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Abstract

Reliability optimization can be applied to find parameters that increase reli-
ability and decrease costs, in the presence of uncertainty. Nowadays, with
the increasing complexity of systems, it is important to find suitable opti-
mization methods. In this regard, we can refer to gradient-based optimization
methods. The power of stochastic gradient-based approaches in optimization
under uncertainty resides in efficiency in using sampling information. These
methods allow applying a small sample size in updating problem parameters.
Using a small sample size also has its disadvantages, and it leads to oscillation
around the minimum point when approaching the minimum. One of the ways
to solve this problem is to use progressive batching. Here, to increase stability
Progressive Batching L-BFGS (PB-LBFGS) and Progressive Batching L-
BFGS with momentum (PB-mLBFGS) are used for reliability optimization,
and with an example, the effectiveness of these approaches is compared with
some other optimization methods.
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1 Introduction

In some reliability optimization problems, the mean of the cost function under
given restrictions is minimized. This type of problem is called Reliability-
Based Optimization (RBO). To solve RBO problems efficiently, one way is
using a stochastic approximation of gradients [1]. Complex RBO problems
can be solved well with stochastic optimization, especially when the size of
the system is large. In reliability analysis, attaining full information requires
too many simulations. Reducing the number of needed simulations is one of
the benefits of using stochastic gradients [1]. Different optimization methods
are deployed for RBO problems.

In [2] the efficiency of Stochastic Gradient Descent (SGD) algorithms for
structural reliability maximization of buildings is investigated with a focus
on computational cost reduction; They used the design of Friction tuned
mass damper (FTMD) as an example problem and the Accelerated Stochastic
Gradient Descent (ASGD) algorithm for optimization.

In the redundancy allocation problem for systems consisting of multiple
k-out-of-n [3], a methodology for maximization of system reliability was
developed by transforming the problem and defining new decision variables
to yield an equivalent zero-one integer programming problem.

In [4] the application of SGD, Adam, AdaMax, Nadam, AMSGrad, and
AdamSE algorithms in solving the mean-variance portfolio optimization
problem is studied and it is shown that the AdamSE algorithm is a better
approach, especially for solving the mean-variance portfolio optimization
problem. [5] solves the reliability optimization problem for the Circular
k-out-of-n system by introducing the BIGA method, which combines the
genetic algorithm with Birnbaum importance. For cost optimization and
reliability parameter extraction of a complex engineering system named Heat
Removal System of a nuclear power generation plant safety system, [12]
used metaheuristic algorithms, like Cuckoo Search algorithm and Grey Wolf
optimizer. [14] conducted a reliability analysis of an excavator from its field
failure data and effectively improved its life cycle cost.

The general form of a reliability optimization problems is

min
θ

E[C(θ,X)], θ ∈ Ωθ

Subject to

hi(θ) ≤ 0, i = 1, . . . , nC

pj(θ) ≤ ptolj , j = 1, . . . , np,

(1)



Reliability Optimization Using Progressive Batching L-BFGS 323

Where θ is the design variables that should be optimized over its range Ωθ; E
is the expectation operator; C is a cost function; X is the vector of uncertain
variables; hi denotes the constraints on the problem; pj is the probability
of occurrence of the jth event and ptolj is its maximum tolerance. Monte
Carlo sampling can be applied for assessing the reliability of a system [7].
In optimization under uncertainty gradients can be approximated with the
finite difference method [8]; this method is used extensively for solving RBO
problems.

In optimization under uncertainty with gradients, it is common to use
coordinate-wise methods such as SGD. Recently, quasi-Newton methods
that use vector operators have also been introduced for optimization under
uncertainty [11, 15]. In this study, the goal is to compare the performance
of Progressive Batching L-BFGS (PB-LBFGS) and Progressive Batching L-
BFGS with momentum (PB-mLBFGS) with some coordinate-wise methods
in terms of the number of required samplings.

Next, in Section 2, the proposed method for reliability optimization is
introduced. In Section 3, using a simulated example, the performance of the
proposed optimization method is compared with some other methods. Finally,
the conclusion is made in part 4.

