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Abstract

This paper presents a Monte Carlo-based algorithm for predicting the Mean
Time to Failure (MTTF) of complex structures, specifically a “Bridge-type
network” with five elements exhibiting various failure distributions. The pro-
posed algorithm involves generating element lifetimes through the inverse of
their failure distribution functions, providing a robust approach to evaluating
MTTF for systems beyond traditional series or parallel configurations.

The approach was implemented in MATLAB, and the software underwent
extensive testing across different scenarios, including both exponential and
Weibull distributions. The results demonstrated the method’s accuracy and its
capability to handle diverse failure distributions with minimal error. This tool
offers reliability engineers a versatile solution for predicting and improving
the reliability of complex systems.

In summary, the proposed method and software significantly advance
the reliability assessment of intricate structures and offer a solid founda-
tion for further research and practical applications in the field of reliability
engineering.
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Notations

R(t) : Survivor function

f(t) : Failure density function

F(t) : Failure distribution function

Rsyst(t) : Survivor function of system

λi : Hazard rate of element i

MTTF : Mean time to failure

Tsyst : Mean time to failure of the system

N : Total number of simulation

n : Number of elements in the considered system

i : Label of component in the system: i = 1, 2,. . . ,n

j : Label of Paths in the system j = 1,2,. . . ,m

k : Label of iteration in the simulation k = 1, 2,. . . ,N

tki : Lifetime of element “i” following the kth system failure

Pij : Minimal path j containing the elements i

Lk
ij : Lifetime of minimal path “j” relative to element “i” in the

kth iteration

qk : Lifetime of the system

1 Introduction

The Mean Time to Failure MTTF represents a commonly used parameter
to evaluate the reliability of non-repairable systems [1–7]. Assessing this
parameter is an important step in project establishment, starting from the
design phase and throughout their future development [8–13].

The literature regarding this topic is extensive, but it mainly consists of
purely theoretical considerations, primarily based on the assumption that the
studied structures are either in series or parallel [14–17]. Therefore, obtaining
the MTTF poses no difficulty [18–27].

However, in reality, technical systems are often complex and composed
of multiple components, leading to a more intricate relationship between the
system’s reliability and its constituent elements [28–32]. Consequently, eval-
uating the MTTF requires a deeper understanding of two key aspects. Firstly,
one must comprehend the topological reliability relationship between the sys-
tem and its constituent elements. Secondly, a comprehensive understanding
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of the reliability characteristics of the constituent elements, specifically their
reliability functions, is necessary [33, 35].

The topological reliability relationship refers to the interdependencies
between the system and its components, taking into account their physi-
cal arrangement, connectivity, redundancy, and fault tolerance mechanisms.
These factors influence the overall reliability of the system and its MTTF.
Understanding the topological reliability relationship becomes particularly
important as systems become more complex, involving intricate configura-
tions and interactions among components.

Additionally, the reliability functions of the constituent elements play a
crucial role in determining the overall reliability of the system. Reliability
functions describe the probability distribution of the time until failure for each
component. These functions capture important characteristics such as failure
rates, failure modes, and time-dependent behavior. Accurate knowledge of
these reliability functions is essential for estimating and predicting the MTTF
of the system accurately.

Considering the complexity of technical systems and the interplay
between their topological reliability relationship and the reliability func-
tions of their components, determining the MTTF becomes a challenging
task. It requires a multidisciplinary approach that combines expertise in
system design, reliability engineering, probabilistic modeling, and statistical
analysis. Researchers and practitioners must employ advanced analytical
techniques, simulation methods, and optimization algorithms to accurately
assess the MTTF and ensure the reliability of complex systems [36, 39].

This paper addresses the challenges of evaluating the MTTF of a com-
plex technical system. It explores methodologies, techniques, and tools for
modelling topological reliability relationships and estimating the reliability
functions of constituent elements. A bridge-type network configuration is
presented as a case study to illustrate the effectiveness of these approaches.
The insights provided will benefit researchers, engineers, and decision-
makers involved in designing and maintaining reliable systems. The findings
contribute to improving system performance, minimizing downtime, and
optimizing resource allocation, enhancing overall reliability and project
success.

2 Evaluation of MTTF for the Basic Structures

For any given element, the MTTF can be evaluated by integrating the survivor
function R(t) between the limits (0,∞).
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Therefore, the MTTF is expressed by the following relationship.

