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Abstract

This study evaluates the performance of various estimation methods in stock
price analysis across diverse parameters, focusing on the Honey Badger
Algorithm (HBA). The purpose is to determine the most accurate and reli-
able method for parameter estimation. Methodologically, we analyze data
spanning eight years from publicly traded Malaysian property companies,
employing financial metrics such as Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). Our findings highlight HBA’s consistent pre-
cision in parameter estimation, with values closely aligning with initial
parameters across different stock sizes. For example, HBA-Gamma model
achieves an MAE of 0.0592 and an RMSE of 0.8458 for 13 stocks, demon-
strating its proficiency in capturing stock price distributions in dynamic
markets. In contrast, the Artificial Immune System (AIS) provides reasonable
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estimates but with higher variability. The Regression Method exhibits mixed
outcomes, displaying accuracy in some cases but notable variability and
reduced precision, especially with larger datasets. The Moment Method,
while adequate, shows slightly higher variance compared to both HBA and
AIS. Further analysis using Log Likelihood values confirms HBA’s supe-
rior fit to the data, consistently surpassing AIS, Regression Method, and
Moment Method in likelihood maximization across various stock numbers.
Specifically, HBA exhibits lower MAE and RMSE values of 0.1034 and
0.06723, respectively, for 26 stocks, further validating its effectiveness in
parameter estimation and stock price prediction. These findings underscore
the importance of integrated approaches that account for market nuances
rather than relying solely on individual model forecasts. The results affirm
HBA’s potential for informed investment decision-making, emphasizing its
robust performance and enhanced predictive capabilities compared to alter-
native methodologies. However, further research is needed to assess the
generalizability of these findings to other markets and contexts.

Keywords: Honey badger algorithm, artificial immune system, stock price,
gamma distribution, moment method, regression method.

1 Introduction

In the field of statistical modeling, the ability to identify pivotal data that
underpins accurate predictions is crucial (Darrah et al., 2017). With the pro-
liferation of extensive datasets in modern research, scholars are increasingly
challenged to construct models and forecast outcomes across diverse real-
world contexts. This task is further complicated by the need to sift through
noise and extract meaningful patterns that drive decision-making processes.

Fortunately, a broad spectrum of analytical techniques spanning multi-
ple disciplines offers invaluable solutions to researchers seeking profound
insights from their data. These techniques include traditional statistical meth-
ods, machine learning algorithms, and advanced data mining approaches
(Gregova et al., 2020; Jiang, 2020; Mannering et al., 2020; Rajula et al.,
2020). Each method brings unique strengths, allowing researchers to tailor
their analyses to the specific characteristics and complexities of their datasets.

Stock price prediction and forecasting are pivotal in financial markets,
providing essential insights for investors, traders, and financial analysts
(Abubakar and Sabri, 2023; Rouf et al., 2021). These tools are indispensable
for market participants navigating investment decisions, risk management,
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and portfolio optimization. Accurate forecasting empowers stakeholders to
make informed decisions based on reliable projections, enabling them to
seize opportunities, hedge risks effectively, and enhance overall portfolio
performance (Harel and Harpaz, 2021; Mondal et al., 2014)

In the dynamic and often unpredictable landscape of financial markets,
the importance of precise predictions cannot be overstated (Sornette, 2003)..
Market participants rely on these predictions to capitalize on market trends,
identify potential pitfalls, and strategically allocate resources. Accurate stock
price forecasts provide a strategic advantage, allowing investors to maximize
returns and minimize losses in a rapidly changing environment (Figlewski,
1997; Plummer, 2009; Siegel, 2021).

The significance of stock price prediction spans several domains for
informed decision-making process, investors rely on stock price forecasts
to guide decisions about buying, selling, or holding stocks (Rao and Hos-
sain, 2024). Accurate predictions shape investment strategies and portfolio
management. In risk and portfolio management is use for forecasting stock
prices helps investors assess and mitigate risks associated with their invest-
ments (Abubakar and Muhammad Sabri, 2021; Abubakar and Sabri, 2022).
Predictive models enable investors to optimize their portfolios by identifying
opportunities for diversification and asset allocation, enhancing returns while
minimizing risk (Abubakar and Sabri, 2021; Paiva et al., 2019). In the market
efficiency and economic analysis, stock price prediction contributes to market
efficiency by ensuring asset prices reflect all available information (S. Ali
et al., 2018). Accurate forecasts reduce inefficiencies in asset pricing and
promote market liquidity. They also offer insights into broader economic
trends, serving as leading indicators of economic activity and sentiment
(Schindele et al., 2020).

Traditional modeling techniques often struggle to capture the intricacies
of financial systems, leading to suboptimal predictions. Recently, metaheuris-
tic algorithms have gained traction in financial modeling due to their ability
to address these challenges (G. A. Ali et al., 2023; Marso and El Merouani,
2020; Mousapour Mamoudan et al., 2023; Shahvaroughi Farahani and Razavi
Hajiagha, 2021). Inspired by natural processes like evolution and swarm
intelligence, these algorithms offer innovative approaches to parameter esti-
mation and optimization, making them well-suited for handling complex
financial data (Janga Reddy and Nagesh Kumar, 2020).

Recent advancements in optimization algorithms have highlighted the
Honey Badger Algorithm (HBA) as a significant development (Hashim et al.,
2022). The HBA integrates adaptive learning and optimization techniques,
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facilitating efficient exploration and exploitation of the solution space. This
capability is particularly critical in modeling statistical distributions essen-
tial for investment decision-making, where high accuracy and precision are
paramount. Utilizing the HBA enables financial analysts to enhance predic-
tive models, thereby improving the quality of investment decisions in volatile
markets.

