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Abstract

This paper presents a novel analysis of a standby redundancy system under
real conditions. The study considers the presence of a real commutator
and failure detector in the system. Through a comprehensive failure mode
analysis, mathematical relationships between different module characteristics
are established. The results of investigation provide valuable insights for
manufacturers, allowing them to evaluate the Mean Time To Failure (MTTF)
of the system during the design phase and make informed decisions regarding
the selection of failure rates for the detector and commutator. Overall, this
work contributes to the effective operation of standby redundancy systems in
practical applications.
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Notations
SR : Standby Redundancy
PD : Principal device
SD : Standby device
MTTF : Mean Time To Failure
T : Mean Time To Failure of PD and SD
R(t) : Survivor function of PD and SD
f(t) : Failure density function of PD and SD
F (t) : Failure distribution function of PD and SD
λ : Failure rate of PD and SD
DF : Detector of Failure
Fd(t) : Failure distribution function of detector
λd : Failure rate of detector
Rc : Reliability of commutator
λc : Failure rate of commutator
∩ : Symbol of events intersection
C : Logical complement of C
SRC : Synthetic Reliability of Commutator

1 Introduction

Reliability is a fundamental concept in engineering and refers to the ability
of a system, product, or component to perform its intended function without
failure over a specified period of time and under specified conditions. It is a
critical factor in ensuring the dependability and trustworthiness of various
systems, ranging from everyday consumer products to complex industrial
systems. Reliability is essential because failures can lead to various undesir-
able consequences, including financial losses, damage to reputation, safety
hazards, and disruptions to operations. Therefore, engineers and design-
ers strive to develop reliable systems that meet the required performance
standards and maintain their functionality over their intended lifespan [1–3].

Reliability consideration is very much a part of the design stage of a
system. However, it is beneficial to first consider the main ways that the
reliability of a system can be modified. There are two main ways in which
reliability can be affected. The first relates to quality, and the second to
redundancy [4–7].

Redundancy involves incorporating duplicate components or systems
within a larger system to provide backup or alternative pathways in case
of failure. Redundancy can improve system reliability by reducing the
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likelihood and impact of failures. Redundancy is of two types: active and
standby [8–10].

Active redundancy involves the simultaneous operation of redundant
components or systems, where they share the load and provide immediate
backup in case of failure. Active redundancy can help maintain system
functionality without interruption [10–14].

Standby redundancy, also known as cold redundancy, involves detection
mechanisms and switching, redundant components or systems that are on
standby and activated only when the primary component or system fails
[15–18].

The detection mechanism in the standby redundancy is responsible for
monitoring the operational status of the primary component and identifying
when it fails. It can employ various techniques, such as sensors, monitoring
circuits, or feedback signals. However, the detection mechanism may not
always provide immediate or foolproof detection, and there can be instances
of false positives or false negatives [19–21].

The switching mechanism in the standby redundancy is responsible for
activating the redundant component upon detection of a failure in the primary
component. It can involve mechanical, electrical, or software-based switching
mechanism. The switching process may introduce a certain delay or tran-
sient period during the switchover, which can impact the system’s reliability
[8, 9].

In standby redundancy, detection of the failed component and activation
of the redundant one are both performed by a detection and switching
mechanism not necessarily perfect. However, these mechanisms may not be
perfect and can introduce some degree of uncertainty or delay in detecting and
switching to the redundant component. This can impact the overall reliability
of the standby redundancy system [9, 22, 23].

The reliability of the detection and switching mechanism is a critical
aspect of standby redundancy systems. The probability of correctly detecting
a failure and switching to the redundant component when needed is a key
factor in determining the overall reliability of the system. This reliability
can be influenced by factors such as the design and quality of the detection
and switching mechanisms, the effectiveness of monitoring and feedback
systems, and the response time of the switching process [20, 24].

