
Modeling Software Release Time
and Software Patch Release Time

Based on Testing Effort and Warranty

Palak Saxena1, Vijay Kumar1,∗, Stuti Tandon2,
Kuldeep Chaudhary1 and Mangey Ram3

1Department of Mathematics, Amity Institute of Applied Sciences, Amity University
Uttar Pradesh, Noida, India
2Manav Rachna International Institute of Research and Studies, Faridabad; India
3Department of Mathematics, Computer Science and Engineering, Graphic Era
(Deemed to be University), Dehradun, India
E-mail: vijay parashar@yahoo.com
∗Corresponding Author

Received 07 October 2023; Accepted 08 May 2024

Abstract

In this world of software technology, our dependency on software’s is increas-
ing continuously. As a result, software industries are working hard to develop
highly reliable software and to meet the expectation of customers. Generally,
software companies release software early in market to take gain market
share, but rigorous software testing is required for early release software
to ensure reliability of software and meet the customer’s expectations. This
requires a huge amount of resources, and it increases financial burden on
the company, consequently, decreases the overall profit of company. Further,
late release due to prolong testing of a software may improves reliability
but results into a loss of market opportunity cost or may not be fulfil the

Journal of Reliability and Statistical Studies, Vol. 17, Issue 1 (2024), 77–108.
doi: 10.13052/jrss0974-8024.1714
© 2024 River Publishers



78 P. Saxena et al.

customer’s aspirations. As a result, to stay competitive, companies release
software early and release patches later to fix the bugs, improve the func-
tionality of software, and to update the software. Software industries are
improving the performance or usability of software by releasing patches
which may increase the consumption of testing effort and consequently
increase in cost. On the other hand, software firms also provide warranty
on their products. To address the above said issues, we have developed a
testing effort-based software reliability growth model, which incorporates
warranty policy and estimates the optimal software release and patch time
with the objective to minimise the total testing cost. Further, we have used
Genetic Algorithm (GA) to estimate optimum software release and patch
time. A numerical illustration has been presented on a real time data set to
validate the proposed model.

Keywords: Software reliability, testing effort, software patch, genetic algo-
rithm, software release.

1 Introduction

Computer systems play a pivotal role in controlling safety-critical systems
and are ubiquitous in various facets of daily life. The demand for high-
quality software is consequently substantial, driving the software industry
to prioritize reliability in its development efforts. Several factors influence
software reliability, including resource constraints, process scheduling, unre-
alistic requirements, and the availability of necessary prerequisites for the
development process. As a result, software engineers are facing challenges
to manage their schedules and resources to deliver complex software’s on
time and to fulfil the requirements of market. Also, they are expected to
accomplish the process faster with the validation of reliability. After the
release of software, reliability can be measured by system failures, feedback
of customer, complaints, etc. However, it is too late by then. Thus, before
the installation of software product to customer, software engineers must
determine its reliability. Hence, testing of software must be carried out before
its release to ensure the reliability.

Testing stands as a pivotal aspect of the software development lifecycle,
invariably conducted upon the culmination of each developmental stage.
The strategy for a successful testing of software begins with the consid-
eration of the specific requirements by the software engineers for testing.
Software testing is described as the process to identify the faults that may



A Review Based on Various Applications to Find a Consistent 79

have been introduced during the development cycle. Therefore, a successful
software testing is accomplished by discovering the faults. Software testing
is also used to analyse the safety, performance, and security of the software.
Moreover, quantitative assessment of software reliability is determined by
testing, which is an important factor in deciding whether or not to release a
product. Due to the increase in the market competition and software com-
plexity, testing efforts and targets have been set. More testing will frequently
reveal more bugs in large projects and hence results in successful release of
software.

The software industry is continuously increasing and are releasing the
feature-wrapped versions of industry-specific software. An emanating inno-
vation is experienced in the process of software development with the early
release of software including patches that provide the essential upgrades.
Software firms face challenges to deploy the software and minimize their
proportion of market opportunity costs. As a result, there is evolution in the
process of software testing and development to meet the changing demands of
software industry. Software firms are using improved technique for the early
release of software and are using patches to improve software’s capability
by providing the additional upgrades. A patch refers to the changes of a
computer programs or the data that supports for its improvisation or update.
Thus, patching modify the software in such a way that either the software sys-
tems are updated with new features, or the existing bugs are fixed. Therefore,
in our study, we have formulated the testing cost function by incorporating
warranty and testing effort-based software reliability growth model with the
consideration of software patching. A major difference between the present
research and existing research is presented in Table 1. The key features of the
study are discussed below:

• Introduced warranty in the cost model by using testing effort-based
software reliability model when patching is considered.

• Optimized the parameters of proposed cost model using Genetic algo-
rithm to determine the software release time and patch release time.

• Discussed the optimal release time of software and patch.
• Sensitivity analysis is performed to observe the impact of changes in

fault detection rate on the total testing cost.

The remaining research work is structured as follows: Section 2 presents
a comprehensive literature review on the proposed model. In Section 3, the
formulation of the proposed software reliability model is discussed in detail.
The cost model is outlined in Section 4, followed by a numerical illustration



80 P. Saxena et al.

Table 1 Comparison between present research work and existing research work

Present
research

Jiang
and

sarkar
(2003)

Jiang,
Sarkar,

and
Jacob
(2012)

Anand
et al.

(2017)

Kansal
et al.

(2016)

Tickoo
et al.

(2016)

Kumar
et al.

(2018)

Release time and testing
stop time as two
separate scenarios

Yes Yes Yes Yes Yes Yes Yes

Impact of market
opportunity cost

Yes Yes Yes Yes Yes Yes Yes

Cost of debugging and
removal of fault by tester

Yes No No Yes Yes Yes Yes

Detection/removal of the
faults till product life
cycle

Yes No No Yes Yes Yes Yes

Impact of warranty Yes No No No Yes No No

Testing effort-based cost
model under warranty

Yes No No No No No No

in Section 5, which also includes an introduction to Genetic algorithms.
Section 6 delves into sensitivity analysis, and the findings are summarized
in Section 7, along with directions for future work.

2 Literature Review

Software Reliability Growth Models (SRGM) has been widely used in
the software industry for many years. It gives a mathematical relationship
between different testing characteristics including optimal time of release,
fault detection rate, fault removal rate and many more. Several researchers
have developed SRGMs to forecast reliability under a variety of condi-
tions. A revolutionary model is presented by Goel and Okumoto (1979).
The authors presented a model that characterised failure detection as a
Non-Homogenous Poisson Process (NHPP) and made the assumption of
proportionality between the remaining number of faults in the software
and the hazard rate. In comparison to the conventional exponential SRGM,
Obha’s (1984) inflection S-shaped model gives more realistic estimation.
Particularly, when data sets are employed that are based on calendar time,
the estimates are more precise. Delayed S-shaped model is developed by



A Review Based on Various Applications to Find a Consistent 81

Yamada, Ohba and Osaki (1983) for the detection of software faults. For
the observed data of the total number of detected software faults, the curve
found is an S-shaped growth curve was obtained. A modification to the Goel
and Okumoto model (1979) was proposed by Hossain and Dahiya (1993).
Authors included numerous quantitative measurements of software perfor-
mance in their work. Pham (2014) proposed V-tub-shaped fault detection
rate model and presented the methodology of normalized criteria distance
approach for the ranking of SRGMs. Based on the phenomenon of imper-
fect debugging, Yamada, Tokuno and Osaki (1992) presented two SRGMs.
Authors assumed that new faults are frequently added in the software while
debugging the existing faults in the testing process. A NHPP based new soft-
ware reliability model is proposed by Pham and Zhang (1997). The authors
obtained better results of new model while comparing with the existing NHPP
based SRGMs.