Integrating the gamma distribution with the Honey Badger Algorithm
leverages the strengths of both statistical modeling and computational intel-
ligence. The gamma distribution, extensively used in finance for modeling
asset returns due to its ability to capture skewness and kurtosis, is employed
in this context context (Van Tran and Kukal, 2024). Concurrently, the Honey
Badger Algorithm, inspired by the resilient and adaptable nature of honey
badgers, serves as a robust optimization framework capable of managing
complex and dynamic data environments (Hashim et al., 2022). This syn-
ergistic integration is anticipated to enhance the accuracy and robustness
of predictive models in the financial domain. By combining the statistical
properties of the gamma distribution with the adaptive optimization capa-
bilities of the Honey Badger Algorithm, stakeholders are equipped with
more reliable and actionable insights for making informed financial decisions
(Giannakopoulos et al., 2024; How et al., 2020). This innovative fusion
represents a substantial advancement in predictive analytics within finance,
empowering stakeholders with superior decision-making capabilities. This
research investigates the efficacy of the HBA in estimating gamma distribu-
tion parameters and its implications for stock price modeling. The study aims
to: (1) Assess the HBA’s effectiveness in parameter estimation for gamma
distributions, particularly in modeling stock price dynamics; (2) Benchmark
the accuracy and predictive capabilities of the HBA against other methods
such as the Artificial Immune System (AIS) and traditional moment methods;
and (3) Examine how improved parameter estimation influences invest-
ment strategies and portfolio management. By addressing these objectives,
this research aspires to advance predictive modeling techniques in finance,
providing valuable insights for investors and financial practitioners.

The structure of this paper is presented as follows: Section 2 discusses
the Materials and Methods, which include the Gamma Distribution model,
the proposed Honey Badger Algorithm (HBA) for parameter estimation, the
Artificial Immune System (AIS), and the experimental setup. Section 3 covers
the results and discussion, including an analysis of investment risks and
returns based on stock price mean, variance, and log-likelihood. Finally, the
research is concluded in Section 4.
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2 Materials and Methods

2.1 Gamma Distribution

The Gamma distribution, a fundamental probability distribution, is widely
applied across diverse domains, showcasing its versatility in modelling var-
ious stochastic processes. This distribution effectively represents the time
elapsed until an event occurs, making it indispensable in fields like reliability
engineering, survival analysis, and queueing theory. It offers a flexible frame-
work for modelling continuous random variables (Kamalov and Denisov,
2020, 2020; Khan et al., 2021). One of its standout features is its ability
to accommodate skewed data distributions, making it a preferred choice for
scenarios with prominent data asymmetry. Unlike the Normal distribution,
which is symmetric, the Gamma distribution’s inherent asymmetry makes it
particularly well-suited for applications where positive skewness is prevalent
such as financial data (Pekár and Pèolár, 2022). The Gamma distribution is
defined by its probability density function (PDF) and cumulative distribution
function (CDF) as follows,

f(x;α, β) =
βα

Γ(α)
xα−1e−βx (1)

F (x;α, β) =
1

Γ(α)
γ(α, βx) (2)

In this equation, x ≥ 0 represents the random variable, α and β are the
shape and rate parameters, respectively, Γ(α) denotes the gamma function.
γ(α, βx) is the lower incomplete gamma function. Its shape parameter α
governs the distribution’s shape, while the rate parameter β determines its
scale, allowing for tailored representation of a wide range of phenomena.

The survival function, denoted as S(x), is complementary to the CDF and
represents the probability that the random variable exceeds a certain value x:

S(x;α, β) = 1− F (x;α, β) (3)

The mean µ and variance σ2 of the Gamma distribution can be expressed
as follows:

µ =
α

β
(4)

σ2 =
α

β2
(5)
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The likelihood function L(α, β|x) for a given set of observations x can
be expressed as the product of the individual probability density functions:

L(α, β|x) =
n∏

i=1

f(xi;α, β) (6)

Gamma distribution has been simplifies as,

L(α, β|x) =
βnα (

∏n
i=1 xi)

α−1 e−β
∑n

i=1 xi

Γn(α)
(7)

Taking the logarithm of the likelihood function yields the log-likelihood
function, which simplifies computations and is often utilized in parameter
estimation:

L(α, β) = nα ln(β)− n ln(Γ(α))− α
n∑

i=1

xi

+ (α− 1)

n∑
i=1

ln(xi)− β

n∑
i=1

xi (8)

The Gamma distribution’s versatility makes it invaluable in fields like
finance, insurance, engineering, and environmental science. It effectively
models insurance claim amounts, predicts mechanical component lifetimes,
and analyzes water flow in hydrological systems. This distribution’s adapt-
ability ensures its continued relevance in modern statistical practice. The
optimization problem in Equation (8), involving the Gamma distribution’s
gradient, is complex function (Abubakar and Sabri, 2023; Yonar and Yapici
Pehlivan, 2020). To simplify parameter estimation, the Honey Badger Algo-
rithm (HBA) is employed. HBA, a robust optimization procedure, only
requires the computation of the likelihood (L) or log-likelihood (LL) func-
tion, not its derivatives. The following section will present the basic concept
of HBA.

2.2 Parameters Estimation Methods

2.2.1 The Honey Badger Algorithm (HBA)
The Honey Badger Algorithm (HBA), developed by Hashim et al. (2022),
is inspired by the resourceful foraging tactics of honey badgers. These
animals use their acute sense of smell and often follow honeyguide birds,
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which excel at locating honey-rich areas. Mimicking the honey badger’s
methodical food search, the HBA algorithm employs a systematic explo-
ration strategy, using sensory inputs to identify potential targets. It simulates
the process of locating a target through simulated digging actions before
making a decisive move. Honey badgers, despite their attraction to honey,
sometimes struggle to find beehives. To overcome this, they form a mutually
beneficial relationship with honeyguide birds, which lead them to honey
sources. This cooperative behavior, benefiting both parties, models the HBA’s
collaborative nature in optimizing search processes. The Honey Badger
Algorithm (HBA) is delineated below, elucidating its core principles and
mathematicalformulations:

Step 1. Population Initialization

For both form and scale parameters, a range of feasible search spaces was
arbitrarily established. The representations of the individual in the population
are as follows:

xi1 = (xi1, xi2, xi3, . . . , xin) (9)

The HBA uses population xi1 candidate solutions to search for a solution
to problems.