Lots of work has been done by many researchers in the area of reliability,
and in particular, standby redundancy. Sharifi and Pedram [7] derived the
formula to calculate the reliability of the system with an active redundancy
strategy using the Markov process when the components’ life have a Weibull
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distribution. Jasdev B. and Mohit K. [5] have analyzed the active standby
redundancy when initially both similar units are observed to be in an operative
situation. Chao G. and Xing M. [8] have studied the stability of a standby
system with an unreliable server and switching failure, where both the
time-to-repair of units and the time-to-repair of the server follow general dis-
tributions. Dong Y. Chia H. [9] has involved the evaluation of the availability
and reliability of a repairable system containing warm standby components
and undergoing switching failure. Linmin H. and Zhuoxin B. [17] have
studied active redundancy under the assumption that the switch is completely
reliable. Kuo H. and Chia H. [20] have analyzed the case when the primary
and standby virtual machines are both assumed to be unreliable with warm
standbys and switching failure. Ying L. and Jau Ch. [25] have analyzed the
characteristics of a redundant repairable system when switching to standby
fails, and times to failure and times to repair of the operating units are
assumed to follow exponential distributions.

Most of the above-mentioned studies and also [9, 10, 19, 23, 25] are all
about the reliability of standby redundancy systems. They are based on purely
theoretical considerations; they assume the case where the switch and failure
detector are ideal [24, 26–29]. In reality, these two devices can fail either in
the standby phase or during the switching phase.

On the other hand, the assumption of a constant failure rate (exponential
distribution) implies that the failure probability remains constant over time
and is not dependent on the time since the last failure. This simplifies the
calculations of reliability and availability for the active redundancy system,
as the exponential distribution has well-defined mathematical properties
[5, 8, 15]. This article focuses on standby redundancy in real-world conditions
where the commutator and detector of failure are both not perfect but are
characterized by a constant failure rate during their operation. The present
paper focuses on the problem of redundancy in the real case, where the fault
detector and the switch are considered not perfect but real, characterized by
a known failure rate.

2 Active Redundancy System

In general, a standby redundancy system is composed of a primary device
(PD), a standby device (SD), a commutator (C), and a failure detector, as
shown in Figure 1.

The primary device (PD) and the standby device (SD) are characterized,
respectively, by a constant failure rate λ. The commutator is characterized by
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Standby Device (SD) 

Failure Detector (FD) Commutator 

Figure 1 Structure of standby redundancy system.
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Figure 2 Failure modes of the considering system.

a constant switching probability Rc throughout the entire operating period,
while the failure detector is characterized by a constant failure rate λd.

3 Mathematical Analysis of Failure Modes

The analysis of failure modes in this system leads us to distinguish the
following three events, as indicated in Figure 2, where:

– symbol denotes the intersection of events and
– symbol represents the logical complement of event X.

Event 1

• The principal device fails within the time interval (t, t + dt),
• The failure detector fails to detect the failure of the principal device.



362 H. A. Guesmi and S. O. Madbouly

Therefore, the probability of this event is:

fp(t)Fd(t) (1)

Event 2

• The principal device has failed within the time interval dt,
• The failure detector detects the failure.
• However, the commutator is not working.

In this case, the probability of this event is:

fp(t)Rd(t)Fc (2)

Event 3

• The principal device has failed within the time interval (τ , τ + d τ ) with
τ < t.

• The failure detector detects the failure.
• The commutator is working.
• However, the standby device is not operational, having failed during the

standby phase.

In this case, the probability of this event is:

fp(τ)Rd(τ)Rcfs(t− τ) (3)

Since the three previous events are independent of each other, the failure
density function of the standby redundancy system is given by:

fSR(t) = fp(t)Fd(t) + fp(t)Rd(t)Fc +

∫ t

0
Rcfp(τ)Rd(τ)fs(t− τ)dτ

(4)

Let’s assume now that the failures of the primary device and the auxiliary
device follow the exponential distribution with a constant failure rate λ.

Fp(t) = 1− e−λt (5)

and the failure density function of PD and SD are:

fp(t) = fa(t) =
dFp(t)

dt
= λe−λt (6)

where λ is the constant failure rate for both components (PD and SD).
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Let’s also assume that the failure distribution function of the failure
detector, denoted as Fd(t), also follows the exponential distribution with a
constant failure rate λd. In this case, the failure distribution function for the
failure detector can be expressed as:

Fd(t) = 1− eλdt (7)

where λd is the failure rate of the failure detector.
Considering also that the switch is characterized by a constant switching

probability Rc. In this case, the failure density function of the considered
system can be expressed as follows:

fSR(t) = λe−λt

(
1 +Rc

λ

λd
−Rc

(
1 +

λ

λd

)
e−λdt

)
(8)

After integration expression (8) and simplification, the reliability function
of this system can be expressed by the following Equation (9).