Huang, Chiu, and Chen (2022) used the NHPP to discuss the practi-
cability of software reliability growth models by taking into account the
phenomenon of change points, imperfect debugging, and various types of
faults during the testing period. Tian, Yeh and Fang (2022) proposed a
software reliability growth model using imperfect debugging with Bayesian
analysis for determining software release to reduce the expenses of software
and to improve practicability. Li and Pham (2021) introduced a generalised
framework for testing coverage software reliability modeling incorporating
imperfect debugging, fault detection processes (FDP), and fault correction
processes (FCP). The chaotic grey wolf optimization algorithm (CGWO)
heuristic is being proposed by Dhavakumar and Gopalan (2021) as a new
technique for quantification of SRGM properties. Zhang et al. (2021) devel-
oped a generalized model for imperfect debugging that includes detection of
fault and its removal. Kumar et al. (2016) proposed a model using a well-
known Cobb–Douglas production function considering the fault removal
process into two phases. Lee, Chang, and Pham (2020) presented a new
SRGM including software failures that are interdependent. Few researchers
have also used Multi-criteria decision making (MCDM) in SRGMs for the
ranking of models (Bibyan and Anand 2022; Kumar, Saxena and Garg 2021;
Kumar et al. 2018; Saxena, Kumar and Ram 2022; Saxena, Kumar and Ram
2021).

Further researchers have developed cost models to reduce the total cost
of software by introducing patching phenomenon in the software. A model
developed by Jiang and Sarkar (2003) asserts that testing continues to
play a crucial role after software has been released, producing outcomes



82 P. Saxena et al.

maintaining the reliability. A software scheduling policy was proposed by
Jiang, Sarkar, and Jacob (2012) demonstrating the benefits of releasing the
software earlier and continuing testing after it has been released. Anand et al.
(2017) established a software scheduling policy for a software product and
demonstrated the usefulness of patching in reducing system outages and
increasing system efficiency. Kansal et al. (2016) presented a cost model
under the warranty to determine the release and patch time of software. Kaur
et al. (2021) studied the impact of an infected patch for software reliability
modeling. Kumar et al. (2018) proposed a structure model that considers
reliability as an important economic feature of post-release software testing
and patching. Tickoo et al. (2018) developed a discrete-time model to select
the optimal test runs for software and patch releases while keeping cost and
reliability in consideration. Aggarwal, Kaur and Anand (2022) presented a
multistep mathematical approach to compute the number of vulnerabilities
patched, disclosed, and discovered during the vulnerability discovery process.
Narang et al. (2018) presented a bi-criterion framework that combines risk
and cost for minimization under budgetary restrictions and risk to identify
the patching time and optimal vulnerability discovery. Anand, Kaur and
Inoue (2020) presented a mathematical model to investigate the impact of
an infected patch on a multi-version software reliability. Tickoo et al. (2016)
developed a testing effort-based cost model for determining the optimal soft-
ware release and patch time to minimize the total cost considering different
distribution function before and after patch release.

Testing-effort is consumed during the software testing phase to discover
the faults successfully in the software and its modeling using various distri-
butions. Kumar et al. (2018) incorporated imperfect debugging to develop
effort-based software reliability growth model for the release of software.
Authors have used Cobb-Douglas production function for defining the testing
time behaviour. Peng et al. (2014) examined the fault detection process (FDP)
and fault correction process (FCP) with the help of imperfect debugging and
testing effort function. Lin and Huang (2008) proposed SRGM by incorporat-
ing numerous change-points into Weibull-type testing-effort functions. Kapur
et al. (2019) studied the effect of testing effort on the software reliability
modeling and cost function for the optimization problem. Kumar, Sahni and
Shrivastava (2016) incorporated imperfect debugging for developing multi
up-gradation model. Kumar et al. (2017) presented a model based on optimal
control to allocate effort between detection and correction processes in the
software testing phase. Kapur et al. (2008) proposed a Non-Homogeneous
Poisson Process (NHPP) based SRGM describing various software failure/



A Review Based on Various Applications to Find a Consistent 83

reliability curves using time dependent fault detection rate (FDR) and testing
efforts. Li, Xie and Ng (2010) used a variety of methodologies to study the
sensitivity of software release timing, including global sensitivity analysis,
design of experiments, and a one-factor-at-a-time approach. Saxena et al.
(2021) have proposed SRGM under fuzzy paradigm based on testing effort
using Generalised Modified Weibull distribution. Table 2 summarises the
major contributions of researchers in several directions.

3 Model Formulation

This section outlines the model formulation, detailing the notation utilized in
the modeling process as described in Section 3.1. Additionally, the assump-
tions underlying the model are elaborated upon in Section 3.2, providing
the necessary context for the subsequent discussion. Finally, Section 3.3
delineates the software reliability growth model, focusing on testing effort
as a key factor.

3.1 Notations

a → Initial fault content in the software.
b → Fault detection rate by testing team
ri → Ratio of fault detection rate under customer’s usage with respect to

tester’s testing in the post release phases, i = 1,2,3.
Fi(t) → v Fault distribution function for ith phase, i = 1,2,3.

τ → software release time.
τ1 → first patch release time.
w → warranty length

v, k → Weibull distribution parameter
Tlc → Lifecycle of software
c1 → Testing cost per unit testing effort
c2 → Market opportunity cost
c3 → The cost associated with testing team for detection/removal of faults

before releasing software.
c4 → The cost associated with user for removal of faults after releasing

software and before releasing patch.
c5 → The cost associated with user for removal of faults after releasing

patch in the warranty period.
c6 → The cost associated with user for removal of faults after warranty

period.



84 P. Saxena et al.

Table 2 Major contribution of researchers
Authors Research Contribution
Jiang and Sarkar (2003) Developed a model that claims software testing plays an

important role after software has been released to maintain
the reliability.

Jiang, Sarkar and Jacob
(2012), Anand et al. (2017)

Established a software scheduling policy.

Kansal et al. (2016) Introduced warranty in cost model using patching.
Tickoo et al. (2016) Developed a testing effort-based cost model.
Kumar et al. (2018) Considered reliability as an important economic feature of

post-release software testing and patching.
Goel and Okumoto (1979) Proposed a model that characterized fault detection rate.
Obha (1984) Inflection S-shaped model.
Yamada, Ohba and Osaki
(1983)

Delayed S-shaped model.

Hossain and Dahiya (1993) Proposed modified G-O model.
Pham (2014) Presented V-tub-shaped fault detection rate model
Yamada, Tokuno and Osaki
(1992); Pham and Zhang
(1997)

Developed NHPP based SRGMs.

Huang, Chiu and Chen
(2022)

Proposed SRGM by using change points and imperfect
debugging.

Tian, Yeh and Fang (2022) Bayesian analysis is used with imperfect debugging to
develop SRGM.

Li and Pham (2021) Incorporated imperfect debugging, FDP and FCP for
software reliability modeling.

Dhavakumar and Gopalan
(2021)

Developed a new technique CGWO to quantify SRGM
properties.