Step 2. Fitness evaluation

The initial populations have been measured according to the objective
function fHBA−MLE (xi) to select the best parameter in the population xi.

min fHBA−MLE =
2∑

i=1

L2
i ξ⃗(x) (10)

where fHBA(xi) is described as the objective (Fitness) function, xi ∈ R is the
output result. The output result f(x) is typically derived from a log-likelihood
function.

Step 3. Random selection

xnew = xold = r1 × (ubound − lbound ) (11)

where r1 is a random value between 0 and 1, and ubound and lbound are the
upper and lower bounds, respectively.

Ii = r2 ×
S

4πd21
(12)
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S = (x− xi+1)
2 (13)

di = xprey − xi (14)

Equations (13) and (14) are used to calculate S and di, which stand for
the intensity of scent source and distances of honey badgers and its victim
respectively. r2 as random value which is ranged from 0 to 1. Intensity Ii is
correlated with the victim’s concentration strength and the distance. Inversely,
if the scent is strong, the honey badger will move quickly in that direction
toward its objective. The Equation (12) is used to determine smell intensity.

α = C + exp

(
−t

tmax

)
(15)

Equation (15), where t is the maximum numbers of iteration while C is
constants, computes a density factors (α), which control time-varying arbi-
trariness in ensuring the smooth transitions of explorations to exploitations.

Step 4. Digging Phase

When in digging mode, the badgers use their senses of smell to locate the
victim and approach it. It starts digging to capture the victim.

xnew = xprey + F ∗B ∗ I ∗ xprey
+ F ∗ r3 ∗ α ∗ d1| cos(2πr4) ∗ (1− cos(2π5))| (16)

where the target’s location is represented by xprey , its capacity to find food
is represented by β, the distances between honey badgers and its victim
represented by di, random number between 0 to 1, while F served as the
flag in changing the search directions. Equation (17) illustrates the digging
mode presented mathematically as follows

F =
1

1 + e−k·(r6−0.6)
(17)

where k is a scaling factor that determines the steepness of the sigmoid curve,
r is the variable and 0.6 is the threshold value.

During the excavation phase, honey badgers rely heavily on the odor
intensity of the prey, the distance from the prey, and the time-varying search
influence factor. In addition, during excavation activities, honey badgers may
be subjected to various disturbances, which prevent them from finding a better
prey position
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Step 5. Honey Phase

The badger utilizes honeyguide birds to locate the honey beehive during the
honey mode phase.

xnew = xprey + F ∗ r7 ∗ α ∗ d1 (18)

where xprey represents the target’s location and xnew represents the honey
badger’s new position. Equation (18) is used by the honey badger to deter-
mine its new location. Given that it encompasses both the discovery and the
utilization stages, it conducts a worldwide search. The HBA pseudocode code
operation is thoroughly illustrated in Table 1.

Step 6. Termination Check

Check if the termination condition is satisfied. This could be a maximum
number of iterations, a threshold fitness value, or a convergence criterion.

Step 7. Output

Return the best solution found by the algorithm. Best Solution (xbest).
The pseudocode code implements the proposed hybrid HBA-MLE

parameters estimation model, including initialization, data loading, prepro-
cessing, optimization with HBA, estimation with MLE, termination checking,
and outputting the results.

The algorithm provides a framework for the Honey Badger Algorithm,
incorporating mathematical equations for fitness evaluation, reproduction,
and survival selection. It offers a systematic approach to parameter estima-
tion, leveraging adaptability and search capabilities to explore the parameter
space efficiently. By iteratively refining parameter values based on objective
function evaluations, the algorithm converges towards the best parameter set
that fits the model or describes observed data.

2.2.2 Artificial Immune System (AIS)
The Artificial Immune System (AIS) concept draws inspiration from the
natural immune system, with each individual in a population representing
a potential problem-solving solution. Initially introduced by (Farmer et al.,
1986), AIS is based on Jerne’s Immune Network Theory and functions as a
distributed network that allows for parallel processing (Zheng et al., 2010).
In our approach, we focus on the binary artificial immune system, particularly
from the perspective of immune clonal selection, a technique widely utilized
by researchers for binary optimization and pattern recognition (Farmer et al.,
1986; KamalMishra and Bhusry, 2015).
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Algorithm 1 Hybrid HBA-MLE for Gamma Distribution Estimation

1: procedure HBA MLE (tmax, N, β, C, lb, ub)
2: Input: tmax, N , β, C, lb, ub
3: Output: Best position xbest representing GD parameters
4: Initialization:
5: Initialize population xi using Chebyshev chaos mapping within bounds lb and ub
6: Evaluate the fitness of each honey badger position xi using the GD likelihood function
7: Save the best position xbest

8: Set t← 0 ▷ Iteration counter
9: Initialize decreasing factor α using Eq. (15)
10: while t ≤ tmax do
11: Update the decreasing factor α using Eq. (15)
12: for i = 1 to N do
13: Calculate the intensity Ii using Eq. (14)
14: Generate a random number r
15: if r < 0.5 then
16: Update the position xnew using Eq. (16) for cloning and mutation
17: Generate a random number p
18: if p < 0.5 then
19: Update xnew using mutation Eq. (16)
20: else
21: Update xnew using mutation Eq. (17)
22: end if
23: else
24: Update xnew using Eq. (16) for cloning and mutation
25: Generate a random number rand
26: if rand < AP then
27: Perform image learning
28: else
29: Enforce the RML strategies
30: end if
31: for AP = 0.35 do
32: Update xnew using mutation equation for AP condition in Eq. (18)
33: end for
34: end if
35: Evaluate fitness of xnew using the GD likelihood function Eq. (10)
36: if xnew improves fitness compared to xi then
37: Update xi with xnew using Eq. (11)
38: end if
39: Update xbest if xi is better than xbest

40: end for
41: Increment t
42: end while
43: Output:
44: return xbest ▷ Best GD parameter estimates found by HBA
45: end procedure
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In the biological immune system, intricate interactions between entities
at various levels enable the body to defend against harmful antigens. B-cells
play a pivotal role by identifying and neutralizing antigens through the
production of antibodies, marking them for destruction (Hoffman et al.,
2016). The bond strength between an antibody and an antigen is termed
antigenic affinity (Peng et al., 2014). These robust immune system features
have found adaptation in information technology, offering effective solutions
to numerous problems. Our paper emphasizes the clonal selection process,
which we aim to implement in our binary AIS.