T =

∫ ∞

0
R(t)dt (1)

Where: R(t) denotes the survivor function of a single element.
In the case of a system composed of multiple elements, the MTTF for the

system can be determined by

Tsyst =

∫ ∞

0
Rsyst(t)dt (2)

Where: Rsyst(t) represents the survivor function of the considered
system.

According to Equation (2), the determination of the MTTF of a system
requires:

• Knowing the survivor function of the system Rsyst(t), which depends
on the survivor functions of its constituent elements.

• Analytically solving Equation (2).

2.1 Series Structure

In the case of a system composed of two elements arranged in series, as
illustrated in Figure 1, where each element is characterized by a constant
failure rate λ1 and λ2 the survivor functions of the individual elements are
expressed as follows:

R1(t) = e−λ1t and R2(t) = e−λ2t (3)

In a series configuration, the survivor of the entire system can be deter-
mined by multiplying the survivor functions of the individual components as
follows.

Rsys(t) = R1(t)R2(t) (4)

 

                          
  

Figure 1 Series structure with 2 elements.
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Figure 2 Series structure with n-elements.

Hence, the MTTF of the system can be obtained by integrating the
survivor function over time:

MTTF = Tsyst =

∫ ∞

0
Rsyst(t)dt =

∫ ∞

0
R1(t)R2(t)

=

∫ ∞

0
e−(λ1+λ2)tdt =

1

λ1 + λ2
(5)

In the general case where the system is composed of n elements in series
as shown in Figure 2.

With each element characterized by a constant failure rate λi, the survivor
function of the series structure can be expressed as the product of the survivor
function of the individual elements, and the MTTF of the system can then be
calculated by integrating the survivor function over time

Tsyst =

∫ ∞

0
Rsyst(t)dt =

∫ ∞

0

n∏
i=1

Ri(t)dt

=

∫ ∞

0
e−

∑n
i=1 λitdt =

1∑n
i=1 λi

(6)

If the failure rate is not constant and follows a Weibull distribution, as
given by the following equation:

R(t) = e−( t
a
)
b

(7)

Then the MTTF will be expressed by:

T =

∫ ∞

0
R(t)dt =

∫ ∞

0
e−( t

a
)
b

dt = aΓ

(
1

b
+ 1

)
(8)

Where

R(t): represents the survivor function of the element,
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a: scale parameter,
b: shape parameter.
Γ(n): is the gamma function, given by a special table and defined for
1 ≤ n ≤ 2 as:

Γ(n) =

∫ ∞

0
xn−1e−xdx (9)

The MTTF of a series structure composed of two elements can be
determined as follows:

Tsyst =

∫ ∞

0
e
−[( t

a1
)
b1+( t

a2
)
b2 ]
dt (10)

2.2 Parallel Structure

The survivor function of a parallel system with two elements, as shown in
Figure 3, is given by:

Rsyst(t) = 1− (1− R1(t))(1− R2(t)) (11)

where R1(t), R2(t) represents respectively the survivor function of first and
second element.

Consider now the particular case of the exponential distribution. If the
elements have a constant failure rates, λ1 and λ2 respectively, then the MTTF
of such an arrangement is given by

Tsyst =

∫ ∞

0
(1− (1− e−λ1t)(1− e−λ2t))dt =

1

λ1
+

1

λ2
− 1

λ1 + λ2
(12)

In the general case where the system is composed of n elements in
parallel, as shown in Figure 4, the survivor function of the system can be
expressed by the Equation (13):

Rsyst(t) = 1−
n∏

i=1

(1− Ri(t)) (13)

       

 

Figure 3 Parallel structure with 2-elements.
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Figure 4 Parallel structure with n-elements.

with Ri(t) = e−λit representing the survivor function of i-th constituent
element in the system, therefore the MTTF of such an arrangement is given by

Tsyst =

∫ ∞

0
(1−

n∏
i=1

(1− e−λit))dt (14)

The principle used to derive Equation (12) can also be applied to a parallel
system consisting of any number of elements. Such a derivation would show
that:

Tsyst =

(
1

λ1
+

1

λ2
+ · · ·+ 1

λn

)
−
(

1

λ1 + λ2
+

1

λ1 + λ3
+ · · ·+ 1

i + λj
+ · · ·

)
+

(
1

λ1 + λ2 + λ3
+

1

λ1 + λ2 + λ4
+ · · ·

+
1

λi + λj + λk
+ · · ·

)
· · ·+ (−1)n+1 1∑n

i=1 λi
(15)

Formula (5) represents the MTTF for a two-element series system, while
Formula (12) pertains to the MTTF for a two-elements parallel system. In
these cases, the failure distribution of the elements is assumed to be exponen-
tial, which simplifies the calculations. However, when the failure distribution
of the elements deviates from the exponential distribution, obtaining the
MTTF becomes more analytically challenging. It may be necessary to employ
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advanced analytical methods such simulation techniques based on Monte
Carlo Method to obtain an accurate estimate of the MTTF in such systems.

