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Abstract

This study presents the Entropy-Transformed Exponential Distribution
(EnTrED), in an attempt to enhancing the flexibility and applicability of the
traditional exponential distribution. The study explores the statistical proper-
ties of the EnTrED, including mode, quantile function, reliability, moments,
and hazard function. The parameters of the distribution were estimated using
maximum likelihood estimation, and the stability of these estimates was
thoroughly evaluated through extensive Monte Carlo simulation. The sim-
ulation results demonstrated that the maximum likelihood estimates of the
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model parameters were well-behaved. Additionally, Empirical assessments
against alternative distributions underscores the robustness of the EnTrED as
a superior model for analyzing life data.

Keywords: Entropy-transformed exponential distribution (EnTrED), mem-
oryless property, hazard rate, survival analysis, reliability analysis, time-
dependent hazard.

1 Introduction

Modeling real life data is integral in many areas of applied studies such as life
sciences, biochemistry, geosciences, cosmology, statistical mechanics, social
sciences, linguistics, biology, information technology, and even science fic-
tion films. Considerable efforts have been done to construct new distributions
for survival data. However, there still remain many problems involving real
data, which are not contemplated by existing probability models (Percontini,
Gomes-Silva, da Silva and Handique, 2021). Suppose a random variable c
follow an exponential distribution and its probability density function (P.D.F)
and cumulative distribution function (C.D.F) are given by;

f(c) = φe−φc and F (c) = 1− e−φc, for all c ≥ 0 and φ > 0 (1)

For this model, the probability of an event occurring is most likely
independent of time i.e.,P (C > c + dc/C > c) = P (C > dc) =
e−φdc which implies the memoryless property. This property may not hold
in some practical scenarios. Also, for this model In (1), when dealing
with systems that wear out or age over time, the exponential distribution
may not accurately capture the increasing failure rate since h(c) = φ
(Nelsen, 1987). In addressing the above challenges to make the exponential
distribution more flexible and applicable to a wide range of real-life scenar-
ios, several researches have proposed different transformation techniques.
(Owoloko, Oguntunde and Adejumo, 2015) studied the “transmuted expo-
nential distribution”, (El-Damrawy, Teamah and El-Shiekh, 2022) derived the
“Truncated bivariate Kumaraswamy exponential distribution”, (Chesneau,
Kumar, Khetan and Arshad, 2022) derived the “modified weighted expo-
nential distribution”, (Ozkan and Golbasi, 2023) proposed the “Generalized
Marshall-Olkin exponentiated exponential distribution” amongst others.

Dragan and Isaic-Maniu (2019) described the pseudo-entropic transfor-
mation also called entropy transformation by (Aziz, Husain, and Ahmed,
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2021) which has some unique features. The transformation can be summa-
rized with the expression in (2) (for more details see (Aziz, Husain, and
Ahmed, 2021)).

f(c) =
d

dx
[R(c)] log[R(c)] (2)

where R(c) is the survival function of a baseline probability distribution.
By incorporating both the rate of change of the reliability function and

the logarithm of the reliability, which can be related to the hazard function, a
more flexible exponential model that allow for time-varying hazard rates with
memory effects can be created. This can lead to a more realistic and flexible
exponential model for reliability analysis and survival data, especially when
modeling systems or processes where the failure rate is not constant over
time.

The aim of this research is to propose a novel distribution called the
entropy transformed exponential distribution, to derive some of its properties,
estimate its parameter using the method of maximum likelihood, validate
through simulation the stability of the model and to demonstrate its applica-
bility using real life data sets. The rest of this article is organized into sections
as follows; In Section 2 the entropy transformed exponential distribution
(EnTrED) is formally introduced, the statistical and reliability properties of
the EnTrED and the maximum likelihood estimate (MLE) of the parameter
of the parameter is derived and presented. In Section 3, the stability of the
EnTrED was determined through a simulation study and the application of the
EnTrED in modelling real-life data sets and the study concludes in Section 4.

2 Entropy Transformed Exponential Distribution

2.1 Exponential Distribution

The probability density function (PDF) and cumulative density function
(CDF) of the exponential distribution is given by (1). By definition, the
survival function is given by the equation

R(c) = 1− F (c) = 1− (1− e−φc) = e−φc; ∃c > 0 and φ > 0 (3)

2.1.1 Entropy transform exponential distribution
According to (Dragan and Isaic-Maniu, 2019), if a random variable c has an
exponential distribution, then the random variable will have an entropy trans-
formed (or the pseudo-entropic) exponential distribution if its PDF satisfies



20 Mathew Stephen et al.

the equation;

fnew (c) =

∫ ∞

0
R′(c) log(R(c))dc = 1 (4)

The survival function of the exponential distribution is given by;

R′(c) =
d

dc
(e−φc) = −φe−φc

and substituting the log of the survival function and its derivative into
Equation (4) yields the following:

fnew (c) = −φe−φc log(e−φc) = −φe−φc(−φc) = φ2ce−φc

fnew (c) = φ2ce−φc (5)

∃c > 0 and φ > 0.
To validate the that (5) satisfies the condition in (4), it has to be shown

that the integral over the range of (5) is unity.

fnew (c) =

∫ ∞

0
φ2ce−φcdc = 1 (6)

By using integration by parts, let

u = c; dc = e−φc ⇒ c =

∫
e−φcdc = −e−φc

φ
. (7)

On substituting into (6), and simplifying, it can easily be shown that

−ce−φc

φ
−
∫

−e−φc

φ
dc =

(
−ce−φc

φ
+

e−φc

φ2

]∞
0

= 1

satisfying the condition in (4) and validating the fnew (c) model.