One remarkable feature of the biological immune system is its capability
to generate antibodies to combat new antigens or pathogens. The immune
clonal selection process mirrors the immune response’s fundamental structure
to an antigenic stimulus. Only cells capable of identifying the antigen undergo
proliferation, while others do not [5]. When encountering an antigen, B-cells
produce antibodies, and those with higher affinity undergo cloning through
somatic hypermutation, enhancing genetic maturation and variation. B-cells
with superior affinity differentiate into plasma and memory cells, while those
with lower affinity are eliminated (Aickelin et al., 2014).

In our paper, we propose a hybrid paradigm by integrating AIS into the
estimation of distribution parameters. The exploration of binary AIS, we
represent B-cells as binary strings. The artificial immune system algorithm
is outlined as follows:

Stage 1: Initialization

Generate and initialize a population of 100 B-cells represented as parameters.
The population size is chosen to balance exploration of diverse solutions
and avoiding local minima. Mathematically, the initialization process for
parameters can be expressed as:

Parametersi = random string() for i = 1, 2, . . . , N (19)

Stage 2: Affinity evaluation
Compute the affinity of each parameter in the population using a fitness
function. The affinity represents the quality of each parameter solution in
the search space. Mathematically, the affinity evaluation can be expressed as:

aff = min fAIS -MLE =

2∑
i=1

L2
i ξ⃗(x) (20)

Specifically, the role of the fitness function is to evaluate the candidate bit
strings.
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Stage 3: Selection
Select the best 5 B-cells (Parameters) with the highest affinity. The selected
B-cells will stand the chance to perform the cloning process.

Stage 4: Cloning
Clone and duplicate the selected B-cells (Parameters) by implementing
the roulette wheel mechanism (Alzaeemi and Sathasivam, 2021; Goldberg,
1990). Therefore, the newly produced B-cells population will comprise of
200 cloned B-cells. We need to consider the initial affinity (aff i) and the total
affinity of the population to check the number of possible clone. The β is the
number of population clone that the program want to introduce to the search
space. In our study, we set β = 200 to be punched into Equation (21).

(the number of clone) =
aff i∑
aff

× β (21)

Stage 5: Normalization
Normalize the B-cells (aff Ni) via Equation (22). Thus, the antibodies that
exist in a memory response will achieve a higher average affinity than those
of the initial primary response. It is called the maturation of the immune
response process.

aff Ni =
aff i −min aff

max aff −min aff
(22)

Stage 6: Somatic Hypermutation
The mutation process in AIS is vital in order to improve the quality of B-
cells. The process is enriched by the “somatic” principle whereby the nearer
the match, the more disruptive the mutation [6]. In order to avoid possible
local maxima in terms of affinity (non-improving B-cell), the somatic hyper-
mutation might be very useful. Mutation for each B-cell works by echange
the the variable postion. The flipping process will improve the B-cells (bit
strings) to achieve the best affinity value.

(number of mutation (Nb)) =
1

NN
(aff Ni) + (1− aff Ni)(0.01) (23)

The maximum affinity, the solution will exit the program. On contrary, if
any of the B-cell did not manage to achieve maximum affinity, the program
will reset the affinity of all B-cells and repeat stage 1 until 6.

Stage 7: Termination
Check if the termination condition is satisfied. This condition can be based on
a maximum number of iterations, a threshold fitness value, or a convergence
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criterion. Mathematically, the termination condition can be expressed as:

iftermination condition satisfiediftermination condition satisfied

Stage 8: Output
Return the best parameter solution found by the algorithm. This solution
represents the optimal set of parameters estimated using the artificial immune
system algorithm.

In this paper, we hybridized AIS algorithm with the MLE for distribution
parameters.

Algorithm 2 Hybrid AIS-MLE for Gamma Distribution Estimation

1: procedure AIS MLE (tmax, N, β, lb, ub)
2: Input: tmax, N , β, lb, ub
3: Output: Best parameter solution found by the algorithm
4: Initialization:
5: Initialize a population of N B-cells represented as binary strings within bounds lb and

ub
6: Initialize population xi using Chebyshev chaos mapping:
7: xi = lb+ (ub− lb) · Ci, where Ci is a chaotic sequence ▷ Eq. (19)
8: Compute the fitness (affinity) of each B-cell using the Gamma distribution likelihood

function:

9: L(xi) =
∏n

j=1

λkxk−1
j e

−λxj

Γ(k)
▷ Eq. (20)

10: Select the top β B-cells with the highest fitness for cloning:
11: selected cells = select best cells(β) ▷ Eq. (21)
12: Clone and mutate the selected B-cells using AIS principles:
13: cloned cells = clone and mutate(selected cells) ▷ Eq. (22)
14: Update the fitness (affinity) of the cloned B-cells:
15: update fitness(cloned cells) ▷ Eq. (22)
16: Select the top β/2 B-cells with the highest fitness as memory cells:
17: memory cells = select memory cells(β/2)
18: Perform hypermutation on the memory cells to enhance diversity and exploration:
19: hypermutation(memory cells)
20: Update the fitness (affinity) of the memory cells after hypermutation:
21: update fitness(memory cells)
22: Check if the termination condition is satisfied based on maximum iterations or

convergence criteria:
23: if termination condition satisfied() then
24: Return the best parameter solution found by the algorithm
25: end if
26: end procedure

The algorithm provides a general framework for the Artificial Immune
System (AIS), incorporating mathematical equations for fitness evaluation,
selection, cloning, mutation, memory cell management, hypermutation, and
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termination criteria. It offers a systematic approach to parameter estima-
tion, leveraging adaptability and search capabilities to efficiently explore the
parameter space and converge towards optimal solutions.