Zhang et al. (2021) Presented a model using the phenomenon of imperfect
debugging.

Kumar et al. (2016) Used Cobb–Douglas production function for modeling.
Lee, Chang and Pham
(2020)

Assumed software failures are interdependent to propose
SRGM.

Bibyan and Anand (2022) Introduced WDBA to rank multi-release SRGM using
MDM and DBA.

Kumar et al. (2021); Kumar
et al. (2018); Saxena et al.
(2021); Saxena et al. (2022)

Integrated different multi-criteria decision-making
techniques to rank SRGM.

Kaur et al. (2021) Studied the impact of an infected patch for software
reliability modeling.

Tickoo et al. (2018) Developed a discrete-time model to select the optimal test
runs for software and patch releases.

(Continued)



A Review Based on Various Applications to Find a Consistent 85

Table 2 Continued

Authors Research Contribution

Aggarwal et al. (2022) Multistep mathematical approach is presented to compute
the number of vulnerabilities patched, disclosed, and
discovered during the vulnerability discovery process.

Narang et al. (2018) Bi-criterion framework is discussed to identify the patching
time and optimal vulnerability discovery.

Anand, Kaur and Inoue
(2020)

A mathematical model is presented to investigate the impact
of an infected patch on a multi-version software reliability.

Kumar et al. (2018) Effort-based SRGM is developed by incorporating
imperfect debugging.

Peng et al. (2014) Examined FDP and FCP with the help of imperfect
debugging and testing effort function

Lin and Huang (2008) Proposed SRGM by incorporating change-points into
Weibull-type testing-effort functions.

Kapur et al. (2019) Studied the effect of testing effort on the software reliability
modeling and cost function for the optimization problem.

Kumar et al. (2016) Incorporated imperfect debugging for developing multi
up-gradation model.

Kumar et al. (2017) Presented a model based on optimal control to allocate
effort between detection and correction processes.

Kapur et al. (2008) Proposed a NHPP based SRGM describing various
software failure/reliability curves using time dependent
fault detection rate (FDR) and testing efforts.

Li, Xie and Ng (2010) Analysed the sensitivity of software release timing,
including global sensitivity analysis, design of experiments,
and a one-factor-at-a-time approach.

Saxena et al. (2021) Presented testing effort based SRGM.

3.2 Assumptions

The following fundamental assumptions underpin the proposed model:

• In the software lifecycle, fault removal phenomenon follows NHPP. The
average number of faults remaining in the software is directly related to
the expected number of faults detected during the time span (t, t+∆t).

• After the detection of faults, they are immediately removed.
• The presence of faults may lead to the failure in the software system.
• The rate of fault detection/correction follows distribution function with

respect to testing effort intensity.
• Software has a finite lifecycle.



86 P. Saxena et al.

• The cost of patch is negligible. The market opportunity cost is a twice
continuously differentiable convex function of τ that is expected to be
monotonically increasing (Jiang and Sarkar, 2003).

3.3 SRGM Based on Testing Effort

In this study, our SRGM incorporates the dynamic nature of testing resource
utilization over time. We utilize the Weibull function to capture the nuances of
testing effort. Fundamentally, we operate under the assumption that “testing
effort varies in proportion to the available testing resources.”

dW (t)

dt
= v(t)[W̄ −W (t)] (1)

Where v(t) represents the rate at which testing resources are depleted
over time, relative to the remaining resources.

If v(t) = v.k.tk−1

The Weibull function will obtain by solving Equation (1) (Tickoo et al.
2016) as:

W (t) = W̄ (1− e−vtk) (2)

dm(W (t))

dt

/
dW (t)

dt
= b(W (t))(a−m(W (t)))

Where b(W (t)) = f(W (t))
1−F (W (t)) is the fault detection rate.

We used the initial conditions of m(t = 0) = 0 and W (t = 0) = 0 to
solve the above equation, we get

m(W (t)) = aF (W (t)) (3)

Where F (W (t)) defines the Probability distribution function (p.d.f.)
depending on testing effort. The p.d.f. F (W (t)) satisfies the following
properties:

1. At t = 0,W (t) = 0 and F (W (t)) = 0.
2. F (W (t)) > 0 and W (t) > 0 for t > 0.
3. F (W (t)) monotonically increases function of W (t) when t increases.

The explanation for continuity of F (W (t)) can be given in the same
way.

4. When software testing stays for longer time i.e t → ∞,W (t) → W̄ , the
value for distribution function F (W (t)) is F (W̄ ). The upper bound on



A Review Based on Various Applications to Find a Consistent 87

the quantity of testing resources available is represented by W̄ , which is
a very large positive number.

4 Cost Model Based on Testing Effort

In this study, we’ve segmented the lifespan of software into four distinct
phases. The first phase is pre-release testing phase [0, τ ] where software
is being tested. Second phase is pre-patching release phase under warranty
[τ, τ1]. In this phase, software is released at time τ with warranty. The
third phase is termed the post-patch release phase, occurring under warranty
[τ1, τ + w], where a patch is released at time τ1. Lastly, the fourth phase is
the operational phase after the warranty period [τ +w, Tlc], during which the
software functions until the obsolescence period begins. Figure 1 illustrates
the software lifecycle. It’s essential to note that the fault detection process
follows NHPP in every phase, as assumed throughout the software’s lifespan.
This section delves into the total cost for finding and fixing ’a’ number of
faults detected during the software’s lifespan. The total cost encompasses the
cost of testing, the cost of market opportunity, and the cost of fault removal
in each phase, as discussed below.

Testing cost: Testing cost refers to the complete cost of testing the software
till it is released by the testing team. As development of numerous test cases
and their implementation is required, this necessitates the efforts. Let us
suppose c1 is the testing cost per unit testing effort. Hence, the testing cost
associated with testing effort is denoted by Ct and is represented as follows:

Ct = c1W (τ) (4)

Market Opportunity Cost: The cost incurred due to the delayed entry of
software into the market is known as market opportunity cost. This cost

 
Figure 1 Lifecycle of software.



88 P. Saxena et al.

escalates with the delay in software release. We adopted the quadratic form
of market opportunity cost as proposed by Jiang, Sarkar, and Jacob (2012).
The market opportunity cost is denoted by Cm and is expressed as follows:

Cm = c2τ
2 (5)

Phase 1 (Pre-release testing phase)[0, τ ]: In this phase, the testing team
identifies and reports faults to the development team. The total number of
faults detected during this period is determined by aggregating the reported
faults from the testing team and is given as follows:

m(W (τ)) = aF1(W1(τ)) (6)

The cost of detecting faults during this phase is calculated as follows:

Cphase1 = c3m(W (τ)) (7)

Where F1(W1(τ)) is the rate at which software faults are detected in the
interval [0, τ ].

