability for
replacement (µ − 1σ) has been proposed. Based on the case study system,
this research recommends predictive maintenance for the case study motor
as and when its reliability reaches around 78.77%, and it is required to be
overhauled or replaced when the reliability is 25.24%.

5 Conclusions

In this research a probabilistic graphical method has been developed to study
the effect of modes and causes of failure and operating conditions on the
operational reliability and RUL of machinery through a case study. It has been
observed that the failure of motor and consequently its RUL highly depen-
dent on the operating conditions and maintenance action. The operational
reliability is significantly increased after a maintenance action and rapidly
decreasing due to effects of OCs. At an initial age of 500 hours the estimated
RUL of the motor is 7250 hours whereas the RUL is only 5700 hours
when the operation conditions are taken into account. Also a threshold value
of reliability-based strategy has been proposed to recommend the critical
reliability value at which maintenance or a replacement is required/warranted
to avoid unduly long downtime of the system. For the physical asset to
function efficiently and dependably, all prescribed conditions are required to
be followed. A physical system should have limited reliability issues over its
lifetime when installed and operated under stated conditions and maintained
following the prescribed procedure. However, when one of the factors, such
as environmental factor, or maintenance action, is not met, the system can fail
prematurely, reducing its reliability and increasing the industry’s maintenance
and operational costs.
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