3 Studied Structure (Bridge-Type Network)

Evaluating the reliability characteristics of a complex system composed of
a large number of elements can indeed be challenging. In many industrial
products, the components are interconnected in intricate ways, forming com-
plex structures that go beyond simple series or parallel configurations. These
structures often involve a combination of series and parallel elements with
non-constant failure rates, making reliability analysis more complex.

The structure discussed in this paper is a complex system composed
of multiple components. It consists of a five distinct elements bridge-type
network as shown in Figure 5 with distributions that follow the Weibull
distribution with different parameters a, b as follows.

Ri(t) = e
−(

ti
ai

)
bi

(16)

or by the distribution function of failure given by:

Fi(t) = 1− Ri(t) = 1− e
−(

ti
ai

)
bi

(17)

Where i represents the element number, with i = 1, 2, 3, 4, 5, and

ai: represents the parameter of scale
bi: represents the parameter of form

None of the components in the network shown in Figure 5 are connected
in a simple series or parallel arrangement. Therefore, alternative techniques
are required to analyze and solve the network. Several methods are commonly

4 

5 2 

1 

3 

Figure 5 Bridge-type network.
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Figure 6 Set of minimal paths of Figure 5.

used for this purpose, as mentioned, including the conditional probabil-
ity approach, cut and tie set analysis, tree diagrams, logic diagrams, and
connection matrix techniques.

Many of the advanced techniques mentioned, involve transforming the
original network structure into an equivalent structure consisting of series
and parallel components or paths. These transformations make the analysis
more manageable and allow the application of well-established formulas and
techniques for series and parallel configurations.

In this paper, the Tie Set method is used to evaluate the MTTF of a given
system. Here, tie sets are defined as minimal paths of the system, meaning
they are sets of system components connected in series. However, for the
entire system to fail, all tie sets must fail simultaneously. Thus, the tie sets
are effectively connected in parallel.

By identifying these possible combinations of available elements, we
can determine the different paths or configurations that ensure the system’s
mission is accomplished successfully. This analysis leads us to decompose
the structure shown in Figure 5 in terms of minimal paths to fulfilling the
mission imposed by the system up to time t as illustrated in Figure 6, either
by the availability of:

– Element 1 and 4, or
– Element 1, 3, and 5, or
– Element 2 and 5, or
– Element 2, 3, and 4.

Therefore, we can express the reliability function of this system as follows

Rsyst(t) ∼= R1(t)R4(t) + R1(t)R3(t)R5(t) + R2(t)R5(t)

+ R2(t)R3(t)R4(t) (18)
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4 MTTF Evaluation Principle of the Studied Structure

The evaluation of the MTTF using the statistical simulation method is
primarily based on eight steps according to the algorithm shown in Figure 7:

Step 1: For a given structure, it is necessary to define first the set Pij of min-
imal paths “j” containing the elements “i” These minimal paths represent the
different combinations of elements that contribute to the overall functionality
of the structure.

In our case, this set is composed of four minimal paths as illustrated in
Table 1, which are:

P11{1, 4},P12{1, 3, 5}, P21{2, 5}, P22{2, 3, 4}

Step 2: Initialize the simulation (k = 1) and manage the initial generated
lifetime of each element “i” in the system according to its failure distribution.
In the case of the Weibull distribution with two parameters (ai, bi), the
lifetimes are obtained by inverting the distribution given by expression (17):

tki = aiexp

[
1

bi
In(−In(1− Fi))

]
(19)

and in case of exponential distribution with parameter λi, this lifetime can be
generated by:

tki =

(
− 1

λi
In(1−Fi)

)
(20)

Where Fi represents a random variable managed from the interval (0,1).

Step 3: Determine the lifetime Lk
ij of each path “j” relative to element

“i,” considering that each minimal path represents a series structure of “i”
elements. This allows us to write:

Lk
ij = minj(t

k
i ) (21)

Step 4: Once we know the lifetime of each path Lk
ij, then the lifetime of the

whole system, qk, which consists of a set of parallel paths, can be determined
by the following expression.

qk = max(Lk
ij) (22)

Step 5: Generate a new simulation iteration by setting: k = k + 1 and
compare the actual iteration with the total imposed number of simulation.
At this stage, two cases are possible:
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Introduce the parameters of scale and shape of all elements 
ai and bi (in case of Weibull distribution)  

Generation of the initial failure time  for each element i. 