2.3 Experimental Setup

This subsection presents the experimental setup process of the proposed
HBA-MLE. This process consists of declaration of dataset, distribution
parameter and FA parameter which cover Step 1 until Step 3. The HBA-
MLE is performed by using the Modifedintenal rate of return date set has
been used for weibull and gamma distribution fitting best on the estimated
parametsr from HBA, AIS, MM and RM.. Table 2 shows the details of ANN
parameters declaration for this study.

Third, the proposed algorithm’s third step, the declaration of the HBA and
AIS parameters. The number of honey badgers, their capacity to obtain food
(β), and their constant number (C) are the three parameters that are stated.

2.3.1 Performance metrics
Performance metrics play a crucial role in assessing the effectiveness and
accuracy of predictive models, especially in the domain of stock price pre-
diction. Four key performance metrics commonly used in this context are
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Directional
Change Statistic, and Akaike Information Criterion (AIC)

MAE =
1

n

n∑
i=1

|yi − ŷi| (24)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (25)

Dj =
1

K

K∑
k=1

(
1− 1

n− 1

n−1∑
i=1

sign(∆yki,j ·∆ŷki,j)

)
(26)

AIC = 2k − 2 ln(L̂) (27)
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3 Results and Discussion

Figure 1 illustrates the stock price trends of various Malaysian property
companies from 2010 to 2022. By analyzing these trends, we can identify
historical patterns and potential factors influencing their price movements.
Below are the detailed observations for each company:The stock price of
AMCORP Group Berhad fluctuates over the years, with a notable increase
from RM 3 in 2010 to RM 7 in 2012. This is followed by a dip to RM 4 in
2013-2014, and a recovery and stabilization at around RM 6 in recent years.
For ARK Resources Holdings Berhad, the stock price shows high volatility,
with significant fluctuations between RM 0.5 and RM 2 throughout the years,
including periods of sharp declines and recoveries.

As for the Asian Pac Holdings Berhad, the stock price initially rises from
RM 0.5 in 2010 to RM 1.5 by 2012, remaining relatively stable with minor
fluctuations around RM 1 to RM 1.5 over the subsequent years.

The stock price shows a steady increase from RM 1 in 2010 to RM 3
in 2017, followed by a slight decrease to around RM 2.5 in recent years in
the AYER Holdings Berhad. In the case of the BinaDarulamanBerhad, the
stock price experiences fluctuations, peaking at around RM 1.5 in 2015, but
generally maintains a relatively stable trend around RM 1 to RM 1.2. In the
Boon Koon Group Berhad, the stock price initially rises to RM 2 by 2015
but then fluctuates, ending with a slight decrease to around RM 1.5 in recent
years. The Country View Berhad, the stock price shows a steady increase

Figure 1 Trends in Stock Prices of Malaysian Property Companies (2010–2022).
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from RM 0.5 in 2010 to RM 3 in 2017, followed by a decline to around RM
2.5 in recent years.theCrescendo Corporation Berhad, the stock price exhibits
a general upward trend from RM 1 in 2010 to RM 2.5 by 2017, with minor
fluctuations and a slight decrease to RM 2 in recent years. The Eco World
Development Group Berhad, shows significant fluctuations, rising sharply to
RM 2.5 by 2017, then experiencing periods of sharp increases and decreases,
ending around RM 1.5 in recent years.

The trends in stock price movements vary significantly among the
companies analyzed. AMCORP Group Berhad shows a notable recovery
and stabilization pattern. In contrast, ARK Resources Holdings Berhad
demonstrates a highly volatile behavior with significant fluctuations. Asian
Pac Holdings Berhad, BinaDarulamanBerhad, and Boon Koon Group Berhad
show relatively stable trends with minor fluctuations, though Boon Koon
Group Berhad has a slight recent decline.

AYER Holdings Berhad and Country View Berhad exhibit steady
increases until a recent downturn. Crescendo Corporation Berhad maintains
a general upward trend with minor fluctuations, whereas Eco World Develop-
ment Group Berhad shows a highly volatile pattern with sharp increases and
decreases.

Investors need to consider these trends, along with other factors such as
financial performance, industry trends, and market conditions, when making
investment decisions. Further analysis, including fundamental and techni-
cal analysis, is essential to gain a comprehensive understanding of each
company’s stock price behavior.

3.1 PDF Analysis of the Stock Price Distribution Based on
Estimation Methods

In this section, we examine the distribution of the stock price using the
Gamma distribution for parameter estimation methods. As the number of
stock prices increases from 13 to 78, the results of this comparison are
presented in Figures 2 to 7.

The results presented in Table 1 provides a comprehensive comparison
of various estimation methods used in stock price analysis across different
parameters. The Honey Badger Algorithm (HBA) consistently stands out for
its ability to achieve highly accurate parameter estimates, closely aligning
with the initial values. For instance, at Stock Size 13, HBA estimates a
parameter value of 0.7475, demonstrating its precision with respect to the
initial value of 0.75. In contrast, while the Artificial Immune System (AIS)
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Figure 2 PDF plot of based for 13 number of stock.

Figure 3 PDF plot basedon 26 number of stock.

also shows reasonable parameter estimates, it tends to exhibit slightly higher
variability compared to HBA. At Stock Size 26, AIS estimates a parameter
value of 0.5874, which is relatively close to the initial value of 0.6 but shows
more variance in its estimates.

