
Optimizing Resource Allocation in M/M/ 1/N
Queues with Feedback, Discouraged
Arrivals, and Reneging for Enhanced

Service Delivery

Amit Kumar1, Savita1,∗ and Chandra Shekhar2

1Department of Mathematics, Chandigarh University, Mohali, Punjab 140413,
India
2Department of Mathematics, Birla Institute of Technology and Science Pilani,
Pilani Campus, Pilani, Rajasthan, 333 031, India
E-mail: amitk251@gmail.com; savy84@gmail.com;
chandrashekhar@pilani.bits-pilani.ac.in
∗Corresponding Author

Received 06 February 2024; Accepted 18 April 2024

Abstract

This article presents a novel computational approach for analyzing
M/M/1/N queues with feedback, discouraged arrivals, and reneging, under
the first-come, first-served (FCFS) discipline. We calculate explicit transient
state probabilities and represent results using symmetric tridiagonal matrix
eigenvalues. Through numerical simulations, we validate our method, pro-
viding practical insights for optimizing resource allocation. Our study con-
tributes to both theory and application, advancing queueing theory and aiding
decision-makers in improving service quality and resource management.
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1 Introduction

Queuing systems serve as fundamental models for studying and optimizing
the flow of entities through service systems. In real-world scenarios, service
facilities often encounter discouraged arrivals and reneging behavior from
impatient customers, leading to complex dynamics that challenge efficient
resource allocation and service quality. Moreover, incorporating feedback
mechanisms further complicates the analysis of such systems. This study
addresses these challenges by introducing a novel computational technique
for analyzing M/M/1/N queues with feedback, reneging, and discour-
aged arrivals, all operating under the first-come, first-served (FCFS) disci-
pline. Our approach focuses on deriving explicit transient-state probabilities,
enabling us to gain insights into the system’s behavior. The findings have
practical implications for enhancing service delivery and resource allocation,
bridging the gap between queueing theory and real-world applications.

In today’s technology-driven landscape, the seamless operation of auto-
mated finite-capacity queueing systems is indispensable across various sec-
tors, including power, communication, security, manufacturing, and more.
These systems are inevitably exposed to erratic customer behaviors, which
can disrupt efficiency. To address this challenge, we employ a queueing
theoretical approach to analyze and enhance the efficiency of such systems.
The study of queueing models has garnered considerable attention from many
theorists (cf. [1–3]). Therefore, it is valuable to provide a comprehensive sum-
mary of the notable contributions in this field. Ammar et al. [4] investigate a
matrix technique to compute transient state probabilities for the finite waiting
space single-server queue. In the past, many research papers concerning the
queueing model of feedback (cf. [3,5–7]). The single-server Markovian queue
with discouraged arrivals, commonly found in daily queueing situations, has
been extensively studied due to its finite waiting space. This waiting line
is handy for modeling a computing facility that exclusively handles batch-
job processing. When the facility is heavily utilized, job submissions are
discouraged, and arrivals can be represented by a Poisson process with a
state-dependent arrival rate. Regardless of the number of jobs in the sys-
tem, the time taken to process each job is exponentially distributed with a
constant service rate. Kumar [8], Medhi & Choudhury [9], Reynolds [10]
and Kumar [11] have also investigated the discouraged arrivals queue, and
Sharma [12] investigated the solution of a queueing model using a triangular
matrix approach. Recently, Kumar [13] discovered a solution for the single-
server multiple-vacation queue with discouragement by employing confluent
hypergeometric functions.
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The study of reneging is pivotal for enhancing customer satisfaction,
optimizing resource allocation, and improving overall system efficiency.
Moreover, businesses and organizations benefit from considering reneging
rates when making decisions related to staffing, service level agreements,
and other operational aspects. In essence, reneging plays a central role in
shaping the perceived quality of service, influencing customer decisions,
and guiding strategic choices for effective queueing system management.
Yang’s [14] study optimized patient admission and queueing control policies
in overcrowded emergency departments, minimizing costs and considering
premature discharge decisions and patient reneging behavior. Atar’s [15]
study on large-time behavior in many-server queues with reneging revealed
unique invariant states in fluid equations corresponding to Dirac measures,
providing insights into stationary distributions and system behavior. Logo-
thetis et al. [16] study explored the effectiveness of the reneging option in
strategic queueing systems with server on-off periods, challenging the notion
that balking alone is sufficient. Economou et al. [17] study explored customer
strategic behavior in join-or-balk dilemma queueing systems with server
vacations/failures, highlighting the impact of reneging on social welfare and
throughput, particularly in unstable systems.