Phase 2 (Pre patching release phase under warranty) [τ , τ1]:
During this phase, referred to as the pre-patch-release phase, the development
team addresses the unfixed bugs reported by users by developing patches. The
patch is released at the end of this phase to fix the bugs. At time τ1 patch is
released and (τ1 − τ) is the time where patch is developed. The total number
of faults detected during this interval is calculated as follows:

m(W (τ1 − τ)) = a(1− F1(W1(τ)))F2(W2(τ1 − τ)) (8)

Where a(1 − F1(W1(τ))) is the number of faults remained in the pre-
release testing process and F2(W2(τ1 − τ)) is the fault detection/removal
rate in the interval [τ, τ1]. The cost incurred during this phase is calculated as
follows:

Cphase2 = c4m(W (τ1 − τ)) (9)

Phase3 (Post Patch release phase under warranty) [τ1, τ+w]: During this
interval, users may encounter failures due to bugs that were not addressed
in previous phases. Consequently, these bugs are reported by users to the
development team for further debugging processes. It is assumed that by the
end of the warranty period, a patch will be released to address the remaining
faults. The total number of faults detected or removed during this interval is
calculated accordingly.

m(W (τ + w − τ1)) = a(1− F1(W1(τ)))(1− F 2(W2(τ1 − τ)))

× F3(W3(τ + w − τ1)) (10)



A Review Based on Various Applications to Find a Consistent 89

Where a(1− F1(W1(τ)))(1− F 2(W2(τ1 − τ))) is the number of faults
remained in the first and second phase and F3(W3(τ + w − τ1)) is the fault
removal rate in the interval [τ1, τ + w].

The cost incurred during this phase is calculated as follows:

Cphase3 = c5m(W (τ + w − τ1)) (11)

Phase 4 (Operational phase after warranty) [τ + w,Tlc]: In the post-
warranty phase, any faults detected during this period are addressed after the
warranty period has expired. The total number of faults identified during this
phase is determined as follows:

m(W (Tlc − (τ + w))) = a(1− F1(W1(τ)))(1− F2(W (τ1 − τ)))

× (1− F3(W (τ + w − τ1)))

× F4(W (Tlc − (τ + w))) (12)

Where a(1−F1(W1(τ)))(1−F2(W (τ1− τ)))(1−F3(W (τ +w− τ1)))
is the number of faults remained in the first, second phase and third phase.
F4(W (Tlc − (τ + w))) is the fault removal rate in the interval [τ + w, Tlc].

The cost incurred during this phase is calculated as follows:

Cphase4 = c6m(W (Tlc − (τ + w))) (13)

It should be noted that no patches are released to users over the last inter-
val [τ +w, Tlc], as once the support cycle i.e., Tlc is completed, management
will release a new version of the software. The total cost incurred is obtained
by the combination of cost associated in every phase and is given below:

Total cos t = c1W (τ) + c2τ
2 + c3m(W (τ)) + c4m(W (τ1 − τ))

+ c5m(W (τ + w − τ1)) + c6m(W (Tlc − (τ + w)))

(14)

5 Numerical Illustration

To demonstrate the applicability of model, we have considered fault removal
rate is represented by an exponential distribution. We have considered distinct
fault detection rates for users and testers. The fault detection rate for testers is
denoted as b, while for users, it is represented as bri. The mean value function
of the SRGM is expressed as follows:

Fi(Wi(t)) = 1− e−biWi(t) (15)



90 P. Saxena et al.

Table 3 Data set (Obha (1984))

Test Time Cumulative Execution Cumulative

(Weeks) Time (CPU Hours) Faults

1 2.45 15

2 4.90 44

3 6.86 66

4 7.84 103

5 9.52 105

6 12.89 110

7 17.10 146

8 20.47 175

9 21.43 179

10 23.35 206

11 26.23 233

12 27.67 255

13 30.93 276

14 34.77 298

15 38.61 304

16 40.91 311

17 42.67 320

18 44.66 325

19 47.65 328

The Weibull distribution is utilized to define the effort function W(t) as
follows:

W (t) = W̄ (1− e−vtk) (16)

Further, we have estimated the model parameters of the effort function
and mean value function using the dataset described in Table 3. The data
set has 328 fault content that took 19 weeks and 47 hours of CPU time
to fix. The fault detection rate is assumed to be equal in each phase i.e.,
bi =b and testing effort function is also assumed to have equal rate in each
phase i.e., Wi(t)=W(t). We have used SPSS 20.0 to estimate of parameters.
The obtained results are: total testing effort consumed (W̄ ) = 715.7, shape
parameter (k) = 1.144967, scale parameter (v) = 0.003546, fault detection
rate (b) = 0.013328, total number of faults (a) = 571, software lifecycle
Tlc = 100. This indicates that initially software has 571 number of faults and
the fault detection rate to detect or remove the fault by a tester is 0.013328.
Next, we’ll delve into the cumulative number of faults detected or removed



A Review Based on Various Applications to Find a Consistent 91

in every phase, considering our assumptions, along with the associated costs
in each phase.

The detected/removed faults in the phase [0, τ ] is given by

m(W (τ)) = a(1− e−bW (τ)) (17)

Using Equation (7) for the cost associated in the phase [0, τ ] to
detect/remove the faults is

c3m(τ) = c3a(1− e−bW (τ)) (18)

During the interval [τ, τ1], the cumulative number of faults detected is
given by

m(W (τ1 − τ)) = ae−bW (τ)(1− e−br1W (τ1−τ)) (19)

Using Equation (9) for the cost associated in the phase [τ, τ1] to detect the
faults is described below:

c4m(W (τ1 − τ)) = c4ae
−bW (τ)(1− e−br1W (τ1−τ))

The detected/removed faults in the phase [τ1, τ + w] is

m(W (τ + w − τ1)) = ae−b(W (τ))e−br1W (τ1−τ)(1− e−br2(W (τ+w−τ1)))
(20)

The cost associated in the phase [τ1, τ + w] can be calculated by using
Equation (11) and is described below:

c5m(W (τ + w − τ1)) = c5ae
−b(W (τ))e−br1W (τ1−τ)(1− e−br2(W (τ+w−τ1)))

(21)

The detected/removed faults in the phase [τ + w, Tlc] is

m(W (Tlc − (τ + w))) = ae−bW (τ)e−br1W (τ1−τ)e−br2W (τ+w−τ1)

× (1− e−br3(W (Tlc−(τ+w)))) (22)

The cost associated in the phase [τ + w, Tlc] can be calculated by using
Equation (13) and is given by:

c6m(W (Tlc − (τ + w))) = c6ae
−bW (τ)e−br1W (τ1−τ)e−br2W (τ+w−τ1)

× (1− e−br3(W (Tlc−(τ+w)))) (23)



92 P. Saxena et al.

The total cost is calculated by summing all the costs associated with each
phase, including testing costs and market opportunity costs. Thus, the total
cost is

TotalCost = c1W (τ) + c2τ
2 + c3a(1− e−bW (τ))

+ c4ae
−bW (τ)(1− e−br1W (τ1−τ))

+ c5ae
−b(W (τ))e−br1W (τ1−τ)(1− e−br2(W (τ+w−τ1)))

+ c6ae
−bW (τ)e−br1W (τ1−τ)e−br2W (τ+w−τ1)

× (1− e−br3(W (Tlc−(τ+w)))) (24)

5.1 Genetic Algorithm

In this section, Genetic Algorithm (GA) is used to optimize software release
time and patch release times, minimizing overall costs given in Equation (24).
GA is an efficient heuristic search and optimization technique. It gives the
best result as compared to other metaheuristics problem-solving technique
while considering large-scale problems. It is employed when traditional
optimization approaches have difficulty in determining the optimal solution
to a given problem. This algorithm is based on random searches Goldberg
(1989). Kapur et al. (2009) optimized the cost function software testing by
using genetic algorithm. Hsu and Huang (2014) proposed three weighted
combinations i.e., weighted geometric, weighted harmonic combinations, and
weighted arithmetic and investigated the application of weighted assignments
to GA with several effective operators. Kim, Lee and Baik (2015) proposed an
efficient technique for estimation of the parameters of SRGM by employing
real-valued genetic algorithm. For the allocation of effort between detection
and correction in the testing phase, Kumar et al. (2017) introduced an optimal
control model and utilized GA to optimize detection and correction efforts.
In their study (Kumar et al., 2019), they developed a decision model for
defining warranty and pricing policies for a new product, employing GA to
determine optimal values throughout the product’s lifecycle. The GA process
involves generation, evaluation, and creation of an initial population of chro-
mosomes selected randomly. After that, the fitness of the newly generated
chromosomes is assessed. The following sub-processes are used to produce
new chromosomes in the main process:

(1) Selection: Two parent chromosomes are selected.