Definition 1: a random variable c is said to have an entropy transformed
exponential distribution if it satisfies (5) ∃c > 0 and φ > 0.

Figure 1 displays the of the EnTrED, revealing a right-skewed distribu-
tion.

By the fundamental theory of calculus the Pr(C<c) represents the CDF
of the random variable and can be obtained by solving the following;

Fnew (c) =

∫ c

0
fnew (c)dc (8)
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Figure 1 Plot (where t = φ).

As it has been shown,∫
fnew (c)dc = −ce−φc

φ
−
∫

−e−φc

φ
dc =

(
−ce−φc

φ
+

e−φc

φ2

]
(9)

Since the definition the CDF is a function, whose output yields the
Pr(C ≤ c), evaluating (9) will yield the CDF of EnTrED. Thus,

Fnew (c) = e−φc(e−φc − 1− φc). (10)

Definition 2: for a random variable c, the expression in equation (10) defines
the CDF of the Entropy Transformed Exponential Distribution (EnTrED),
∃c > 0 and φ > 0.

The CDF of the distribution is displayed in Figure 2, satisfying the
condition that all c > 0 and φ > 0.

2.1.2 Asymptotic behaviour
The asymptotic behavior of the PDF provides insights into the tails or extreme
values of the distribution. The limit of EnTrED as c → [0,∞] is 0.

lim
y→[0]

[φ2c e−φ c] = φ20 e−φ 0 = 0 and

lim
y→[∞]

[φ2c e−φ c] = φ2∞ e−φ ∞ = ∞ e−∞ = 0 (11)

The limit of EnTrED in the tails is 0. This indicates that the probability
of observing values in those tails is infinitesimally in the regions. This is
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Figure 2 CDF plot (where t = φ).

consistent with the condition that the total probability over the entire range of
possible values for a random variable is unity.

2.1.3 Properties of EnTrED
2.1.3.1 Quantile function (Q(C))
The EnTrED has the ability to generate random variates or random samples
that follow the distribution’s characteristics since its quantile function can be
expressed in terms of the Lambert W (W (·)) function (Further details on the
W (·) can be found in Corless et al. 1996).

Theorem 1: Let c be a random variable distributed with EnTrED. Then for
every fixed φ > 0, and 0 > k > 1, the quantile function is given as follows;

qc =
log
(
W (k)e−1−1

k

)
2φ

(12)

Proof

To obtain the quantile function, the CDF of the random variable c must be
inverted.

qc = F−1
new (c)

Fnew (c) = e−φc(e−φc − 1− φc)

k = e−φc(e−φc − 1− φc)

keφc = e−φc − 1− φc; ⇒ keφc − e−φc = −1− φc
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e−φc − keφc = 1 + φc; ⇒ e−φc(1− ke−1) = 1 + φc

(1− ke2φc) =
1 + φc

e−φc
; ⇒ (1− ke2φc) = eφc(1 + φc) (13)

Let h = 1+φc; ⇒ c = h−1
φ , then, on substitution into (13), we have that

1− ke2φc = e
φ
(

h−1
φ

)(
1 + φ

(
h− 1

φ

))
= e

φ
(

h−1
φ

)(
1 + φ

(
h− 1

φ

))
= hehe−1 (14)

Using Lambert’s function, Wew = W , Equation (14) can be written as

1− ke2φc = W (k)e−1

ke2φc = W (k)e−1 + 1

2φc = log

(
W (k)e−1 + 1

k

)

c =
log
(
W (k)e−1+1

k

)
2φ

Therefore,

qc =
log
(
W (k)e−1+1

k

)
2φ

(15)

Which ends the proof.
The graphical plot for the quantile function is presented in Figure 3.

2.1.3.2 Raw moments
For a random variable c, the raw moment is a quantitative measure that
characterizes various aspects of its probability distribution. The moment
function of the random variable is used to study many important properties
of distribution such as dispersion, tendency, skewness and kurtosis.

Theorem 2: Let a random variable c ∼ EnTrED(φ), then, the raw moment
is given by the equation;

rth =

(
1

φ

)r

Γ(r + 2) (16)
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Figure 3 Quantile function plot (where t = φ).

Proof
For any continuous random variable with a valid PDF f(c), the rth moment
Ξr is given by:

rth = E[cr] =

∫ ∞

0
crfnew (c)dc

rth =

∫ ∞

0
crφ2ce−φcdc; rth =

∫ ∞

0
cr+1φ2e−φcdc (17)

By transformation, let

b = φc; c =
b

φ
;
db

dc
= φ;⇒ dc =

1

φ
db

On substituting into Equation (17), the following is obtained;

rth =

∫ ∞

0

(
b

φ

)r+1

φ2e−b 1

φ
db

rth =

(
1

φ

)r+1−1 ∫ ∞

0
(b)r+1e−bdb. (18)

Since gamma of z is expressed as Γ(z) =
∫∞
0 xz−1e−xdx, Equation (18)

can be transformed into

rth =

(
1

φ

)r

Γ(r + 2) (19)
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Therefore, the rth of a random variable c with entropy transformed expo-
nential distribution is expressed as shown in Equation (19), which completes
the proof.