The structure of this paper unfolds as follows. Section 2 provides a
comprehensive depiction of the queueing model, accompanied by introducing
a concise equation for calculating time-dependent probabilities expressed in
terms of the characteristic value of a symmetric tridiagonal matrix. Moving
to Section 3, we delve into the performance measure for queue models.
In Section 4, our focus shifts to a sensitivity analysis achieved through
numerical experiments. Finally, Sections 5 and 6 encapsulate our findings and
insights, offering conclusive remarks on the implications and contributions of
our research.

2 Time Dependent Probabilities

In this study, we explore a queueing system that models customer behavior
in the finite capacity service systems. We examine a queueing system where
customers arrive following an exponential distribution. Customers may join
the queue, balk due to impatience, or renege if the wait is too long. The
system operates on a ’First Come First Serve’ basis, with servers attending
to customers immediately if available. We aim to analyze how customer
behavior impacts system efficiency. The pertinent notations and assumptions
are described as follows:
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The inter-arrival times of customers follow the exponential distribution
with a mean rate of λ. Upon arrival, if customers find the server idle, they
receive immediate service; otherwise, they may wait in the system. Let
X(t); t > 0 denote the number of customers present in the system at time
t. If a customer finds the server busy serving predecessor customers, they
may balk from the system, exhibiting impatience with a state-dependent
probability of n

n+1 . While waiting in the system, a customer may also renege,
showing impatience with the waiting time. The duration before reneging
follows an exponential distribution with a mean rate of α. The server serves
waiting customers following a First Come First Serve (FCFS) service disci-
pline. The service time for each customer follows an exponential distribution
with a mean rate of µ. Served customers may rejoin the system to complete
unsatisfactory service with probability χ, or they may leave the system with
probability χ̄ = (1 − χ). The current study is particularly significant due to
the assumption of a finite capacity of size N .

Let πn(t) = Pr (X(t) = n) represent the probability that there are n
customers in the system at time t, where n = 0, 1, 2, . . . , N . Leveraging
the characteristic of memorylessness, we derive the subsequent collection of
Chapman-Kolmogorov differential-difference finite equations for the time-
dependent probabilities πn(t) in the following manner:

dπ0(t)

dt
=− λπ0(t) + (1− χ)µπ1(t), (1)

dπn(t)

dt
=−

(
λ

n+ 1
+ (1− χ)µ+ (n− 1)α

)
πn(t) +

(
λ

n

)
πn−1(t)

+ ((1− χ)µ+ nα)πn+1(t), 1 ≤ n < N − 1,

(2)

dπN (t)

dt
=− [(1− χ)µ+ (N − 1)α]πN (t) +

(
λ

N

)
πN−1(t) (3)

The initial conditions are π0(0) = 1 and πn(0) = 0;n = 1, 2, . . . N .