A Review Based on Various Applications to Find a Consistent 93

Table 4 Parameters of GA
Parameters Values
Population size 50
Selection tournament size 2
Reproduction crossover fraction 0.8
Crossover ratio 1
Migration fraction 0.2
Migration interval 20
Stopping criteria generations 25
Stopping stall generations 100

(2) Crossover: Offspring are produced by crossing the parent chromosomes
and have a crossover probability.

(3) Mutation: The offspring have distinct loci of mutation, and there is also
a certain probability of mutation.

(4) Accepting: The population is expanded by including the new offspring.
(5) Replace: The next iteration is uses the next addition (if necessary)
(6) Test: As soon as the satisfactory result is given in the end condition, the

process gets stopped and the optimal value is returned as an output.
(7) Loop: To find more solutions, the process is restarted.

The fitness function for cost minimization is outlined below, and Table 4
provides the parameters used in the Genetic algorithm.

Fitnessfunction = c1W (τ) + c2τ
2 + c3a(1− e−bW (τ))

+ c4ae
−bW (τ)(1− e−br1W (τ1−τ))

+ c5ae
−b(W (τ))e−br1W (τ1−τ)(1− e−br2(W (τ+w−τ1)))

+ c6ae
−bW (τ)e−br1W (τ1−τ)e−br2W (τ+w−τ1)

× (1− e−br3(W (Tlc−(τ+w)))) (25)

Initially, we need to define the values of cost parameter before the opti-
mization of above equation. We have used Genetic algorithm in MATLAB
to get the optimal values. Let us assume the fault detection ratio r1 = 0.2,
r2 = 0.3, r3 = 0.4 for the intervals [τ, τ1], [τ1, τ + w] and [τ + w, Tlc]
respectively. Also we have assumed, the testing cost per unit time c1 = 2,
market opportunity cost c2 = 1, the cost associated with testing team
for detection/removal of faults before releasing software c3 = 3, the cost
associated with user for removal of faults after releasing software and before



94 P. Saxena et al.

Table 5 Phase wise description of removed faults
Phase Mean Value Function Number of Faults Removed
Pre release phase [0, τ ] m(W (τ)) 405
Before patching post release
phase [τ , τ1]

m(W (τ1 − τ)) 126.907 (127 approx.)

Post patch release phase under
warranty [τ1, τ +w]

m(W (τ + w − τ1) 24

Post warranty phase
[τ +w,Tlc]

m(W (Tlc − (τ + w))) 13

Table 6 Impact on cost and release time with the variation in r1
Software Release Patch Release

r1 r2 r3 Time (τ ) Time (τ1) Cost
0.21 0.3 0.4 20.489 24.004 3094.387
0.22 0.3 0.4 20.594 24.031 3093.567
0.23 0.3 0.4 20.689 24.303 3093.117
0.24 0.3 0.4 20.859 24.444 3092.276
0.25 0.3 0.4 20.983 24.5 3091.659
0.26 0.3 0.4 21.356 24.55 3090.747
0.27 0.3 0.4 21.507 24.553 3090.469
0.28 0.3 0.4 21.52 24.57 3090.279
0.29 0.3 0.4 21.55 24.58 3090.093

releasing patch c4 = 6, the cost associated with user for removal of faults
after releasing patch in the warranty period c5 = 6, and the cost associated
with user for removal of faults after warranty period c6 = 11. Let us consider
the software company has given the warranty i.e. w = 26 (number of weeks).
We have used the assumed values of cost parameters in Equation (24) and
optimized by Genetic algorithm in MATLAB to find the optimal values of
software release time and patch release time. The optimal result obtained for
software release time (τ) = 20.873 weeks, software release time (τ1) =
23.126 weeks and the total cost of software = 3091.564. We have used
the values mentioned above to summarise the phase-wise faults in Table 5
discovered by the tester and user. Out of 571 number of faults, 405 number
of faults were removed by testing team before the release of software i.e. pre-
release phase [0, τ ]. Among, the remaining number of (571 − 405 = 166)
faults, 127 number of faults are removed in the before patching post release
phase [τ, τ1]. Among, the remaining number of faults (166 − 127 = 39) of
faults, 24 faults are removed in the post patch release phase under warranty
[τ1, τ +w] and 13 faults are removed in the post warranty phase [τ +w, Tlc].



A Review Based on Various Applications to Find a Consistent 95

Table 7 Impact on cost and release time with the variation in r2
Software Release Patch Release

r1 r2 r3 Time (τ ) Time (τ1) Cost
0.2 0.31 0.4 20.05 23.028 3094.247
0.2 0.32 0.4 20.387 23.094 3089.698
0.2 0.33 0.4 20.746 24 3087.111
0.2 0.34 0.4 20.812 24.1 3085.006
0.2 0.35 0.4 21.13 24.212 3082.334
0.2 0.36 0.4 21.29 24.544 3080.771
0.2 0.37 0.4 21.401 24.753 3079.237
0.2 0.38 0.4 21.73 24.9 3077.929
0.2 0.39 0.4 22 25 3077.029

Table 8 Impact on cost and release time with the variation in r3
Software Release Patch Release

r1 r2 r3 Time (τ ) Time (τ1) Cost
0.2 0.3 0.41 21.764 24.009 3104.445
0.2 0.3 0.42 21.94 24.1 3117.376
0.2 0.3 0.43 22.081 24.1 3129.748
0.2 0.3 0.44 22.212 24.2 3141.855
0.2 0.3 0.45 22.346 24.231 3153.464
0.2 0.3 0.46 22.469 24.49 3165.08
0.2 0.3 0.47 22.58 24.51 3175.946
0.2 0.3 0.48 22.704 24.62 3186.629
0.2 0.3 0.49 22.815 24.71 3196.952

6 Sensitivity Analysis

Sensitivity analysis is a measurement of determining how the objective func-
tion varies as the variable’s values change. The findings examine the impact
of deviation in the values of variables on the software system that are varied
under consideration and analyses the variable with the maximum impact on
the system. The impact of change in parameters is evaluated and observed
on testing cost, software release time and patch release time. We have used
total number of faults (a) = 571 and fault detection rate (b) = 0.013328
in every case as estimated by SPSS 20.0 based on the above-mentioned
dataset. We have used the same values of cost parameters for optimization
of parameters and varied the values of r1, r2 and r3 to perform the analysis.
Consequently, Table 6 represents impact on cost and release time by varying
the values of r1 in increasing order. It shows that with the increase in the value
of r1 (i.e. user’s rate of fault detection in the interval [τ, τ1]) while keeping



96 P. Saxena et al.

 

20.489 20.594 20.689 20.859 20.983
21.356 21.507 21.52 21.55

24.004 24.031 24.303 24.444 24.5 24.55 24.553 24.57 24.58

18
19
20
21
22
23
24
25

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

R
el

ea
se

 ti
m

e

user’s rate of fault detection 
(before patching post release phase)

Release time vs r1

software release time patch release time

Figure 2 Impact on Software release time and patch release time of user’s fault detection
rate after the release of Software.