RSR(t) =

∫ ∞

t
fSR(t)dt =

(
1 +

λ

λd
Rc

)
e−λt −Rc

(
λ

λd

)
e
−λdt

(
1+ λ

λd

)
(9)

This last relationship is extremely important from a practical point of
view, especially when it comes to evaluating the level of the reliability during
the design phase of a strategic system where the consequences of a failure can
be catastrophic. The role of the manufacturer and designer of such a system
is to set a maximum margin for the failure rate, particularly for the failure
detector, to ensure that the considered system meets the required reliability
requirements.

Generally, these requirements are expressed in two forms:

– Either in terms of the mean time to failure MTTF or,
– In terms of the probability of functioning properly until a specific time t.

4 Reliability Requirement Assurance in Terms of MTTF

In this paper, our focus is limited to the case where the reliability require-
ment assurance is expressed specifically in terms of MTTF. Equation (7)
provides the expression for the mean time to failure of the active redundancy
system TAR.

TSR =

∫ ∞

0
RSR(t)dt (10)
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Figure 3 Normalized average time characteristics TSR/T as a function of k = log
(

λ
λd

)
with

Rc as a parameter.

Which can be formulated using Equation (9) and after integration and
simplification, by the following relation:

TSR = T

(
1 +Rc

(
k

k + 1

))
(11)

Where T = 1/λ represents the MTTF of the primary device, and k = λ
λd

.
The normalized mean time TSR/T of the standby redundancy system,

as a function of the ratio of the failure rate of the primary device λ to the
failure rate of the failure detector λd, with the commutator reliability Rc as a
parameter, is presented in Figure 3.

The normalized mean time TSR/T of the standby redundancy system,
as a function of the ratio of the failure rate of the primary device λ to the
failure rate of the failure detector λd, with the commutator reliability Rc as a
parameter, is presented in Figure 3.

The family of curves in Figure 3 is characterized by the existence of a
certain level beyond which the reduction in the failure rate of the detec-
tor compared to the failure rate of the principal device has no significant
influence on improving the mean time to failure of the standby redundancy
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system. In other words, for a given level of Rc, the detector of failure is
considered ideal when its failure rate λd is approximately 100 times smaller
than the failure rate of the primary device λ.

5 Synthetic Reliability of Commutator (SRC)

In practice, the reliability of the commutator Rc is often not constant but
decreases over time during system operation. According to the principle
of on-demand operation of the commutator, the random variable t, which
determines the life time of PD, also represents the waiting time for operation,
as at time t, PD will be switched Off and SD will be switched ON with a
probability equal to:

Rc(t) = e−λct (12)

Where λc represents the failure rate of commutator.
This paper presents a novel indicator called Synthetic Reliability of

Commutator (SRC), represented as Rc. It is defined as the average probability
of correct operation of the commutator on demand over all possible operating
times until the failure of PD:

Rc =

∫ ∞

0
Rc(t)fp(t)dt (13)

By substituting Equations (6) and (12) into expression (13) and integrat-
ing, we obtain:

Rc =
1

1 + λc
λ

(14)

The derived expression Rc, presented as a function of the ratio of the
commutator failure rate λc to the failure rate of the standby device λ, has an
interesting physical interpretation.

Since
lim

λc
λ
→∞

Rc → 1 (15)

So, a real commutator approaches ideal behavior when:

– The failure rate of the commutator is equal to zero, λc = 0 (i)
– The failure rate of the commutator λc is relatively small compared to the

failure rate of the standby device λc ≪ λ (ii).

The condition (i), mentioned in [1–3], is commonly considered as the
criterion for an ideal commutator.
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Figure 4 Normalized Bathtub curve-typical shape of the failure rate.