2 Proposed Method

Stochastic Gradient Descent is an algorithm for optimization. Compared to
Batch methods, there are some motivations for using stochastic methods. It
is practical (when the dataset is very big) and theoretical (SG employs infor-
mation more efficiently) motivations for following a stochastic approach [9].
In reliability optimization, there is a loss function that shall be minimized or
maximized over its parameters. for example , we can maximize the reliability
of the system; or we can minimize some predefined loss (i.e., expectation of
a fiscal loss of the system). Suppose that the loss function is in the form of:∫

X
C(θ,X)fX(θ, x)dx, (2)

where f is the density function of the failure time and θ is the parameters of
the problem. Sometimes the integral has a closed-form solution and we can
derive it in terms of θ:

G(θ) =

∫
X
C(θ,X)fX(θ, x)dx. (3)
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Then for finding the optimal solution of the problem we need to
differentiate respect to d and then solve the equation

∇g(d) = 0, (4)

And then derive the solution d̂. Sometimes G(d) can be obtained, but
we cannot solve (4) for d. In this case, a numerical approach (i.e., gradient
descent method) can be employed.

Sometimes in equation (2), solving the integral is a complicated task and
we cannot obtain G(d). In this case, first, the loss is turned into this form [2]:

∇θC̄(θ) := ∇θEX [C(θ,X)]

= ∇θ

∫
X
C(θ, x)fX(θ, x)dx

=

∫
X
∇θβ(d, x)fX(θ, x)dx

+

∫
X
C(θ, x)∇θ (log fX(θ, x)) fX(θ, x)dx

= EX [∇θC(θ,X) + C(θ, x)∇θ (log fX(θ, x))] .

(5)

For most problems computing the above expectation directly is not pos-
sible; So, the above integral can be approximated with the Monte Carlo
sampling method. This procedure is known as Sample average approximation
(SAA) [8]:

E[C(θ, x)] ≈ 1

n

n∑
i=1

C (θ, xi) . (6)

In the above formula, normally Monte Carlo simulation with a sampling
strategy is used [8]. An accurate approximation needs a very large sampling
size. Here, stochastic optimization methods can be deployed that works with
few sampling sizes [1]. Sometimes we cannot obtain ∇θC. In this case, a
finite-difference approximation to the gradients can be used [10]. The jth
element of the gradient can be obtained from:

[∇θC (θ, xi)]j ≈
C(θ + cj .h, x)− C(θ, x)

h
, (7)

where cj is a vector of 0s except its jth element that is 1; and h is a positive
number with a little magnitude, and can be obtained from:

h = max{1, |θj |}
√
ϵM . (8)
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Here, ϵM is the machine precision [10]. Finite-difference approximation
to the gradients is a simple method and only needs Monte Carlo simulation;
so, it can be deployed in complicated models. Also, from formula (2.4),
a finite-difference approximation to the gradients can be computed with a
parallel procedure and is applicable when the number of components is very
large.

A quasi-Newton method based on momentum, called Momentum-based
L-BFGS (mLBFGS) is proposed in [15]. Progressive Batching L-BFGS (PB-
LBFGS) is a quasi-Newton algorithm for optimization that uses stochastic
gradients [11]. The method uses a stochastic backtracking line search [11].
A challenge in the stochastic version of L-BFGS and generally stochastic
optimization is sample size selection. A lower bound for sample size is
introduced in [11].

The functionality of a reliability system can be depicted with a reliability
network [13]. Each network has a start point and a terminal point. An example
of a reliability network is depicted in Figure 1.

In each simulation, given the failure time of each component, the failure
time of the system can be computed with a function T (t1, t2, .., tn) where ti
is the failure time of the ith component. The cost function C is a function of
T and model parameters θ.

Figure 1 An example of reliability network of a system. The system consists of seven blocks.
Each block is a series system with 50 components as shown in Figure 2.

Figure 2 The architecture of the blocks used in Figure 1. Each block is a series system
consisting of 50 components with independent exponential distributions.
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(a) PB-LBFGS (b) PB-mLBFGS
Figure 3 The effect of progressive batching on the RBO problem in Figure 1.

(a) PB-LBFGS (b) PB-mLBFGS

Figure 4 The effect of different history sizes on the PB-LBFGS and PB-mLBFGS.