2.1 Evaluation of Probabilities

Laplace transform is an integral transform that simplifies the process of solv-
ing linear differential equations by transforming them into algebraic equa-
tions, which are often easier to solve.We define the Laplace transformation of
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state probabilities as follows:

ψn(θ) =

∫ ∞

0
e−θtπn(t)dt

Through the defined Laplace transform, the system of governing
differential-difference equations is transformed as a system of linear equa-
tions as follows:

θψ0(θ)− 1 =− λψ0(θ) + (1− (1− χ))µψ1(θ) (4)

θψn(θ) =−
(

λ

n+ 1
+ (1− (1− χ))µ+ (n− 1)α

)
ψn(θ) +

(
λ

n

)
ψn−1(θ)

+ ((1− (1− χ))µ+ nα)ψn+1(θ), 1 ≤ n < N − 1,

(5)

θψN (θ) =− [(1− (1− χ))µ+ (N − 1)α]ψN (θ) +

(
λ

N

)
π̃N−1(θ) (6)

The above system of equations can be represented in matrix form as
follows:

ωΨ = δ (7)

Vector Ψ = [ψ0(θ), ψ1(θ), ψ2(θ), . . . , ψN (θ)]′ and vector δ = [P0(0),
P1(0), . . . , PN (0)]′ are column vectors of order N + 1, and matrix ω is a
tridiagonal square matrix of order N + 1, where

ω =



θ + λ Θ 0 0 · · · 0 0
λ θ + λ

2
+Θ −Θ− α 0 · · · 0 0

0 −λ
2

θ + λ
3
+Θ+ α −Θ− 2α · · · 0 0

0 0 −λ
3

θ + λ
4
+Θ+ 2α · · · 0 0

0
...

...
...

...
...

0 0 0 0 · · · − λ
N

θ +Θ
+(N − 1)α


.

and Θ = (1− χ)µ.
The matrix ω can be easily transformed into a tridiagonal form by a diagonal
matrix.

D =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dN+1
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with
d1 = 1,

dr =

r−1∏
k=1

√
k

(
Θ+ (k − 1)α

λ

)k

and we get
θI+ B = DωD−1,

where,

B =



λ −
√
λΘ 0 0 · · ·

−
√
λΘ λ

2 +Θ −
√

λ(Θ+α)
2 0 · · ·

0 −
√

λ(Θ+α)
2

λ
3 +Θ+ α −

√
λ(Θ+2α)

3 · · ·

0 0 −
√

λ(Θ+2α)
3

λ
4 +Θ+ 2α · · ·

0
...

...
...

...
0 0 0 0 · · ·
0 0 0 0 · · ·

.

0 0
0 0
0 0
...

λ
N +Θ+ (N − 2)α −

√
λ(Θ+(N−1)α)

N

−
√

λ(Θ+(N−1)α)
N Θ+ (N − 1)α


As the symmetric diagonal matrix elements are the same as that of ω and

non-diagonal elements in the rth row being
√
λ((Θ) + α(r − 2))/(r − 1)

and
√
λ((Θ) + α(r − 1))/r respectively. Considering ωr(θ) and Br(θ) as

square submatrices of size r extracted from the bottom right and top left of
the matrix ω respectively, where Pr(θ) and Qr(θ) denote their determinants,
both Pr(θ) and Qr(θ) adhere to the specified difference equations.

Pr(θ)−
(
θ +

λ

N − r + 2
+Θ+ (N − r)α

)
Pr−1(θ)

+

(
λ(Θ + (N − r + 1)α)

N − r + 2

)
Pr−2(θ) = 0
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Qr(θ)−
(
θ +

λ

r
+Θ+ (r − 2)α

)
Qr−1(θ)

+

(
λ(Θ + (r − 2)α)

r − 1

)
Qr−2(θ) = 0, 2 ≤ r ≤ N,

with the initial conditions

P0(θ) = 1 = Q0(θ),

P1(θ) = θ +Θ+ (N − 1)α, Q1(θ) = θ + λ.