2.1.3.3 Probability weighted moments
Probability Weighted Moments (PW

M ) are expressed as expectations of
functions of a random variable, premise on the condition that the ordi-
nary moments of the random variable exist. For a random variable C the
probability weighted moments is defined by the expression;

PW
M =

∫ ∞

0
crF s

new (c)fnew (c)dc (20)

Theorem 3: Let a random variable c ∼ EnTrED(φ), then, the (PW
M ) of

EnTrED is given by;
PW
M = ϕΓ(r + 2 + k) (21)

Proof
To obtain the PW

M for EnTrED, we make the substitution of Equation (6) for
fnew (c) and (10) for Fnew (c) into (20). Thus;

PW
M =

∫ ∞

0
cr(e−φc(e−φc − 1− φc))s(φ2ce−φc)dc (22)

PW
M =

∫ ∞

0
φ2cr+1(e−φc − 1− φc)se−φc(s+1)dc

PW
M =

∫ ∞

0
φ2cr+1(e−φc −A)se−φc(s+1)dc (23)

Where; A = 1− φc

(a+ b)n =
∞∑
i=0

(
n

k

)
(an−kbk); (1− y)b−1

=
∞∑
i=0

biy
i; bi = (−1)i

(
b− 1

i

)
(24)

Using the Binomial sum of a series presented in Equation (24), it can be
shown that

(e−φc −A)s =
∞∑
j=0

(
s

j

)
(−1)jAj e−φc(n−j) (25)
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Thus,

PW
M =

∫ ∞

0
φ2cr+1

s∑
j=0

(
s

j

)
(−1)jAj e−φc(n−j) e−φc(s+1)dc (26)

PW
M =

∫ ∞

0
φ2cr+1

s∑
j=0

(
s

j

)
(−1)j(1− φc)j e−φc(n−j) e−φc(s+1)dc (27)

Also, by expanding using Binomial sum of a series in (24), it can be
shown that,

(1− φc)j =
∞∑
k=0

(−1)j
(
j

k

)
(φc)k (28)

Substitute (28) into (27). Then we have that;

PW
M =

∫ ∞

0
φ2cr+1

s∑
j=0

(
s

j

)
(−1)j

∞∑
k=0

(−1)k

×
(
j

k

)
(φc)k e−φc(n−j) e−φc(s+1)dc

PW
M =

∫ ∞

0
Θφ2+kcr+1+ke−φc(n−j) e−φc(s+1)dc

Where;

Θ =

s∑
j=0

(
s

j

)
(−1)j+k

∞∑
k=0

(
j

k

)

PW
M =

∫ ∞

0
Θφ2+kcr+1+ke−φc(n−j)−φc(s+1)dc (29)

PW
M = Θφ2+k

∫ ∞

0
cr+1+ke−φc(n−j−s−1)dc (30)

By transformation, let;

u = φc(n− j − s− 1); c =
u

φ(n− j − s− 1)
;
du

dc
= φ(n− j − s− 1);

dc =
du

φ(n− j − s− 1)
(31)
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Substitute (31) into (30).

PW
M = Θφ2+k

∫ ∞

0

(
u

φ(n− j − s− 1)

)r+1+k

e−u du

φ(n− j − s− 1)

(32)

PW
M = Θφ2+k

(
1

φ(n− j − s− 1)

)r+1+k

×
∫ ∞

0
ur+1+ke−u du

φ(n− j − s− 1)
(33)

PW
M = Θφ2+k(φ(n− j − s− 1))−(r+2+k)

∫ ∞

0
ur+1+ke−udu (34)

PW
M = Θφ2+k(φ(n− j − s− 1))−(r+2+k)

∫ ∞

0
ur+1+ke−u du (35)

PW
M = Θφ2+k(φ(n− j − s− 1))−(r+2+k)

∫ ∞

0
u(r+2+k)−1e−udu (36)

PW
M = ϕΓ(r + 2 + k) (37)

Where; ϕ = Θφ2+k(φ(n− j − s− 1))−(r+2+k)

2.1.3.4 Conditional moment
A useful tool for understanding the distributional properties of random vari-
ables is the conditional moments (Mq). Assume that C is a random variable,
or an event, such that X = C > c, then the expected value of Cr given the
condition X is represented by the conditional moment of order r, which is
written as E[Cr/X]. For the random variable c with EnTrED, the conditional
moment is derived by;

Mq =
[φtr+1e−φt − e−φt]

S(c)
(38)

Proof
The conditional moment of a random variable with continuous distribution is
given by;

Mq = E[Cr/X] =
1

S(c)

∫ ∞

t
crfnew (c)dc (39)
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For c ∼ EnTrED(φ), make the substitution of Equation (6) for the PDF
of the EnTrED in Equation (39).