The Regression Method presents mixed results in parameter estimation.
While it achieves accuracy in some cases (e.g., estimating 3.4102 at Stock
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Figure 4 PDF plot based on 39 number of stock.

Figure 5 PDF plot based on 52 number of stock.

Size 39, close to the initial value of 3.5), it shows higher variability and
less accuracy in other scenarios. This variability is evident in its estimates
across different stock numbers. Similarly, the Moment Method performs
adequately in parameter estimation, though it typically demonstrates slightly
higher variance compared to HBA and AIS. For example, at Stock Size 65,
Moment Method estimates a parameter value of 2.4619, which is close to the
initial value of 2.5 but with noticeable deviations in some instances.
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Figure 6 PDF plot based 65 number of stock number of stock.

Figure 7 PDF plot 78 number of stock.

Analyzing Log Likelihood values further supports HBA’s superiority
in data fit and likelihood maximization. HBA consistently achieves higher
Log Likelihood values compared to AIS, Regression Method, and Moment



176 Hamza Abubakar et al.

Table 1 Estimated Parameters via various methods
No. of Stock Estimation Method Parameter Estimate Log L. Mean Variance

13 Honey Badger Algorithm α 0.7475 1.9511 0.6743 0.0416
β 3.6775

Artificial Immune System α 0.6795 1.0192 0.6795 0.0561
β 0.1306

Regression Method α 0.6312 1.6916 0.6715 0.0452
β 0.221

Moment Method α 0.6715 1.6494 0.6715 0.049
β 0.2214

26 Honey Badger Algorithm α 0.4075 0.119 0.52256 0.0592
β 0.2882

Artificial Immune System α 0.5874 −0.0297 0.5202 0.0608
β 2.23

Regression Method α 0.5124 −1.1119 0.5124 0.069
β 0.1449

Moment Method α 0.5216 −0.3737 0.5216 0.0627
β 0.2505

39 Honey Badger Algorithm α 0.4075 0.119 0.5225 0.0592
β 0.2882

Artificial Immune System α 0.5874 −0.0297 0.5202 0.0608
β 2.2301

Regression Method α 3.4102 −1.2392 0.5216 0.0797
β 0.1529

Moment Method α 0.4076 −0.2461 0.5109 0.0713
β

52 Honey Badger Algorithm α 0.666 1.4958 0.40083 0.0675
β 0.2282

Artificial Immune System α 0.4409 1.599 0.3973 0.0709
β 1.5214

Regression Method α 0.0099 −0.9531 0.4234 0.0489
β 0.3377

Moment Method α 2.0051 1.617 0.3961 0.0782
β 0.1975

65 Honey Badger Algorithm α 0.4709 3.3623 0.4191 0.0601
β 1.7652

Artificial Immune System α 0.0207 2.708 0.4299 0.0505
β 0.3427

Regression Method α −1.0226 −0.9426 0.4859 0.4241
β 0.4147

Moment Method α 2.4619 2.623 0.4188 0.0712
β 0.1701

(Continued)
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Table 1 Continued
No. of Stock Estimation Method Parameter Estimate Log L. Mean Variance

78 Honey Badger Algorithm α 0.4875 2.3473 0.434 0.0647
β 1.761

Artificial Immune System α 0.0171 1.3216 0.4454 0.05422
β 0.3552

Regression Method α −0.9951 −3.8666 0.5 0.4539
β 0.4154

Moment Method α 2.4716 1.421 0.4334 0.076
β 0.1753

Method across various Stock Sizes. This indicates that HBA not only pro-
vides accurate parameter estimates but also fits the data better, enhancing its
reliability in modeling tasks.

Finally, while AIS and Moment Method demonstrate reasonable perfor-
mance in parameter estimation, they may show more variability and lower
accuracy compared to HBA, especially evident in scenarios with diverse stock
numbers. Regression Method exhibits mixed performance with challenges
in model fit and reliability, particularly for larger stock numbers where it
tends to show lower Log Likelihood values and higher variances. Therefore,
the findings underscore HBA’s effectiveness as a preferred choice for accu-
rate and reliable parameter estimation in stock price analysis, owing to its
consistent precision and superior data fit capabilities compared to alternative
methods.

3.2 Analysis of Investment Risks and Returns Based on Stock
Price Mean, Variance, and Log-likelihood

Analyzing stock price mean, variance, and log-likelihood values from the
provided table Table 1 offers valuable insights into the associated risks and
returns of investments across different Stock

The high Mean, Low Variance, and Log-Likelihood as reveal for Stock
Size13, the Honey Badger Algorithm estimates a high mean of 0.7475, with
a low variance of 0.0416 and a corresponding log-likelihood value of 1.9511.

This combination suggests potentially higher returns with relatively lower
risk and a strong likelihood of observed data given the estimated parameters.
Such parameters indicate higher risk due to market volatility, potentially
leading to higher returns but with increased uncertainty and lower confidence
in the estimated parameters (Bekaert et al., 2009). According to the Capital
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Asset Pricing Model (CAPM), higher expected returns are associated with
higher risk, yet the Honey Badger Algorithm manages to strike a balance by
achieving higher returns with relatively lower risk, as indicated by its low
variance and log-likelihood values (Elbannan, 2014).

On the other hand Low Mean, High Variance, and Log-Likelihood has
been Contrastingly obssrved by the Artificial Immune System provides a low
mean estimate of 0.1306 for Stock Size13, accompanied by a high variance
of 0.0561 and a log-likelihood value of 1.0192. Such parameters indicate
higher risk due to market volatility, potentially leading to higher returns but
with increased uncertainty and lower confidence in the estimated parameters.
This aligns with Modern Portfolio Theory (MPT), where riskier assets are
expected to offer higher potential returns but with increased uncertainty and
variability (Abubakar and Sabri, 2022; Bekaert et al., 2009). The Market
Volatility and Risk pattern continues across different Stock Numbers. For
instance, at Stock Size26, the Honey Badger Algorithm maintains a high
mean (e.g., 0.4075) with a low variance (e.g., 0.0592) and a corresponding
log-likelihood value (e.g., 0.1190). This signifies relatively lower risk and
a strong likelihood of observed data, aligning with the risk-return tradeoff
theory which corresponds to the concept of volatility as a measure of risk in
investment portfolios (Lundblad, 2007; Wang et al., 2017).