It can easily be shown that

Cst(θ) =

√
(λ(Θ + (s− 2)α))t−s

s(s− 1) · · · t
PN−t(θ)Qs(θ)

|θI + B|
, s < t

=
PN−s(θ)Qs(θ)

|θI + B|
, s = t

=

√
(λ(Θ + (t− 2)α))s−t

t(t+ 1) · · · s
PN−s(θ)Qt(θ)

|θI + B|
, s > t,

where
(Cst ) = (θI + B)−1

Using [18], Eqn (7) can be written as

Ψ = ω−1δ

= D−1(θI+ B)−1Dδ,

ψn(θ) =
N∑
j=0

d−1
n djCnj(θ)Pj(0)

= d−1
n diCni(θ).

Also,

d−1
n di =

√
(Θ + (n− 1)α)i−nn(n+ 1) · · · i

λi−n
, n < i

= 1, n = i

=

√
λn−i

i(i+ 1) · · ·n(Θ + (i− 1)α)n−i
, n > i,
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so we obtain

ψn(θ) =
√

[(Θ + (n− 1)α)((Θ + (n− 2)α)]i−n
PN−i(θ)Qn(θ)

|θI + B|
, n < i

=
PN−n(θ)Qn(θ)

|θI + B|
, n = i

=
λn−i

i(i+ 1) · · ·n

√[
Θ+ (i− 2)α

Θ+ (i− 1)α

]n−iPN−n(θ)Qi(θ)

|θI + B|
,

n > i, 0 ≤ i, n ≤ N

The characteristic value of the matrix B are real distinct and non-negative
[19](one characteristic value being zero) .

Let αm(m = 0, 1, 2, . . . , N) be an characteristic value of B with α0 = 0,
then we can write

|θI+ B| = θ

N∏
m=1

(θ + αm) .

A partial fraction expansion is then performed to give

ψn(θ) =
Rn

θ
+

N∑
m=i

ωnm

θ + αm
(8)

where

Rn =
λn

n!
∏n

g=1(Θ + (g − 1)α)

{
1 +

N∑
k=1

λk

k!
∏n

g=1(Θ + (k − 1)α)

}−1

,

n = 0, 1, 2, . . . , N,

ωnm =
√

[(Θ + (n− 1)α)(Θ + (n− 2)α)]i−n

× PN−i (−αm)Qn (−αm)

(−αm)
∏N

k=1,k ̸=m (αk − αm)
, 0 ≤ n ≤ i,

= λn−i

√[
Θ+ (i− 2)α

Θ+ (i− 1)α

]n−i PN−m (−αm)Qi (−αm)

(−αm)
∏N

k=1,k ̸=m (αk − αm)
,

i < n ≤ N.
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Now inverting Equation 8, we get

πn(t) = Rn +

N∑
m=1

ωnme−αmt.

3 Performance Measure

Systematic observations are crucial for understanding and improving the
performance of systems, including queueing systems. The expected value of
the number of customers in a queueing system is a key metric that provides
insights into the system’s behavior. This metric is often referred to as the
“average queue length” or “average number of customers in the system.”

• If X(t) represents the random variable for queue length and E[X(t)]
denotes its expected value, then

E(X(t)) =

N∑
i=1

i ∗ πi +
r∑

i=1

i

N∑
m=1

ωi∗me
−αmt

+
N∑

i=r+1

i
N∑

m=1

ωi∗me
−αmt, n ≤ r ≤ N (9)

• The throughput of the system is defined as the average number of served
customers at time t and is expected to be

τ(t) =
N∑
i=1

µπi (10)

• The expected delay time is defined as the quotient of the expected
number of customers in the system and the system’s throughput at time
t.

Ed(t) =
En(t)

τ(t)
(11)

4 Numerical Illustration

The numerical results from various experiments conducted using MAPLE
software on a computing system with hardware configuration, including an
Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz processor and 16.0 GB of
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RAM, are summarized in Figures 1, 2, and 3. Analytical methods were
used to derive explicit expressions for the transient system size probabilities,
and hence related expectation. However, for practical insights, it is essential
to visually represent these probabilities. Therefore, numerical presentations
are provided to enhance the understanding of the transient system size
probabilities in real-world scenarios.