 

20.05 20.387 20.746 20.812 21.13 21.29 21.401 21.73 2223.028 23.094 24 24.1 24.212 24.544 24.753 24.9 25

0

5

10

15

20

25

30

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

R
el

ea
se

 ti
m

e

user’s rate of fault detection
(Post patch release phase under warranty)

Release time vs r2

Software release time Patch release time

Figure 3 Impact on Software release time and patch release time of user’s fault detection
rate after the release of patch.

the values of r2 (i.e. user’s rate of fault detection in the interval [τ1, τ + w])
and r3 fixed (i.e. user’s rate of fault detection in the interval [τ + w, Tk]),
there is decrease in total testing cost with the increase in the software release
time and patch release time. Similarly, the impact on cost and release time



A Review Based on Various Applications to Find a Consistent 97

 

21.764 21.94 22.081 22.212 22.346 22.469 22.58 22.704 22.815

24.009 24.1 24.1 24.2 24.231 24.49 24.51 24.62 24.71

20

21

22

23

24

25

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

R
el

ea
se

 ti
m

e

user’s rate of fault detection
(Operational phase after warranty)

Release time vs r3

software release time patch release time

Figure 4 Impact on Software release time and patch release time of user’s fault detection
rate in operational phase.

 

3094.387
3093.567 3093.117

3092.276
3091.659

3090.747 3090.469 3090.279 3090.093

3086
3088
3090
3092
3094
3096

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29T
es

tin
g 

co
st

 o
f s

of
tw

ar
e

user's fault detection rate 
(before patching post release phase)

Cost time vs r1

Figure 5 Impact on software’s total cost of user’s fault detection rate after the release of
Software.

with the variation in r2 is shown in Table 7. In Table 7, we have fixed the
values of r1 and r3 and varied the values of r2 in the increasing order which
gave the expected result as there is decrease in the total testing cost and the
increase in the software release time and patch release time. Whereas there is
slightly different result obtained while varying the values of r3 and keeping
the values of r1 and r2 fixed. Further, the impact on cost and release time with



98 P. Saxena et al.

 

3094.247
3089.698

3087.111
3085.006

3082.334 3080.771 3079.237 3077.929 3077.029

3065
3070
3075
3080
3085
3090
3095
3100

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39T
ot

al
 c

os
t o

f s
of

tw
ar

e

user's fault detection rate
(Post patch release phase under warranty)

Cost time vs r2

Figure 6 Impact on software’s total cost of user’s fault detection rate after the release of
patch.

 

3104.4453117.3763129.7483141.8553153.464 3165.08 3175.9463186.6293196.952

3050
3100
3150
3200
3250

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

To
ta

l c
os

t o
f s

of
tw

ar
e

user's fault detection rate
(Operational phase after warranty)

Cost time vs r3

Figure 7 Impact on software’s total cost of user’s fault detection rate in operational phase.

the variation in r3 is shown in Table 8. The result in Table 8 shows that there
is increase in the release time as well as in the total cost. This is practically
possible as, r3 is the user’s rate of fault detection in the interval [τ + w, Tlc].
This is the post warranty period and a phase prior to the end of the lifecycle
of a software product. In this phase after which software companies do not
provide any assistance to remove any bug or fault. As it is considered a better
option to release an updated version of software in place of removing the
faults or bugs in the phase where a software is about to complete its life cycle.
Since, a software is in its last phase of lifecycle may have more number of
bugs or faults which will need a testing to remove them and hence testing cost
will increase. The impact of change in the value of r1, r2 and r3 on release
times are shown in the Figures 2–4. While the impact of variation of r1, r2
and r3 on the testing cost is shown in Figures 5–7.



A Review Based on Various Applications to Find a Consistent 99

7 Conclusion

Some of the most essential areas of policymaking in the software industries
are decisions about the release and testing of software product. Generally,
software industries release their product after investing a large amount of
time in testing the software to attain the reliability of software so that there is
reduction in the risk of software failure. However, a delay in software release
leads in a loss of market opportunity cost. Now days, software firms release
their product early to achieve a large market share and removes the faults
by releasing patches. In this research, we address critical decision-making
areas in the software industry concerning software release and testing. Tradi-
tionally, software firms invest significant time in testing to ensure reliability,
aiming to mitigate the risk of software failure. However, delaying software
release entails a loss in market opportunity. Today, many firms opt for
early release strategies to capture a larger market share and address faults
through subsequent patches. Our study develops a testing effort-based cost
model within a warranty framework, considering four key phases of the
software lifecycle: pre-release testing [0, τ ], pre-patch release [τ, τ1], post-
patch release under warranty [τ1, τ +w], and operational phases [τ +w, Tlc].
We utilize exponential distribution for modeling and employ Genetic Algo-
rithm optimization to determine optimal software release and patch times,
resulting in values of 20.278 weeks and 23.064 weeks, respectively. Across
the phases, our model identifies and removes varying numbers of faults: 405
faults in pre-release testing, 127 faults in pre-patch release, 24 faults in post-
patch release, and 13 faults in the post-warranty phase. While our research
focuses on single patching, our model can be extended to accommodate
multiple patches in the future. Additionally, future improvements may involve
integrating budget and reliability considerations into the optimization pro-
cess, as well as incorporating fuzzy logic and error generation for enhanced
realism and accuracy.

References

Anand, A., M. Agarwal, Y. Tamura, and S. Yamada. (2017). Economic
impact of software patching and optimal release scheduling. Quality and
Reliability Engineering International 33(1):149–157. doi: 10.1002/qre.
1997.

Anand, A., J. Kaur, and S. Inoue. 2020. Reliability modeling of multi-
version software system incorporating the impact of infected patching.



100 P. Saxena et al.

International Journal of Quality & Reliability Management 37(6/7):
1071–1085. doi: 10.1108/IJQRM-07-2019-0247.

Aggrawal, D., J. Kaur, and A. Anand. 2022. Modeling software patching pro-
cess inculcating the impact of vulnerabilities discovered and disclosed.
In System Assurances 143–153. doi: 10.1016/B978-0-323-90240-3.000
09-6.

Bibyan, R., and S. Anand. 2022. Ranking of Multi-release Software Reli-
ability Growth Model Using Weighted Distance-Based Approach. In
Optimization Models in Software Reliability 355–373. doi: 10.1007/97
8-3-030-78919-0 16.

Dhavakumar, P., and N. P. Gopalan 2021. An efficient parameter optimiza-
tion of software reliability growth model by using chaotic grey wolf
optimization algorithm. Journal of Ambient Intelligence and Humanized
Computing 12(2):3177–3188. doi: 10.1007/s12652-020-02476-z.

Goel, A. L., and K. Okumoto. 1979. Time-dependent error-detection rate
model for software reliability and other performance measures. IEEE
transactions on Reliability 28(3):206–211. doi: 10.1109/TR.1979.5220
566.

Golberg, D. E. 1989. Genetic algorithms in search, optimization, and
machine learning. Addion Wesley.