Mq = E[Cr/X] =
1

S(c)

∫ ∞

t
crφ2ce−φcdc

Mq = E[Cr/C > c] =
φ2

S(c)

∫ ∞

t
cr+1e−φcdc

By using integration by parts, let

u = c; dc = e−φc ⇒ c =

∫
e−φcdc = −e−φc

φ
.

This implies that

Mq =
φ2

S(c)

(
−cr+1e−φc

φ
−
∫

−e−φc

φ
dc

)
=

1

S(c)

(
−φcr+1e−φc + e−φc

]∞
t

Mq =
1

S(c)
(−φcr+1e−φc + e−φc]∞t

=
1

S(c)
[−φ · ∞r+1e−φ·∞ + e−φ·∞ + φtr+1e−φt − e−φt]

Mq =
[φtr+1e−φt − e−φt]

S(c)
(40)

Where S(c) is the survival function of EnTrED (as defined in Equa-
tion (48)), thus completing the proof.

2.1.3.5 Mean
Theorem 4: The mean of a random variable c ∼ EnTrED(φ) is expressed
as follows.

r1 =

(
1

φ

)1

Γ(1 + 2) =

(
1

φ

)
Γ(3) (41)

Proof
The mean of a random variable c with EnTrED can be obtained as the
first moment. This can be derived by substituting unity into the Ξr moment
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in (19).

r1 =

(
1

φ

)1

Γ(1 + 2) =

(
1

φ

)
Γ(3) (42)

Which completes the proof.

2.1.3.6 Harmonic mean (Har.M)
Theorem 5: the harmonic mean of a random variable c ∼ EnTrED(φ) is
expressed as follows.

Har.M =
1

c

∫ ∞

0
φ2e−φcdc = −1

c
φce−φc

∣∣∣∣∞
0

= φ (43)

Proof
The harmonic mean of a random variable c with EnTrED can be obtained
by solving the expression given below.

Har.M = E

[
1

c

]
=

∫ ∞

0

1

c
fnew (c)dc (44)

Har.M =

∫ ∞

0

1

c
φ2ce−φcdc

Har.M =
1

c

∫ ∞

0
φ2e−φcdc = −1

c
φce−φc

∣∣∣∣∞
0

= φ (45)

Which ends the proof.

2.1.3.7 Mode (Md)
Theorem 6: the mode of a random variable c ∼ EnTrED(φ) is defined as
follows.

Md =
1

φ
(46)

Proof
The mode of a random variable

d

dc
(log(fnew (c))) = 0

d

dc
(log(φ2ce−φc)) = 0
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d

dc
(log(φ2c)− φc) = 0

1

c
− φ = 0;⇒ c =

1

φ

Md =
1

φ
(47)

Which ends the proof.

2.1.3.8 Survival function (S(c))
Survival function can be defined as the probability that an event happened
after time, t. It models time to-an-event and takes note of the time it takes
for an event to occur. Given the CDF of a probability function, the survival
function is the probability of survival beyond time c and is defined by;

S(c) = 1− Fnew (c) = 1− e−φc(e−φc − 1− φc) (48)

The survival function of the EnTrED is presented in Figure 4. This depicts
the probability that an event has not occurred by time (c). The function is
characterized by a gradual decrease from 1−0 as c increases, thus, signifying
a diminishing likelihood of no event occurrence over time. Ultimately, as c
increases, the survival function value approaches 0, suggesting that the event
is almost certain to occur after a sufficiently long time.

2.1.3.9 Hazzard function (H(c))
The hazard function is also known as the failure rate is defined as the
conditional probability of failure of an item/device given that the item has
survived to the time, t. The hazard rate function of a random variable c is the

Figure 4 Survival function plot (where t = φ).
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Figure 5 Hazzard function plot (where t = φ).

ratio of the PDF, fnew (c) to the survival function, and is given by:

H(c) =
fnew (c)

Snew (c)
=

φ2ce−φc

1− e−φc(e−φc − 1− φc)
(49)

The hazard function provided represents the instantaneous risk of event
occurrence for model EnTrED as a function of c with φ as a parameter.
As shown in Figure 5, the function increases gradually with c, showing a
linear-like behavior. However, as c increases, the hazard function reaches a
peak and becomes asymptotically constant. The behavior is influenced by the
parameter φ, where higher values result in steeper increases in the hazard
rate.

2.1.3.10 Characteristic function
This characteristics function is useful and has some properties which gives it
a genuine role in mathematical statistics. It is used for generating moments,
characterization of distributions and in analysis of linear combination of
independent random variables.

Theorem 6: the characteristic function of a random variable c ∼
EnTrED(φ) is defined by the following equation.

Qc(t) =

n∑
i=0

(−1)n(t)2n

2n!

((
1

φ

)(2n)

Γ(2n+ 2)

)

+ i

n∑
i=0

(−1)n(t)2n+1

(2n+ 1)!