Figure 1 illustrates the time-dependent system size probabilities for λ =
2.1, µ = 5, α = 0.4, (1−χ) = 0.8, and a system capacity ofN = 20. As time
(t) increases, the transient-state probabilities tend to stabilize, indicating a
convergence to the steady-state. These variations validate the effectiveness of
our novel approach for determining the state probabilities.

In Figure 1, the time-dependent system size probabilities are plotted for
N = 20, λ = 3, µ = 7, α = 0.5, and (1 − χ) = 0.07. The evident trend of
the state probabilities converging to a steady state is observed here, validating
the proposed computational approach.

Figure 1 System size probabilities over time.

Figure 2 System size probabilities over time.
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Figure 3 System size probabilities over time

In Figure 3 the time-dependent system size probabilities are plotted for
N = 20, λ = 7, µ = 3, α = 0.5, and (1 − χ) = 0.07. This graph
also the results indicate that as the arrival rate λ increases, the system tends
to be more congested, leading to higher probabilities of larger queue sizes.
Conversely, increasing the service rate µ results in a faster processing of
requests, reducing the queue size probabilities. The impact of discouraged
arrivals, represented by the parameter α, is evident in the probabilities,
especially as it approaches unity. The reneging parameter (1− χ) also plays
a significant role, affecting the overall queue dynamics.

5 Real Life Applications of This Model

In the realm of web server performance analysis, the single-server finite
capacity queueing model proves to be exceptionally valuable for evaluating
and enhancing the responsiveness of web servers. This model applies to
scenarios where a web server receives a continuous stream of requests from
users, each request varying in complexity. The server, however, can only
process a limited number of requests concurrently, denoted as ‘N ’. In this
intricate environment, several key factors influence the system:

• Users may arrive at the server at different rates, and their experience
can be affected by congestion or delays, which can result in discouraged
arrivals.

• Users may abandon their requests (reneging) if they perceive long
waiting times.

• Feedback mechanisms may be implemented to dynamically adjust
server resources based on traffic patterns and user demand.
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The M/M/1/N queueing model can be tailored to encompass these aspects
for the analysis and enhancement of web server performance. It offers a
systematic approach for modeling the arrival rate, service rate, and limitations
on queue size. Discouraged arrivals can be accounted for by modifying the
arrival rate to reflect factors influencing user satisfaction or server load.
Reneging can be modeled as a probability, indicating the probability of users
leaving the queue prematurely. Feedback mechanisms can be included to
mimic dynamic adjustments in resource allocation in real-time.

6 Conclusion

This paper presents a novel and efficient computational technique for analyz-
ing M/M/1/N queues with feedback, discouraged arrivals, and reneging,
particularly under the first-come, first-served (FCFS) discipline. We have
derived explicit transient state probabilities, represented using symmetric
tridiagonal matrix eigenvalues, emphasizing the model’s significance. The
validity of our approach is confirmed through numerical demonstrations,
establishing its accuracy and providing practical insights for optimizing
resource allocation in queueing systems. Our research is significant as it
bridges the gap between theory and application, advancing queueing theory.
By incorporating feedback mechanisms, addressing discouraged arrivals, and
considering reneging scenarios, our model offers a more realistic represen-
tation of real-world queueing systems, enhancing its applicability to diverse
service delivery environments.

7 Further Scope

The research conducted on M/M/1/N queues with feedback, discour-
aged arrivals, and reneging lays a robust foundation for future explo-
ration. To expand this work, fellow researchers could consider incorporating
dynamic feedback mechanisms to enable adaptability to changing condi-
tions. Additionally, extending the model to multi-class queueing systems
could enhance its applicability by accommodating diverse customer char-
acteristics. Furthermore, developing optimization algorithms based on the
derived transient state probabilities could lead to real-time adjustments in
resource allocation, particularly in response to varying demand patterns.
These avenues offer promising directions for further research and application
in queueing theory.
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