Hossain, S. A., and R. C. Dahiya. 1993. Estimating the parameters of a
non-homogeneous Poisson-process model for software reliability. IEEE
Transactions on Reliability 42(4):604–612. doi: 10.1109/24.273589.

Hsu, C. J., and C.Y. Huang. 2014. Optimal weighted combinational models
for software reliability estimation and analysis. IEEE Transactions on
Reliability 63(3):731–749. doi: 10.1109/TR.2014.2315966.

Huang, Y. S., K. C. Chiu, and W. M. Chen. 2022. A software reliability
growth model for imperfect debugging. Journal of Systems and Software
188:111267. doi: 10.1016/j.jss.2022.111267.

Jiang, Z., and Sarkar. S. 2003. Optimal software release time with patching
considered. In Workshop on Information Technologies and Systems.
Seattle, WA, USA.

Jiang, Z., S. Sarkar, and V.S. Jacob. 2012. Postrelease testing and soft-
ware release policy for enterprise-level systems. Information Systems
Research 23(3-part-1): 635–657. doi: 10.2307/23276478.

Kaur, J., A. Anand, O. Singh, and V. Kumar 2021. Measuring software
reliability under the influence of an infected patch. Yugoslav Journal of
Operations Research 31(2):249–264. doi: 10.2298/YJOR200117005K.



A Review Based on Various Applications to Find a Consistent 101

Kapur, P. K., D.N. Goswami, A. Bardhan, and O. Singh. 2008. Flexible
software reliability growth model with testing effort dependent learn-
ing process. Applied Mathematical Modelling 32(7):1298–1307. doi:
10.1016/j.apm.2007.04.002.

Kapur, P. K., A.G. Aggarwal, K. Kapoor, and G. Kaur. 2009. Optimal
testing resource allocation for modular software considering cost, test-
ing effort and reliability using genetic algorithm. International Journal
of Reliability, Quality and Safety Engineering 16(06):495–508. doi:
10.1142/S0218539309003538.

Kapur, P. K., S. Panwar, O. Singh, and V. Kumar. 2019. Joint release and
testing stop time policy with testing-effort and change point. In Risk
based technologies 209–222. doi: 10.1007/978-981-13-5796-1 12.

Kansal, Y., G. Singh, U. Kumar, and P. K. Kapur. 2016. Optimal release and
patching time of software with warranty. International Journal of System
Assurance Engineering and Management 7(4):462–468. doi: 10.1007/
s13198-016-0510-7.

Kim, T., K. Lee, and J. Baik. 2015. An effective approach to estimating the
parameters of software reliability growth models using a real-valued
genetic algorithm. Journal of Systems and Software 102:134–144. doi:
10.1016/j.jss.2015.01.001.

Kumar, V., P. Mathur, R. Sahni, and M. Anand 2016. Two-dimensional multi-
release software reliability modeling for fault detection and fault correc-
tion processes. International Journal of Reliability, Quality and Safety
Engineering 23(03):1640002. doi: 10.1142/S0218539316400027.

Kumar, V., R. Sahni, and A. K. Shrivastava. 2016. Two-dimensional multi-
release software modelling with testing effort, time and two types of
imperfect debugging. International Journal of Reliability and Safety
10(4):368–388. doi: 10.1504/IJRS.2016.10005347.

Kumar, V., P.K. Kapur, N. Taneja, and R. Sahni. 2017. On allocation of
resources during testing phase incorporating flexible software reliability
growth model with testing effort under dynamic environment. Interna-
tional Journal of Operational Research 30(4):523–539. doi: 10.1504/IJ
OR.2017.087829.

Kumar, V., V. B. Singh, A. Dhamija, and S. Srivastav. 2018. Cost-reliability-
optimal release time of software with patching considered. International
Journal of Reliability, Quality and Safety Engineering 25(04):1850018.
doi: 10.1142/S0218539318500183.

Kumar, V., V.B. Singh, A. Garg, and G. Kumar. 2018. Selection of optimal
software reliability growth models: a fuzzy DEA ranking approach. In



102 P. Saxena et al.

Quality, IT and business operations 347–357. doi: 10.1007/978-981-1
0-5577-5 28.

Kumar, V., P.K. Kapur, R. Sahni, and A.K. Shrivastava. 2018. Testing time
and effort-based successive release modeling of a software in the pres-
ence of imperfect debugging. In Quality, IT and Business Operations
421–434. doi: 10.1007/978-981-10-5577-5 33.

Kumar, V., B. Sarkar, A.N. Sharma, and M. Mittal. 2019. New prod-
uct launching with pricing, free replacement, rework, and warranty
policies via genetic algorithmic approach. International Journal of
Computational Intelligence Systems 12(2):519. doi: 10.2991/ijcis.d.19
0401.001.

Kumar, V., P. Saxena, and H. Garg. 2021. Selection of optimal software
reliability growth models using an integrated entropy–Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) approach.
Mathematical Methods in the Applied Sciences doi: 10.1002/mma.7445.

Lee, D. H., I. H. Chang, and H. Pham. 2020. Software reliability model with
dependent failures and SPRT. Mathematics 8(8):1366. doi: 10.3390/ma
th8081366.

Li, X., M. Xie, and S.H. Ng. 2010. Sensitivity analysis of release time
of software reliability models incorporating testing effort with multi-
ple change-points. Applied Mathematical Modelling 34(11):3560–3570.
doi: 10.1016/j.apm.2010.03.006.

Li, Q., and H. Pham. 2021. Software Reliability Modeling Incorporating
Fault Detection and Fault Correction Processes with Testing Coverage
and Fault Amount Dependency. Mathematics 10(1):60. doi: 10.3390/ma
th10010060.

Lin, C. T., and C.Y. Huang. 2008. Enhancing and measuring the predictive
capabilities of testing-effort dependent software reliability models. Jour-
nal of Systems and Software 81(6):1025–1038. doi: 10.1016/j.jss.2007
.10.002.

Narang, S., P.K. Kapur, D. Damodaran, and A.K Shrivastava 2018. Bi-
criterion problem to determine optimal vulnerability discovery and
patching time. International Journal of Reliability, Quality and Safety
Engineering 25(01):1850002. doi: 10.1142/S021853931850002X.

Ohba, M. 1984. Inflection S-shaped software reliability growth model. In
Stochastic models in reliability theory Springer 144–162. doi: 10.1109/
TR.1984.5221826.

Peng, R., Y.F. Li, W.J. Zhang, and Q.P. Hu. 2014. Testing effort dependent
software reliability model for imperfect debugging process considering



A Review Based on Various Applications to Find a Consistent 103

both detection and correction. Reliability Engineering & System Safety
126:37–43. doi: 10.1016/j.ress.2014.01.004.

Pham, H., and X. Zhang 1997. An NHPP software reliability model and
its comparison. International Journal of Reliability, Quality and Safety
Engineering 4(03):269–282. doi: 10.1142/S0218539397000199.

Pham, H. 2014. A new software reliability model with Vtub-shaped
fault-detection rate and the uncertainty of operating environments.
Optimization 63(10):1481–1490. doi: 10.1080/02331934.2013.854787.

Saxena, P., V. Kumar, and M. Ram, 2021. Ranking of Software Reliability
Growth Models: A Entropy-ELECTRE Hybrid Approach. Reliability:
Theory & Applications SI 2 (64):95–113.