              

 k=k+1 

NO 

Determine the lifespan of each path j relative to element i 

 

Determine the lifespan of the system  

 

End simulation 

Start simulation 

k=1, N 

Define the set of all paths j 
containing the elements i 

YES 

 

Figure 7 Algorithm for evaluation the MTTF of considered system.
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Table 1 Set of minimal paths for the structure of Bridge-type network
Element i

Pij 1 2 3 4 5
Path j 1 {1,4} {2,5} {1,3,5} {1,4} {2,5}

2 {1,3,5} {2,3,4} {2,3,4} {2,3,4} {1,3,5}

k ≤ N. In that case we return to step 2 and generate a new lifetime for each
element and calculate the actual lifetime of the system at the kth iteration.
Otherwise, we proceed to the final step 6.

Step 6: Calculate the average lifetime of the system, which also represents
the Mean Time to failure according to the following formula:

MTTF =
qk

N
(23)

5 Simulation Results

The proposed algorithm and the developed software in MATLAB, used to
generate the MTTF, were tested and checked in different cases:

– 1 element with exponential and Weibull distribution
– 2 elements in series with exponential and Weibull distribution
– 2 elements in parallel with exponential and Weibull distribution
– Bridge configuration with exponential and Weibull distribution

Case of a single element with exponential distribution.
In this particular case, we generate N-times different time of failures using
Equation (20). In accordance with the equality MTTF = 1/λ, it is known
in advance the theoretical value of the MTTF, for example MTTF = 10 h
for λ = 0.1 fr/h. Figure 8(a), illustrates the predicted and theoretical MTTF
values for different values of λ (0.1, 0.2, 0.3, 0.4, 0.5) fr/h, showing that the
predicted MTTF values from the proposed algorithm converge and stabilize
towards the theoretical values after approximately N = 106 simulations.
Additionally, Figure 8(b) shows that the absolute percentage error diminishes
towards zero as the number of simulations increases.

Case of a single element with Weibull distribution with parameters.
Similar to the previous case, we generate N-times different time of failures
using Equation (19). In accordance with the equality (8): MTTF = aΓ( 1b +
1), it is known in advance the theoretical value of the MTTF for a given values
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a b 

Figure 8 (a, b) MTTF and Absolute Percentage Error for 1 element with exponential
distribution.

  
a b 

Figure 9 (a, b) MTTF and Absolute Percentage Error for 1 element with Weibull distribution
a = 10, 5 and b = 0.5.

of Weibull distribution parameters a and b. for example it is equal to 20 h for
a = 10 h and b = 0.5.

Figure 9(a), shows the predicted and theoretical values of the MTTF, it
can be seen that the predicted values of MTTF converge and stabilize towards
the theoretical values after N = 106 simulations. Additionally, Figure 9(b)
shows that the absolute percentage error decreases infinitely towards a value
approaching zero after N = 106 simulations.

Case of two elements in series with exponential distribution (λ1 = 0.01
fr/h, λ2 = 0.02 fr/h)
In this case, two elements in series with exponential distribution λ1 =
0.01 fr/h, λ2 = 0.02 fr/h are considered. We generate N times different time
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a b 

Figure 10 (a, b) MTTF and Absolute Percentage Error for 2 elements series with exponential
distribution.

of failures of each element in the series configuration using Equation (20).
In accordance with Equation (5), it is known in advance that the theoreti-
cally value of the MTTF is equal to 33.333 h. As shown in Figure 10(a),
the predicted MTTF converges and stabilizes towards the theoretical value
after around N = 106 simulations. Figure 10(b) shows that the absolute
percentage error decreases infinitely towards a value approaching zero after
N simulations.

Case of two elements in series with Weibull distribution (a1 = 10 h,
b1 = 0.5) and (a2 = 5 h, b2 = 0.5)
In this case, two elements in series with Weibull distribution of parameters
(a1 = 10 h, b1 = 0.5 & a2 = 5 h, b2 = 0.5) will be considered. We generate
N-times different time of failures of each element using Equation (19). In
accordance with the equality (10) we know in advance that the theoretically
value of the MTTF is equal to 3.5 h. As seen in Figure 11(a), the value of the
MTTF converges and stabilizes towards the theoretical value also after around
N = 106 simulations. Figure 11(b) shows that the absolute percentage error
decreases infinitely towards a value approaching zero after N simulations.