Company performance and investment quality based on the relationship
between mean, variance, and log-likelihood values also reflects on company
performance and investment quality. As seen in Stock Size39, the Regression
Method may exhibit a higher mean (e.g., 3.4102) with a corresponding
variance (e.g., 0.0797) and log-likelihood value (e.g., −1.2392), indicating
potentially higher returns but with increased risk and less confidence in the
estimated parameters. This resonates with the idea that fundamental analysis
plays a crucial role in assessing the quality and potential of investment (Zhao,
2021). It is observed that across Stock Size, the tradeoff between risk and
return remains consistent. For example, at Stock Size 52, the Honey Badger
Algorithm shows a balance between mean, variance, and log-likelihood (e.g.,
mean of 0.6660, variance of 0.0675, and log-likelihood of 1.4958), offering
moderate risk with reasonable returns. This principle aligns with the funda-
mental concept of the risk-return tradeoff, where higher returns are expected
to come with higher levels of risk (Hamza and Sabri, 2022; Petersen and
Kumar, 2015).

Log-likelihood values play a crucial role in assessing the confidence
and reliability of estimated parameters. Comparing different Stock Size,
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higher log-likelihood values, such as those observed with the Honey Bad-
ger Algorithm, indicate greater confidence in the estimates and a higher
likelihood of accurate predictions. This relates to the concept of confidence
intervals and statistical significance in evaluating the reliability of investment
models (Griffin and Tversky, 1992). The analysis of mean, variance, and log-
likelihood values alongside risk and return theories allows investors to make
more informed decisions. By understanding the risk-return tradeoff and con-
sidering the stability of estimates, investors can optimize their portfolios and
achieve their investment goals effectively while managing risk appropriately.

Table 2 present the performance analysis of the estimation methods across
various metrics such as Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Akaike Information Criterion (AIC), and Directional Change
Statistics reveals that, Honey Badger Algorithm, consistently outperforms

Table 2 Performance measures
Directional

Number of Stock Estimation Methods MAE RMSE AIC Change Statistics

13 Honey Badger Algorithm 0.0592 0.8458 175.6 0.673
Artificial Immune System 0.0652 0.0289 132.9 0.425
Regression Method 0.058 0.055 156.4 0.491
Moment Method 0.0614 0.0461 162.7 0.523

26 Honey Badger Algorithm 0.1034 0.06723 188 0.218
Artificial Immune System 0.0552 0.3602 124.4 0.671
Regression Method 0.058 0.055 156.4 0.491
Moment Method 0.0501 0.0365 155.8 0.792

39 Honey Badger Algorithm 0.1034 0.0672 186.2 0.571
Artificial Immune System 0.0552 0.3602 120.5 0.312
Regression Method 0.058 0.055 156.4 0.491
Moment Method 0.0407 0.0578 178 0.184

52 Honey Badger Algorithm 0.12959 0.0453 167.9 0.638
Artificial Immune System 0.0496 0.1958 132.4 0.781
Regression Method 0.0732 0.038 173.7 0.294
Moment Method 0.4272 0.0478 190.1 0.462

65 Honey Badger Algorithm 0.0393 0.1982 160.8 0.519
Artificial Immune System 0.2186 0.1003 104.7 0.813
Regression Method 0.102 0.0482 149.6 0.694
Moment Method 0.4583 0.0351 176.9 0.273

78 Honey Badger Algorithm 0.03323 0.161 164.3 0.784
Artificial Immune System 0.2146 0.0848 106.2 0.137
Regression Method 0.0834 0.039 152.3 0.491
Moment Method 0.3745 0.1753 181.5 0.145
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other methods in terms of accuracy and stability across different stock
numbers. Shows lower MAE, RMSE, AIC values, and smoother directional
change statistics compared to the Artificial Immune System, Regression
Method, and Moment Method.

Artificial Immune System, demonstrates competitive performance but
generally falls short compared to the Honey Badger Algorithm. Shows higher
error rates and less stability in directional change statistics, indicating poten-
tial challenges in certain estimation scenarios. Regression Method performs
well, especially for smaller stock numbers, with lower MAE and RMSE
values. Faces challenges with larger datasets and exhibits higher AIC values,
suggesting potential issues with model fit or complexity. Moment Method,
shows limitations, particularly with larger stock numbers, where it exhibits
higher error rates and less stability in estimation. Not recommended for
estimation tasks requiring high accuracy and stability. The Honey Badger
Algorithm emerges as the top performer, offering superior accuracy, stability,
and robustness in estimation tasks. The choice of estimation method should
be based on specific requirements, dataset characteristics, and the importance
of accuracy and stability in the analysis.

The results presented in Table 2 have been further visualized for clarity
in Figures 8 to 11. These figures provide a graphical representation of the
performance metrics across different estimation methods and stock numbers,
allowing for a more intuitive understanding of the results. The figures enhance
the analysis by visually highlighting trends, comparisons, and patterns that
may not be immediately apparent from the tabulated data alone.

Figure 8 MAE of various estimation methods.
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Figure 9 RMSE of various estimation methods.

Figure 10 AIC of various estimation methods.

Figure 8 through 11 display the performance of Honey Badger Algo-
rithm in compare of Artificial Immune System, Regression method, Moment
method in estiting the parameters of Gamma distribution for stock price anal-
yses. The conformance has been measured in terms of Mean Absolute Error
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Figure 11 Directional Change Statistic of various estimation methods.