((
1

φ

)(2n+1)

Γ(2n+ 3)

)
(50)



32 Mathew Stephen et al.

Proof
The characteristics function of a random variable c is given by;

Qc(t) = E[eitc] =

∫ ∞

0
eitcfnew (c)dc (51)

Expressing eitc in trigonometric form, we have that

eitc = cos(tc) + i sin(tc)

E[eitc] = E[cos(tc) + i sin(tc)]

E[eitc] = E[cos(tc)] + E[i sin(tc)] (52)

Using the power series expansion, it can be shown that

sin(tc) =
n∑

i=0

(−1)n(tc)2n+1

(2n+ 1)!
and

cos(tc) =

n∑
i=0

(−1)n(tc)2n

2n!
(53)

This implies that

E[eitc] = E

[
n∑

i=0

(−1)n(tc)2n

2n!
+ i

n∑
i=0

(−1)n(tc)2n+1

(2n+ 1)!

]

=

n∑
i=0

(−1)n(t)2n

2n!
E[c2n] + i

n∑
i=0

(−1)n(t)2n+1

(2n+ 1)!
E[c(2n+1)]

Qc(t) =
n∑

i=0

(−1)n(t)2n

2n!
r2n + i

n∑
i=0

(−1)n(t)2n+1

(2n+ 1)!
r(2n+1) (54)

Where r(2n) and r(2n+1) are the moments of the random variable c for
r = 2n and r = 2n+ 1 respectively.

As obtained in Equation (19), E[cr] = rth = ( 1φ)
rΓ(r + 2).

It follows that

r(2n) =

(
1

φ

)(2n)

Γ(2n+ 2) =

(
1

φ

)(2n)

Γ(2n+ 2)
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r(2n+1) =

(
1

φ

)(2n+1)

Γ(2n+ 1 + 2) =

(
1

φ

)(2n+1)

Γ(2n+ 3)

Qc(t) =
n∑

i=0

(−1)n(t)2n

2n!

((
1

φ

)(2n)

Γ(2n+ 2)

)

+ i
n∑

i=0

(−1)n(t)2n+1

(2n+ 1)!

((
1

φ

)(2n+1)

Γ(2n+ 3)

)
(55)

Thus, completing the proof.

2.1.3.11 Order statistic
Order statistics are essential for describing the distribution and behavior of
random variables because they provide the sorted values of observations
taken from a sample. Given a random sample of size k, the order statistics are
denoted as X(1), X(2), . . . , X(k), where X(1) represents the smallest observa-
tion, X(2) the second smallest, to X(k), which denotes the largest observation.
The kth order statistic of a random variable is given as;

f(k,n)(c) =
n!

(k − 1)!(n− k)!
fnew (c)[Fnew (c)]

k−1[1− Fnew (c)]
n−k

(56)

Expanding [1− Fnew (c)]
n−k using the Binomial theorem, we have

[1− Fnew (c)]
n−k =

∞∑
p=0

(
n− k

p

)
(−1)p[Fnew (c)]

p (57)

Therefore, equation (57) becomes;

f(k,n)(c) =
∞∑
p=0

(
n− k

p

)
n!

(k − 1)!(n− k)!
(−1)pfnew (c)[Fnew (c)]

p+k−1

(58)

Theorem 8: The kth order statistic of a random variable with EnTrED is
given by;

f(k,n)(c) = ω(φ2ce−φc)[e−φc(e−φc − 1− φc)]p+k−1 (59)



34 Mathew Stephen et al.

Proof
To obtain the kth order statistic of the EnTrED, we make the substitution (6)
for fnew (c) and (10) for Fnew (c) in Equation (58). Therefore,

f(k,n)(c) =
∞∑
p=0

(
n− k

p

)
n!

(k − 1)!(n− k)!
(−1)p(φ2ce−φc)

× [e−φc(e−φc − 1− φc)]p+k−1 (60)

f(k,n)(c) = ω(φ2ce−φc)[e−φc(e−φc − 1− φc)]p+k−1 (61)

Where;

ω =
∞∑
p=0

(
n− k

p

)
n!(−1)p

(k − 1)!(n− k)!
.

2.1.3.12 Information measures
In information theory, information measures are numbers that are used to
quantify different characteristics of information, uncertainty, and entropy.
These metrics have been applied in a variety of domains, such as statis-
tics, machine learning, communication theory, and cryptography, where it
is essential to comprehend and quantify uncertainty and information. This
subsection will develop the Renyi entropy and associated Arimoto measure
for the EnTrED.

1. Renyi entropy
The Rényi entropy measures bear the name of the mathematician Alfréd
Rényi. It generalizes the concept of Shannon entropy, providing a parame-
terized family of entropy measures. This can be defined as follows;

ER(k) =
1

1− k
log

∫ ∞

0
fk
new (c)dc; for k > 1, k ̸= 1 (62)

Suppose a random variable c ∼ EnTrED(φ), then the degree of
uncertainty can be obtained by substituting (6) for fnew (c) in equation in
Equation (62) as follows;

ER(k) =
1

1− k
log

∫ ∞

0
(φ2ce−φc)kdc (63)

ER(k) =
1

1− k
log

[
φ2k

∫ ∞

0
cke−φckdc

]
(64)
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From (16),
∫∞
0 cke−φckdc is equivalent to the moment of the density

function. Thus, on substituting into (64), we obtain the following;

ER(k) =
log[φ2krth]

1− k
(65)