3 Empirical Results

SGD uses coordinate-wise operations; But, L-BFGS uses vector operations;
So, L-BFGS is more susceptible to machine precision and, when the magni-
tude of gradients is very small, the performance of L-BFGS may decay much
more compared to SGD. In addition, when the relationship between problem
parameters is not very complicated, L-BFGS is an unnecessarily complex
option. In reliability network depicted in Figure 1, Ci consists of a series
of 50 components. The network consists of 350 independent components.
Time to failure of the ith component has an exponential distribution with
parameter θi. The cost function for each simulation is

∑350
i=1 θ

′
i/350+ 1000 ∗

exp (−T (t1, t2, . . . , tn)) where θ′ = θ.W . T is the failure time and W is a
matrix with positive entries that indicates relationship between coordinates
of θ and the loss. The initial batch size for optimization methods is 200,
and validation is performed on 500,000 simulated data. For PB-mLBFGS
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and PB-LBFGS Armojo line search is used, and in each iterations variance
bound is checked, and when necessary sample size is multiplicated by 1.2.
The history size’s initial value is 5, and Momentum value for PB-mLBFGS
will be 0.2, unless otherwise stated. Optimization is performed with ADAM
and SGD with momentum, in addition to PB-LBFGS and PB-mLBFGS.

The effect of using a progressive batching mechanism or not using it
in algorithms PB-LBFGS and PB-mLBFGS, in terms of the number of
samplings is depicted in Figure 3. With progressive batching PB-LBFGS
reaches the solution with a smaller number of samplings, also its final solution
is more stable. PB-mLBFGS can reach the solution by using progressive
batching, but otherwise, it will not converge. So, progressive batching helps
the optimizer to behave more stably near the minimum and to use information
more efficiently.

The quasi-Newtonian algorithms obtain the direction of optimization with
the help of values stored in their history. The Figure 4 shows the effect
of history size on optimization. Algorithms PB-LBFGS and PB-mLBFGS
cannot find a descent direction when history size is zero. If history size is one,
algorithm PB-mLBFGS converges, which indicates its better performance
than PB-LBFGS in stochastic conditions.

The PB-mLBFGS algorithm has a parameter called momentum. If it is
one, the algorithm will convert to PB-LBFGS. Figure 5 shows the effect of
different momentums in PB-mLBFGS. If momentum is one, the optimizer
does not converge, because the progressive batching mechanism recognizes
the generated direction as stable, and the batch size remains constant. As a
result, the directions produced by PB-mLBFGS will not have the necessary
efficiency. Also, these results show that using momentum can be useful in
optimization under uncertainty with quasi-Newton optimizer.

Figure 6 shows the sample size of PB-LBFGS and PB-mLBFGS algo-
rithms in each iteration, which can be used in manual batch size increments,
to consume less computations..

Figure 7 shows the performance of the algorithms PB-LBFGS and PB-
mLBFGS, compared to the coordinate-wise methods of SGD and ADAM. As
can be seen, the algorithms PB-LBFGS and PB-mLBFGS reached a solution,
with a much smaller number of samples. In addition, PB-mLBFGS can reach
the solution with fewer samples than PB-LBFGS. It is worth mentioning, in
terms of computation time, PB-LBFGS and PB-mLBFGS are slower because
the progressive batching mechanism uses relevantly time-consuming opera-
tions; But PB-LBFGS and PB-mLBFGS automatically make the optimizer
more stable, and also guide us on how to increment sample size manually.



328 Mohammad Etesam and Gholam Reza Mohtashami Borzadaran

Figure 5 The effect of different momentum values on the PB-mLBFGS.

Figure 6 Sample size in terms of number of iterations.
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Figure 7 validation loss in terms of number of samplings for the problem depicted in
Figure 1.

4 Conclusion

In this work first, the reliability optimization problem is introduced. Then,
the procedures of cost approximation and gradient evaluation are explained.
The performance of the PB-LBFGS and PB-mLBFGS methods in optimizing
a reliability network consisting of 350 components was compared with some
other optimization methods like ADAM and SGD. The effect of progressive
batching, different history sizes, and different momentum values on the PB-
LBFGS and PB-mLBFGS algorithms, in a simulated RBO problem was
investigated. PB-LBFGS and PB-mLBFGS use an expression for computing
an efficient number of samplings in each iteration. PB-mLBFGS without
progressive batching may work worse than PB-LBFGS, and work better than
it with using progressive batching. The results in an example showed that
these methods applies to RBO problems compared to other optimizers like
ADAM and SGD.

For future work, considering that quasi-Newton methods are evolv-
ing, the performance of newer stochastic quasi-Newton methods should
be investigated; Also, the effect of different line search strategies in such
problems.
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