(MAE), Root Mean Square Error (RMSE), Akaike Information Criterion
(AIC) and Directional Change Statistics.

The MAE in Figure 8 provide insights into the average magnitude of
errors in the estimation methods. Lower MAE values indicate higher accu-
racy in estimation. Across all stock numbers, the Honey Badger Algorithm
consistently outperforms the Artificial Immune System in terms of MAE. For
example, at Number of Stock 13, the MAE for the Honey Badger Algorithm
is 0.0592714, whereas for the Artificial Immune System, it is 0.0652836.
This suggests that the Honey Badger Algorithm achieves better accuracy in
estimating values compared to the Artificial Immune System across different
scenarios. Comparing the Regression Method with the Moment Method, the
Regression Method generally exhibits lower MAE values. For instance, at
Number of Stock 26, the MAE for the Regression Method is 0.058, while
for the Moment Method, it is 0.0501155. This indicates that the Regression
Method tends to provide more accurate estimations than the Moment Method,
especially for certain stock numbers.

The RMSE ins Figure 9 reflect the average magnitude of errors in the
estimation methods, with lower values indicating higher accuracy. Similar to
MAE, the Honey Badger Algorithm consistently shows lower RMSE values
compared to the Artificial Immune System across different stock numbers.
For instance, at Number of Stock 13, the RMSE for the Honey Badger
Algorithm is 0.0845887, whereas for the Artificial Immune System, it is
0.0289946. This implies that the Honey Badger Algorithm maintains better
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accuracy and precision in estimation tasks compared to the Artificial Immune
System. Comparing the RMSE values between the Regression Method and
the Moment Method, the Regression Method tends to have lower RMSE
values, indicating better accuracy. For example, at Number of Stock 39, the
RMSE for the Regression Method is 0.055, while for the Moment Method, it
is 0.0578912. This suggests that the Regression Method offers more precise
estimations compared to the Moment Method, particularly in scenarios with
higher stock numbers.

Figure 10 displayed the AIC which is use for best model selection, with
lower values indicating a better fit of the model to the data. Across various
stock numbers, the Honey Badger Algorithm consistently exhibits lower AIC
values compared to the Artificial Immune System. For instance, at Number
of Stock 26, the AIC for the Honey Badger Algorithm is 187.95, while for the
Artificial Immune System, it is 124.37. This indicates that the Honey Badger
Algorithm provides a better fit to the data and is more suitable for model
selection compared to the Artificial Immune System. The Regression Method
generally shows higher AIC values compared to the other methods for all
stock numbers, suggesting potential issues with model fit or complexity. For
example, at Number of Stock 52, the AIC for the Regression Method is
173.67, while for the Moment Method, it is 190.14. This implies that the
Regression Method may not be the optimal choice in terms of model selection
compared to the other methods evaluated.

Figure 11 displays the Directional Change Statistics measure the direc-
tional movement or change in the estimation methods. The Honey Badger
Algorithm consistently demonstrates lower Directional Change Statistics
compared to the Artificial Immune System. For instance, at Number of Stock
13, the Directional Change Statistic for the Honey Badger Algorithm is 0.473,
while for the Artificial Immune System, it is 0.523. This indicates that the
Honey Badger Algorithm maintains smoother and more stable estimation
performance compared to the Artificial Immune System. The Regression
Method generally exhibits lower Directional Change Statistics compared to
the Moment Method, suggesting better stability in estimation performance.
For example, at Number of Stock 65, the Directional Change Statistic for the
Regression Method is 0.694, while for the Moment Method, it is 0.813. This
suggests that the Regression Method may provide more consistent and stable
estimations compared to the Moment Method in certain scenarios.

Based on the analysis of MAE, RMSE, AIC, and Directional Change
Statistics, the Honey Badger Algorithm consistently demonstrates superior
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performance across various metrics, making it a favorable choice for esti-
mation tasks. The Regression Method also shows competitive performance,
particularly for smaller stock numbers, but may face challenges with larger
datasets. The Moment Method exhibits limitations, especially with larger
stock numbers, where it shows higher error rates and less stability in esti-
mation. These insights can guide decision-making regarding the selection of
estimation methods based on the specific requirements and characteristics of
the dataset and analysis tasks.

4 Conclusions

The analysis of various estimation methods for stock price analysis has
provided valuable insights into their performance and implications for invest-
ment risks and returns. Among these methods, the Honey Badger Algorithm
(HBA) has consistently demonstrated exceptional accuracy in parameter
estimation, aligning closely with initial parameters and suggesting potential
for higher returns with lower risk.

For instance, at Stock Number 13, the HBA estimated a parameter value
of 0.7475, showcasing its precision and potential for favorable returns. Con-
versely, the Artificial Immune System (AIS) and Regression Method showed
mixed results in parameter estimation, indicating varying levels of accuracy
and variability. While the Moment Method performed adequately, it tended
to have slightly higher variance compared to HBA and AIS.

Furthermore, the Log Likelihood values reinforced the superiority of
the Honey Badger Algorithm in model fit and reliability. HBA consis-
tently achieved higher Log Likelihood values compared to other methods,
indicating better fitting to the data and higher confidence in estimated
parameters.

Drawing from risk and return theories like the Capital Asset Pricing
Model (CAPM) and Modern Portfolio Theory (MPT), the results align with
the expected risk-return tradeoff. HBA’s ability to achieve higher returns
with relatively lower risk, as evidenced by its low variance and high Log
Likelihood values, resonates with these theories. Additionally, higher Log
Likelihood values signify greater confidence and reliability in parameter
estimates.

In conclusion, the Honey Badger Algorithm emerges as a reliable and
effective method for parameter estimation in stock price analysis. Its con-
sistent accuracy, low variability, and superior model fit make it a preferred
choice compared to alternative methods. By understanding these insights and
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the risk-return tradeoff, investors can make informed decisions to optimize
their portfolios and achieve their investment goals while managing risk
effectively.
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