2. Arimoto measure of entropy
A means of comparing the uncertainty or disorder in probability distributions
is the Arimoto measure of entropy, which is often referred to as the “informa-
tion divergence entropy” or the “information radius entropy.” The following
formula defines this:

AK(c) =
k

1− k

[
(Ek(θ))

1
k − 1

]
=

k

1− k

(∫ ∞

0
(fk

new (c)dc)
1
k − 1

)
; for k > 1, k ̸= 1 (66)

If c ∼ EnTrED(φ), then on substituting (6) into (66), the Arimoto
measure of entropy is derived as follows;

AK(c) =
k

1− k

((∫ ∞

0
φ2ce−φcdc

) 1
k

− 1

)
(67)

AK(c) =
k

1− k

((
φ

2
k

∫ ∞

0
c

1
k e−

φc
k dc

)
− 1

)
(68)

On substituting the transformation in (7) into (68), we have that,

AK(c) =
k

1− k

((
φ

2
k
− 1

k

∫ ∞

0
b

1
k e−

b
k
1

φ
db

)
− 1

)
which can be transformed using the gamma function as;

AK(c) =
k

1− k

(
k

1−k
k φ

k+1
k Γ

(
1

k

))
(69)

2.1.3.13 Method of parameter estimation adopted
To estimate the parameter of the EnTrED, using the maximum likelihood
method, let c1, c2, . . . , cn be independent identically distributed of size (n)
with probability function EnTrED, then, the likelihood function L(ϕ) for
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EnTrED is given below

L(ϕ) =
n∏

i=1

fnew (c) =
n∏

i=1

φ2ce−φc = φ2ne−φ
∑n

i=1 c
n∑

i=1

c (70)

log(L(ϕ)) = log

(
φ2ne−φ

∑n
i=1 c

n∑
i=1

c

)

= 2n log(φ)− φ
n∑

i=1

c+
n∑

i=1

log(c)

The likelihood equation in (70) is partially differentiated with respect to
phi and equating to zero, we have

∂(log(L(ϕ)))

∂ϕ
=

∂(2n log(φ))

∂φ
−

∂(φ
∑n

i=1 c)

∂φ

+
∂ (
∑n

i=1 log(c))

∂φ
= 0

(2n)

φ
− φ

n∑
i=1

c = 0;⇒ φ = 2n

(
n∑

i=1

c

)−1

Therefore, the MLE for the parameter of EnTrED is given as;

φ = 2n

(
n∑

i=1

c

)−1

(71)

3 Stability Analysis

3.1 Simulation

This part uses Monte-Carlo simulation to assess the stability of the EnTrED
probability model’s MLE by increasing the sample size. A random sample
of sizes 30, 100, 500 and 750 was generated and using the quantile function
shown in Equation (10) with the parameter values fixed at 0.3, 0.4, 0.6, and
0.9. The bias (AvAB), variance (Var), standard deviation (SD), mean square
error (MSE), root mean square error (RMSE) and coefficient of variation
(CV) were the metrics utilized to evaluate the stability. The calculations were
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Table 1 Simulation results and measures of accuracy
Sample
Size Parameter MLE Bias Var SD MSE RMSE CoV
30 0.3 2.7808 2.4808 22.0374 4.6944 28.1918 5.3096 168.8142
100 0.3 1.9742 1.6742 15.7767 3.9720 18.5795 4.3104 201.1996
500 0.3 0.5759 0.2759 0.6880 0.8294 0.7641 0.8741 144.0315
750 0.3 0.4604 0.1604 0.0755 0.2748 0.1012 0.3182 59.6916
30 0.4 0.4331 0.0331 0.1419 0.3766 0.1429 0.3781 86.9586
100 0.4 0.5137 0.1137 0.0094 0.0971 0.0224 0.1495 18.8955
500 0.4 0.5137 0.1137 0.0021 0.0455 0.0150 0.1225 8.8559
750 0.4 0.2728 −0.1272 0.0030 0.0552 0.0192 0.1387 20.2369
30 0.8 0.6893 −0.1107 0.0008 0.0279 0.0130 0.1142 4.0525
100 0.8 0.6506 −0.1494 0.0867 0.2944 0.1090 0.3302 45.2557
500 0.8 0.7674 −0.0326 0.0181 0.1346 0.0192 0.1385 17.5453
750 0.8 0.6873 −0.1127 0.0000 0.0055 0.0127 0.1129 0.8032
30 0.9 0.6705 −0.2295 0.0006 0.0248 0.0533 0.2308 3.7032
100 0.9 0.7790 −0.1210 0.0001 0.0086 0.0147 0.1213 1.1077
500 0.9 0.7790 −0.1210 0.0000 0.0040 0.0147 0.1211 0.5191
750 0.9 0.6687 −0.2313 0.0000 0.0049 0.0535 0.2314 0.7338

done using the following formula;

MSE =

Q∑
q=1

(
⌢
uq −u)2/q RMSE =

√
MSE AvAB =

k∑
i=1

|b− b̂|/k − 1;

V ar =

k∑
i=1

(b− b̂)2/k − 1; CV = ⟨(b− b̂)/b̂⟩ × 100%SD =
√
V ar;

(72)

A simulation was performed and the results presented in Table 1 presents
the sample size, true and MLE parameter estimates for the new model.
Testing the behavior of the distribution with the aid of variance, standard
deviation and standard error revealed as the sample sizes increases. The
observed trend in the simulation results was as anticipated: as the sample
sizes grew larger and larger, the values of the adequacy metrics (variance,
standard deviation, and standard error) decreasing. This trend displayed in
Figure 6 aligns with expectations for a well-fitting density model. In statistical
modeling, an adequate model should ideally demonstrate reduced variability
and increased precision as more data becomes available for estimation.
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Figure 6 Measures of stability.