On the other side, the condition (ii) holds special significance in practice,
as it indicates that the ideality of a commutator is a relative concept and is
dependent on the mutual relationship between the commutator failure rate λc

and the failure rate of the standby device λ.
By transforming the relationship (14), we obtain the failure rate of the

commutator:

λc = λ

(
1−Rc

Rc

)
(16)

So far, the exact relationship between λc and λ is not fully determined, as
indicated by Equation (16), where the ratio λc

λ is dependent on the reliability
of the commutator Rc. On the other side, Rc cannot take any arbitrary value
but is determined based on specific reliability requirements.

6 Standby Redundancy in General Case

In fact, the general shape of the failure rate function of any technical device
follows a bathtub curve, which can be primarily divided into three different
intervals:

– Infant mortality interval corresponds to failure of “week” items,
– Useful life interval corresponds to externally induced failures and
– Wear-out interval corresponds to wear out failures of “good” items.

The period where the failure rate starts to increase, known as the wear-out
period. Users of such systems can mitigate the increase in failure rate through
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systematic controls and the implementation of regular preventive mainte-
nance policies. By doing so, they can prolong the useful life of the system
and maintain a relatively constant failure rate.

The period of infant mortality, characterized by a decreasing hazard rate.
In most cases, this decrease is rapid and stabilizes to a relatively constant
failure rate. This is often observed in electronic components and systems.
Manufacturers of electronic systems typically eliminate this rapid decrease
in failure rate by subjecting the components to rigorous testing involving
extreme conditions of temperature, pressure, humidity, and vibrations. This
process helps eliminate weak components from the market, resulting in
products that exhibit a relatively constant failure rate over a long period of
operation.

On the other hand, obtaining reliability characteristics for standby redun-
dancy systems presents analytical challenges (look at Equations: (4), (9),
(10), (13)), especially when the constituent components have failure rates
that deviate from the exponential model and instead follow the Weibull
distribution with a shape parameter “b”.

R(t) = e−(
t
a)

b

(17)

A value of (b < 1) corresponds to a decreasing failure rate, while a value
of (b > 1) corresponds to an increasing failure rate, (b = 1) corresponds to a
constant failure rate.

At this stage, we can consider the primary Principal device and the
standby device as obeying the Weibull distribution, while the switch and
failure detector follow the exponential distribution. If this is not the case,
analytical resolution of the standby redundancy problem becomes infeasible.
In such situations, statistical simulation methods like Monte Carlo simulation
can be employed.

7 Conclusions and Future Work

This article presents a comprehensive investigation into the implications of
non-ideal components within standby redundancy systems. The study focuses
on the challenges encountered during the standby and switching phases,
including switching delays, transient periods, switching errors, false alarms,
and missed failures.

In terms of reliability requirements expressed as the mean time to failure,
the research findings highlight the significance of parameter selection for the
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failure detector and commutator in achieving optimal system performance.
Specifically, it is observed that a failure detector with a substantially lower
failure rate (λd) compared to the primary device failure rate (λ) is essential.
Empirically, a ratio of λ/λd that is at least 100 times smaller is recommended
to attain an ideal active redundancy system.

Furthermore, the concept of Synthetic Reliability of the Commutator is
introduced as a metric for evaluating the performance of real commutators.
The analysis reveals that a commutator can be considered to operate with
near-perfection when the ratio of the commutator failure rate (λc) to the
principal device failure rate (λ) is significantly smaller than 1.

Overall, these research findings contribute to a deeper understanding of
the implications of non-ideal components in standby redundancy systems.
The insights gained from this study provide valuable guidelines for param-
eter selection and introduce a novel metric to assess the performance of
commutators in real-world scenarios.

As a future work in this paper, we can consider studying the general case
where the failure of the switch, failure detector, as well the primary and aux-

iliary devices, is not constant but follows the Weibull model R(t) = e−( t
a
)
b

.
This model, with its shape parameter “b” allows distinguishing between the
infant mortality period (b < 1) and the wear-out period (b > 1). This approach
can be considered very close to reality and can be the subject of extending
this paper to the general case where the failure rate of all active redundancy
devices is no longer constant but variable over time.
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