Case of two elements in parallel with exponential distribution (λ1 = 0.01
fr/h, λ2 = 0.05 fr/h)
For two elements in parallel with exponential distributions, we generate
N- times different time of failures of each element using Equation (20).
According to Equation (12), the theoretical value of the MTTF is known
in advance to be 103.333 h. Figure 12(a), shows the value of the predicted
MTTF converges and stabilizes towards the theoretical value after around
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  a b 

Figure 11 (a, b) MTTF and Absolute Percentage Error for 2 elements series with Weibull
distribution.

  a b

Figure 12 (a, b) MTTF and Absolute Percentage Error for two elements pin parallel with
exponential distribution λ1 = 0.01 fr/h, λ2 = 0.05 fr/h.

N = 106 simulations. Figure 12(b), demonstrates that the absolute percentage
error decreases continuously, approaching zero after N simulations.

Case of two elements parallel with Weibull distribution (a1 = 10 h,
b1 = 0.5) and (a2 = 5 h, b2 = 0.5)
In this case, we generate by the same way N-times different time of failures
of each element using Equation (19). According to equality (11) we know
a priori that the theoretically value of the MTTF is equal to 26.5685 h.
Figure 13(a), shows the value of the predicted MTTF converges and stabilizes
towards the theoretical value after around N = 106 simulations. Figure 13(b),
demonstrates that the absolute percentage error decreases continuously,
approaching zero after N simulations.

Case of a Bridge configuration
The approach adopted in the previous cases demonstrates that the proposed
algorithm yields accurate MTTF evaluations with a very low error rate,
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a b 

Figure 13 (a, b) MTTF and Absolute Percentage Error for 2 elements parallel with Weibull
distribution.

 

Figure 14 MTTF for Bridge configuration with exponential distribution.

around 0%. This consistency indicates the algorithm’s reliability. Therefore,
in cases of highly complex system configurations, where mathematical calcu-
lations are complicated or impractical, we can confidently rely on statistical
simulation results to evaluate the MTTF for any configuration with elements
following any statistical distribution.

Therefore, based on the simulation results, we can confirm that for the
bridge configuration, where the five system elements follow an exponential
distribution with different parameters (λ1 = 0.01 fr/h, λ2 = 0.02 fr/h, λ3 =
0.03 fr/h, λ4 = 0.04 fr/h, λ5 = 0.05 fr/h), the MTTF ∼= 27.58 h as shown in
Figure 14. Also, in case of Weibull distribution with parameters (a1 = 100 h,
b1 = 0.1), (a2 = 200 h, b2 = 0.2), (a3 = 300 h, b3 = 0.3), (a4 = 400 h,
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Figure 15 MTTF for Bridge configuration with Weibull distribution.

b4 = 0.4), (a5 = 500 h, b5 = 0.5), the MTTF∼= 619 h as illustrated in
Figure 1.

6 Conclusion

The developed method, based on generating the lifetime of each element in
a given system by the inverse of distribution function of failure, represents
an important step in evaluating the MTTF of a complex structure from a
reliability point of view, especially when dealing with structures that differ
from classical series or parallel configurations and also when we applied a
distribution of failure different of exponential model.

The proposed algorithm and the software implemented in MATLAB, used
to generate the MTTF, have been tested and verified in various scenarios.

By using this method, it becomes easy to estimate the MTTF with a
very low error and assess the reliability of complex systems. The ability to
handle diverse failure distributions and consider different system configura-
tions expands the applicability of the method to a wide range of engineering
systems.

The software developed provides a practical tool for reliability engineers
and designers to evaluate and predict the reliability of a complex struc-
tures. It offers flexibility in modelling various failure scenarios and supports
decision-making processes related to maintenance planning, system design,
and reliability improvement.
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In summary, the proposed method and software contribute to the under-
standing and assessment of the reliability of complex structures. They provide
valuable insights into the MTTF and offer a platform for further research and
development in the field of reliability engineering.

7 Future Scope

It should be noted that the proposed algorithm to generate the MTTF (Mean
Time to Failure) of the elements constituting the system and then the com-
plete system is based on the possibility of inverting the failure distribution
function. This is evident in most known failure distributions, but in other
cases, this is not obvious, hence the need to develop other methods and more
effective algorithms that allow for the management of the moments of failure
of the elements constituting the system.
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