Therefore, the decreasing values of these adequacy metrics as the sample
sizes increased can be interpreted as a positive sign. This result supports
the conclusion that the EnTrED model behaves as a well-behaved density
function, which is indicative of its suitability for modeling real-life data sets.
In essence, the simulation results, as summarized in Table 1, indicate that the
EnTrED model is a statistically sound and appropriate choice for modeling
data in various applications.

3.2 Empirical Application

This section uses three actual datasets to show the applicability and flexibility
of the EnTrE distribution. Additionally, this part offers a comparison to other
competing models and an assessment of the distribution’s goodness of fit.
The models that were compared included the Sine Exponential distribution,
Exponential distribution, Ram Awadh distribution and Prakaamy distribution
respectively. The Kolmogrov Smirnov (KS), AIC, BIC, HQIC, and CAIC
are among the adequacy metrics used. The better the model, the lower these
measures’ values should be.

In this section, the empirical applicability and flexibility of the newly
introduced entropy-transformed exponential distribution (EnTrED) are thor-
oughly examined using real-world datasets. This analysis aims to showcase
the practical utility of the EnTrED model in handling diverse data scenarios.
Moreover, it includes a comparative assessment of the EnTrED model against
several alternative statistical distributions to assess the goodness of fit and
overall performance. The datasets chosen for this evaluation are actual, real-
world datasets, which adds an element of authenticity and relevance to the
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Table 2 Competing models
Models PDF Domain Sources

Sine Exponential
(SE)

f(x;κ) =
π

2
e−κx cos

(π
2
(−1e−κx)

)
For κ, x > 0 (Isa, Bashiru,

Ali, and
Adepoju, 2022)

Exponential (E) f(x;κ) = κe−κx For κ, x > 0

Ram Awadh (RA) f(x;κ) =
κ6

κ6 + 120
(κ+ x5)e−κx For κ, x > 0 (Shukla, 2018).

Prakaamy (P) f(x;κ) =
κ3

κ3 + κ+ 2
(1 + x+ x2)e−κx For κ, x > 0 (Shukla, 2018)

Table 3 Adequacy measures for fits using first dataset
Models AIC BIC CAIC HQIC MLE KS P val Rank
EnTrED 595.594 597.753 595.659 596.445 0.050 0.162 0.070 1
SE 599.937 602.096 600.002 600.788 0.014 0.152 0.105 2
E 601.625 603.784 601.690 602.476 0.025 0.164 0.063 3
RA 1105.328 1108.149 1105.361 1106.474 0.150 109748 2.2e-16 5
P 695.421 697.580 695.486 696.272 0.151 109743 2.2e-16 4

Table 4 95% Confidence interval estimates for first dataset
Models MLE SE MLE 95% Lower CI 95% Upper CI
EnTrED 0.050 0.000 0.050 0.051
SE 0.014 0.000 0.014 0.014
E 0.025 0.000 0.025 0.025
RA 0.151 0.000 0.150 0.151
P 0.151 0.000 0.150 0.151

analysis. These datasets represent different domains or fields of study, mak-
ing them suitable for assessing the versatility of the EnTrED model across
various applications. To determine how well the EnTrED model performs
in comparison to other statistical models, a comprehensive set of competing
models is considered. These competing models include:

The first dataset was based on (Tashkandy, Nagy, Akbar, Mahmood and
Gemeay, 2023) and covered the intervals between 64 successive eruptions of
the Kiama Blowhole. The following is the dataset’s content: 83, 51, 87, 60,
28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35, 47, 77, 36, 17, 21,
36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82,
29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12

The second dataset, which details the number of COVID-19 cases during
the first wave in Nepal in December 2020, was published by (Dhungana and



40 Mathew Stephen et al.

Table 5 Adequacy measures for fits using second dataset
Models AIC BIC CAIC HQIC MLE KS P val Ranks
EnTrED 1004.982 1008.012 1005.009 1006.213 0.172 0.101 0.091 1
SE 1048.172 1051.202 1048.198 1049.403 0.047 0.161 0.001 2
E 1058.388 1061.419 1058.415 1059.619 0.086 0.188 4.1e-05 3
RA 1087.025 1090.055 1087.051 1088.256 0.516 10612 2.2e-16 4
P 1087.025 1090.055 1087.051 1088.256 0.516 10595 2.2e-16 5

Table 6 95% Confidence interval estimates for second dataset
Models Estimate SE 95% Lower CI 95% Upper CI
EnTrED 0.172 0.001 0.170 0.174
SE 0.049 0.000 0.048 0.049
E 0.086 0.001 0.085 0.087
RA 0.517 0.003 0.510 0.523
P 0.517 0.003 0.510 0.523