Saxena, P., N. Singh, A.K. Shrivastava, and V. Kumar. 2021. Testing effort
based SRGM and release decision under fuzzy environment. Interna-
tional Journal of Reliability and Safety 15(3):123–140. doi: 10.1504/IJ
RS.2021.123275.

Saxena, P., V. Kumar, and M. Ram. 2022. A novel CRITIC-TOPSIS approach
for optimal selection of software reliability growth model (SRGM).
Quality and Reliability Engineering International 38(5):2501–2520.
doi: 10.1002/qre.3087.

Tian, Q., C. W. Yeh, and C. C. Fang. 2022. Bayesian Decision Making of an
Imperfect Debugging Software Reliability Growth Model with Consid-
eration of Debuggers’ Learning and Negligence Factors. Mathematics
10(10):1689. doi: 10.3390/math10101689.

Tickoo, A., P. K. Kapur, A. K. Shrivastava, and S. K. Khatri. 2016. Testing
effort based modeling to determine optimal release and patching time of
software. International Journal of System Assurance Engineering and
Management 7(4):427–434. doi: 10.1007/s13198-016-0470-y.

Tickoo, A., P.K. Kapur, A.K. Shrivastava, and S.K. Khatri. 2018. Discrete-
time framework for determining optimal software release and patching
time. In Quality, IT and Business Operations 129–141. doi: 10.1007/97
8-981-10-5577-5 11.

Yamada, S., M. Ohba, and S. Osaki. 1983. S-shaped reliability growth
modeling for software error detection. IEEE Transactions on reliability
32(5):475–484. doi: 10.1109/TR.1983.5221735.

Yamada, S., K. Tokuno, and S. Osaki. 1992. Imperfect debugging models
with fault introduction rate for software reliability assessment. Interna-
tional Journal of Systems Science 23(12):2241–2252. doi: 10.1080/00
207729208949452.



104 P. Saxena et al.

Zhang, C., Y. Yuan, W. Jiang, Z. Sun, Y. Ding, M. Fan, L. Wenyu, W.
Yafei, S. Wen, and K. Liu. 2021. Software Reliability Model Related
to Total Number of Faults Under Imperfect Debugging. In International
Conference on Intelligent Automation and Soft Computing Springer,
48–60. doi: 10.1007/978-3-030-81007-8 7.

Biographies

Palak Saxena is a promising young researcher serving as a Research Scholar
at the Department of Mathematics within the Amity Institute of Applied
Sciences at Amity University Uttar Pradesh, Noida, India. She received
her MSc degree in Mathematics from Kumaun University, India and PhD
from Amity Institute of Applied Sciences, Amity University, Noida, India.
Her research interest includes software reliability and mathematical mod-
elling. She has published several research papers in the area of software
reliability in international journals and conferences. Palak possesses a strong
command over various software tools and programming languages, including
SPSS, and MATLAB. Her expertise and dedication make her a valuable asset
in his field of study.

Vijay Kumar received his MSc in Applied Mathematics and MPhil in
Mathematics from Indian Institute of Technology (IIT), Roorkee, India in



A Review Based on Various Applications to Find a Consistent 105

1998 and 2000, respectively. He has completed his PhD from the Department
of Operational Research, University of Delhi. Currently, he is a Professor in
the Department of Mathematics, Amity Institute of Applied Sciences, Amity
University, Noida, India. He is co-editor of two book and has published more
than 70 research papers in the areas of software reliability, mathematical
modelling and optimisation in international journals and conferences of high
repute. His current research interests include software reliability growth
modelling, optimal control theory and marketing models in the context of
innovation diffusion theory. He has edited special issues of IJAMS and
RIO journal. He is an editorial board member of IJSA, Springer. He is a
life member of Society for Reliability Engineering, Quality and Operations
Management (SREQOM).

Stuti Tandon is working as an Assistant Professor in School of Computer
Applications at Manav Rachna International Institute of Research and Stud-
ies, India. Stuti received her MCA degree from VTU, Belgaum; India. MBA
degree from Symbiosis University. She did her PhD in Information Tech-
nology from Amity University – Noida, India. She has published a number
of papers in preferred Journals and chapters in books, and participated in a
range of forums on software engineering. She also presented various aca-
demic as well as research-based papers at several national and international
conferences. Her research activity is set to explore the developmental role for
the software industry.



106 P. Saxena et al.

Kuldeep Chaudhary is an accomplished academic professional serving as
an Assistant Professor at the Department of Mathematics, Amity Institute
of Applied Sciences, Amity University Uttar Pradesh, Noida, India. With an
impressive teaching and research career spanning his expertise lies in various
research domains, including Mathematical modeling, optimization, software
reliability, and Fuzzy theory, among others. He has published more than 30
research articles in the International Journals/book chapters/conferences.

Mangey Ram received the Ph.D. degree major in Mathematics and minor in
Computer Science from G. B. Pant University of Agriculture and Technology,
Pantnagar, India in 2008. He has been the Faculty Member for around 15
years and has taught several core courses in pure and applied mathemat-
ics at undergraduate, postgraduate, and doctorate levels. He is currently
the Research Professor & Dean (Research Collaborations) at Graphic Era
Deemed to be University, Dehradun, India. Before joining the Graphic Era
University, he was the Deputy Manager (Probationary Officer) with Syndicate
Bank for a short period.

Prof. Ram is Editor-in-Chief of International Journal of Mathematical,
Engineering and Management Sciences; Journal of Reliability and Statistical
Studies; Journal of Graphic Era University; Series Editor of six Book Series



A Review Based on Various Applications to Find a Consistent 107

with Elsevier, CRC Press-A Taylor and Frances Group, Walter De Gruyter
Publisher Germany, River Publishers, and the Guest Editor & Associate
Editor with various journals. He has published 400 plus publications (journal
articles/books/book chapters/conference articles) in IEEE, Taylor & Francis,
Springer Nature, Elsevier, Emerald, World Scientific and many other national
and international journals and conferences. Also, he has published more
than 60 books (authored/edited) with international publishers like Elsevier,
Springer Nature, CRC Press-A Taylor and Frances Group, Walter De Gruyter
Publisher Germany, River Publisher. His fields of research are reliability
theory and applied mathematics. Dr. Ram is a Senior Member of the IEEE,
Senior Life Member of Operational Research Society of India, Society for
Reliability Engineering, Quality and Operations Management in India, Indian
Society of Industrial and Applied Mathematics, He has been a member of
the organizing committee of several international and national conferences,
seminars, and workshops.

He has been conferred with “Young Scientist Award” by the Uttarakhand
State Council for Science and Technology, Dehradun, in 2009. He has been
awarded the “Best Faculty Award” in 2011; “Research Excellence Award”
in 2015; “Outstanding Researcher Award” in 2018 for his significant contri-
bution in academics and research at Graphic Era Deemed to be University,
Dehradun, India. Recently, he has been received the “Excellence in Research
of the Year-2021 Award” by the Honourable Chief Minister of Uttarakhand
State, India & “Emerging Mathematician of Uttarakhand-2022” award by the
Director, Directorate of Higher Education Uttarakhand at Uttarakhand Open
University, Haldwani, India.




	Introduction
	Literature Review
	Model Formulation
	Notations
	Assumptions
	SRGM Based on Testing Effort

	Cost Model Based on Testing Effort
	Numerical Illustration
	Genetic Algorithm

	Sensitivity Analysis
	Conclusion