Table 7 Adequacy measures for fits using third dataset
Models AIC BIC CAIC HQIC MLE KS P val Rank
EnTrED 790.567 792.843 790.624 791.473 0.020 0.134 0.153 1
SE 805.941 808.217 805.998 806.847 0.006 0.193 0.009 2
E 808.884 811.161 808.941 809.791 0.010 0.211 0.003 3
RA 856.749 859.026 856.806 857.655 0.060 59703 2.2e-16 4
P 1752.437 1754.714 1752.494 1753.343 0. 060 3.05e+11 2.2e-16 5

Kumar, 2022). The data is shown as follows: 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5,
5, 3, 2, 4, 4, 8, 4, 4, 3, 2, 3, 7, 6, 6, 11, 9, 3, 8, 7, 11, 8, 12, 12, 14, 7, 11, 12,
6, 14, 9, 9, 11, 6, 6, 5, 5, 14, 9, 15, 11, 8, 4, 7, 11, 10, 16, 2, 7, 17, 6, 8, 10, 4,
10, 7, 11, 11, 8, 7, 19, 9, 15, 12, 10, 14, 22, 9, 18, 12, 19, 21, 12, 12, 18, 8,
26, 21, 17, 13, 5, 15, 14, 11, 17, 16, 17, 23, 24, 20, 30, 18, 18, 17, 21, 18, 22,
26, 15, 13, 13, 6, 9, 17, 12, 17, 22, 7, 16, 16, 24, 28, 23, 23,19, 25, 29, 21, 9,
13, 16, 10, 17, 20, 23, 14, 12, 11, 15, 9, 18, 14, 13, 6, 16, 12, 11, 7, 3, 5, 5.

The third dataset can be found in (Banerjee and Bhunia, 2022), and it
details the survival periods (in days) of guinea pigs that were given various
amounts of tubercle bacilli. The dataset includes the following: 12, 15, 22,
24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59,
60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83,
84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146,
175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

As presented in Tables 3, 5 and 7, the results on the application of
the EnTrED to real dataset compared to six other models revealed the
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Table 8 95% Confidence interval estimates for third dataset
Models Estimates SE 95% Lower CI 95% Upper CI
EnTrED 0.0200 0.0000 0.0200 0.0201
SE 0.0057 0.0000 0.0057 0.0057
E 0.0100 0.0000 0.0100 0.0100
RA 0.0601 0.0001 0.0600 0.0602
P 0.0601 0.0001 0.0600 0.0602

applicability of the new model. It can be observed that the EnTrED has the
smallest of all the information criterions (i.e., AIC, BIC, CAIC and HQIC).
The profound implication of these findings is the EnTrED model’s supremacy
in terms of adequacy and goodness of fit. The exceptional performance of the
model is expressed in the consistently lower AIC, BIC, CAIC, and HQIC
values, irrespective of dataset characteristics and shows its versatility and
adaptability. This remarkable ability to capture the underlying data generation
mechanisms more effectively positions the EnTrED as a formidable tool
for researchers across diverse scientific areas. Its statistical flexibility and
adequacy are invaluable assets in modelling complex data structures, offering
researchers an advanced and dependable distribution for intricate statistical
modeling and analysis tasks.

Results in Tables 4, 6 and 8 summarizes the parameter estimates along
with their, standard errors and 95% confidence intervals for the models
across the three data sets. The results presented provides insights into the
precision of the estimates and the range within which the true parameter
values are likely to fall with a specified level of confidence. As observed,
the parameter estimates all fell within the 95th percent confidence interval
and the difference between the upper and lower CI showed that EnTrED, SE,
and E had the smallest value, thus indicating that they provide a better fit for
the data sets.

4 Conclusion

In this study, ErTrED is proposed. Various statistical and reliability attributes
of EnTrED, including moments, moment generating function, quantile func-
tion, hazard rate function, and mean, as well as order statistics, were
examined and derived. Additionally, a rigorous simulation study was exe-
cuted to assess the stability of the Maximum Likelihood Estimates (MLE)
for EnTrED’s parameters, revealing their robust behavior as sample sizes
increased.
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To demonstrate the flexibility and adequacy of the EnTrED distribution,
an empirical data analysis was carried out. The goodness of fit of the EnTrED
model was scrutinized using three distinct datasets as test cases. A compar-
ative analysis ensued, fitting the EnTrED against competing distributions,
including the Sine Exponential, Exponential, Ram Awadh and Prakaamy
distributions. The results of this extensive empirical data analysis pointed
to the EnTrED exhibiting better fitting capabilities across the datasets. This
compelling outcome underscores the potential of EnTrED as the distribution
with the most adequate fit, affirming its position as a valuable tool for
researchers and practitioners alike. Parameter estimation methods influences
parameter estimates of a density function. In this study, we utilized the
Maximum Likelihood Estimation (MLE) method. As a suggestion for future
research, we recommend exploring alternative estimation methods for the
EnTrED. This exploration can provide valuable insights into the robustness
and accuracy of parameter estimation in diverse modeling scenarios.
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